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Abstract: With the development of modern military technology, electrical drive technology has
become a power source for modern artillery. In fault monitoring of a driving motor mounted on
a piece of artillery, various sensors are susceptible to interference from the complex environment,
both inside and outside the artillery itself. In this study, we creatively propose a fault diagnosis
model based on an attention mechanism, the AdaBoost method and a wavelet noise reduction
network to address the difficulty in obtaining high-quality motor signals in complex noisy interference
environments. First, multiple fusion wavelet basis, soft thresholding, and index soft filter optimization
were used to train multiple wavelet noise reduction networks that could recover sample signals under
different noise conditions. Second, a convolutional neural network (CNN) classification module
was added to construct end-to-end classification models that could correctly identify faults. The
above basis classification models were then integrated into the AdaBoost method with an improved
attention mechanism to develop a fault diagnosis model suitable for complex noisy environments.
Finally, two experiments were conducted to validate the proposed method. Under motor signals with
varying signal-to-noise ratios (SNRs) noises, the proposed method achieved an average accuracy of
92%, surpassing the conventional method by over 8.5%.

Keywords: fault diagnosis; artillery driving motor; attention mechanism; AdaBoost; noise

1. Introduction

With the development of modern artillery towards automation and intelligence, the
motor system has gradually evolved to be the power system for such artillery due to
its highly efficient output, fast response, and excellent reliability [1]. However, because
modern artillery now involves a high degree of automation, any failure of the electrical
system can greatly affect the effectiveness of the artillery in combat, and in severe cases
can lead to disastrous consequences [2]. As a result, accurate fault diagnosis is required
to detect anomalies in the motor system in a timely manner, thus ensuring the safety of
equipment and personnel, as well as improving the efficiency of logistics support, which is
extremely important.

Figure 1 shows a shock vibration test near the trunnion of a self-propelled piece of
artillery that uses a motor to drive the coordinating arm for drug delivery. Experiments
have found that the vibrations inside the artillery were so intense that the vibration signals
collected by the sensors were severely disturbed [3,4]. The working environment of artillery
is characterized by harsh conditions including strong background noise and sensor impact
caused by firing. Moreover, artillery falls under typical non-static working conditions.
These unstable excitations and complex noisy conditions directly contribute to challenges
in extracting fault characteristic signals from the driving motor of artillery.
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Figure 1. A vibration test in an artillery trunnion. 

Common motor faults are usually detected using vibration, magnetic, and current 
signals [5–7]. Vibration signal detection has obvious fault characteristics and possesses a 
high level of detection accuracy for mechanical faults, e.g., motor bearing faults [8–10]. 
Magnetic signals are sensitive to flux changes caused by any magnetic field imbalance and 
have recently become an important area of research [11,12]. Current signals have the ad-
vantages of being easy to collect and monitor and very precise, with low noise [13–16]. 
Strong recoil during firing can cause transient eccentric vibrations of the motor rotor, 
which can also cause significant interference with magnetic signal-based diagnostic meth-
ods. Current signals are relatively less affected by shock vibrations, and the anti-jamming 
cable also has a certain shielding effect against various electromagnetic countermeasures 
on the battlefield. Considering these advantages and disadvantages, the current signal-
based fault diagnosis method is still chosen for artillery motor fault diagnosis. 

Different current signal data processing techniques and intelligent diagnosis algo-
rithms have been widely used for motor fault diagnosis tasks. Huang et al. [17] used an 
autoencoder and a recurrent neural network (RNN) to detect motor faults through current 
signals. Widodo et al. [18] proposed a fault diagnosis method based on principal compo-
nent analysis (PCA) and a support vector machine (SVM), which is simple and effective 
for extracting motor fault features. These signal processing methods have developed rap-
idly in the last decade, with solid theoretical foundations and good interpretability. At the 
same time, they address current problems such as signal denoising and weak feature ex-
traction. However, this approach usually requires expert experience in fault characteris-
tics. 

In recent years, motor fault diagnosis based on deep learning (DL) has attracted wide-
spread attention as an end-to-end approach that does not require expert experience or 
characterization [19–23]. Considerable literature on motor fault diagnosis has emerged 
around the topic of deep learning. Suawa et al. [24] proposed a fusion method using data-
level sensors and deep learning, proposing Convolutional Long Short-Term Memory 
(CNN-LSTM), which is a combination of two deep learning methods in order to diagnose 
Brushless Direct Current motor faults. Husari et al. [25] proposed a hybrid architecture, 
namely a 1D convolutional neural network-long short-term memory (1DCNN-LSTM) and 
a 1DCNN-gated recurrent unit (GRU)-based approach, for early inter-turn fault diagnosis. 
Li et al. [26] proposed a wavelet kernel net, which used a wavelet basis instead of convo-
lutional kernels, and combined the advantages of deep learning and classical signal pro-
cessing methods. Zhao et al. [27] designed a filter denoising network and trained the filter 
threshold using the deep residual shrinkage networks network. In light of the exceptional 
anti-noise capabilities offered by fusion wavelet and deep learning methodologies, this 
study employs these techniques to construct networks for noise reduction and feature 

Figure 1. A vibration test in an artillery trunnion.

Common motor faults are usually detected using vibration, magnetic, and current
signals [5–7]. Vibration signal detection has obvious fault characteristics and possesses
a high level of detection accuracy for mechanical faults, e.g., motor bearing faults [8–10].
Magnetic signals are sensitive to flux changes caused by any magnetic field imbalance
and have recently become an important area of research [11,12]. Current signals have the
advantages of being easy to collect and monitor and very precise, with low noise [13–16].
Strong recoil during firing can cause transient eccentric vibrations of the motor rotor, which
can also cause significant interference with magnetic signal-based diagnostic methods.
Current signals are relatively less affected by shock vibrations, and the anti-jamming cable
also has a certain shielding effect against various electromagnetic countermeasures on the
battlefield. Considering these advantages and disadvantages, the current signal-based fault
diagnosis method is still chosen for artillery motor fault diagnosis.

Different current signal data processing techniques and intelligent diagnosis algorithms
have been widely used for motor fault diagnosis tasks. Huang et al. [17] used an autoencoder
and a recurrent neural network (RNN) to detect motor faults through current signals.
Widodo et al. [18] proposed a fault diagnosis method based on principal component analysis
(PCA) and a support vector machine (SVM), which is simple and effective for extracting
motor fault features. These signal processing methods have developed rapidly in the last
decade, with solid theoretical foundations and good interpretability. At the same time, they
address current problems such as signal denoising and weak feature extraction. However,
this approach usually requires expert experience in fault characteristics.

In recent years, motor fault diagnosis based on deep learning (DL) has attracted
widespread attention as an end-to-end approach that does not require expert experience
or characterization [19–23]. Considerable literature on motor fault diagnosis has emerged
around the topic of deep learning. Suawa et al. [24] proposed a fusion method using
data-level sensors and deep learning, proposing Convolutional Long Short-Term Memory
(CNN-LSTM), which is a combination of two deep learning methods in order to diagnose
Brushless Direct Current motor faults. Husari et al. [25] proposed a hybrid architecture,
namely a 1D convolutional neural network-long short-term memory (1DCNN-LSTM)
and a 1DCNN-gated recurrent unit (GRU)-based approach, for early inter-turn fault
diagnosis. Li et al. [26] proposed a wavelet kernel net, which used a wavelet basis instead
of convolutional kernels, and combined the advantages of deep learning and classical
signal processing methods. Zhao et al. [27] designed a filter denoising network and
trained the filter threshold using the deep residual shrinkage networks network. In light
of the exceptional anti-noise capabilities offered by fusion wavelet and deep learning
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methodologies, this study employs these techniques to construct networks for noise
reduction and feature extraction. However, existing research predominantly focuses on
analyzing motors in relatively stable operating environments, where even if the test signal
is disrupted by noise, its signal still maintains a comparatively stable signal-to-noise ratio
(SNR) and noise distribution.

In order to solve the generalization ability of fault diagnosis models to complex
noise, this study draws on the advantages of ensemble learning and attention mechanisms.
Ensemble learning performs the diagnostic task by iteratively constructing and combining
multiple classifiers, which greatly improves the generalization ability of the model.
Long et al. [28,29] used the AdaBoost ensemble learning algorithm to improve the
diagnostic accuracy of unbalanced experimental datasets; this proved a significant
inspiration for fault diagnosis in artillery motors. The idea of giving extra weight
to specific test samples with extreme values within a distribution is consistent with
the attention mechanism. The attention mechanism comes from the study of human
vision: it works by selecting the most relevant information from amongst a given set
and concentrating it, thereby improving the recognition and classification performance
of an intelligent algorithm. The attention mechanism has been shown to play a clear
role in a wide range of studies, but its applications are mainly in the fields of vision,
image classification, and natural language translation, while its application in the field
of fault diagnosis is still under development [30–33].

The main contributions of this paper are as follows:

1. We designed a fusion wavelet kernel composed of multiple wavelet basis and applied
it to fault diagnosis in artillery motors. This approach can efficiently process the
current signals of the artillery motors under different operating conditions and support
subsequent fault diagnosis.

2. We propose a filter optimization method combining indexing and soft thresholding to
filter the fused wavelet basis and achieve noise reduction for signals with different noise.

3. We propose a modified version of the AdaBoost ensemble learning algorithm based
on the attention mechanism. In addition to the weights assigned by the original
AdaBoost algorithm, more attention is allocated to the optimal base classifier under
the current conditions through similarity analysis of filtered samples. The final
diagnosis model constructed according to this method is named the Denoising Fault
Diagnosis Attention Network (DFAN). This approach further reduced the interference
of raw sample noise on fault diagnosis and enabled the final classifier to be very
generalizable and robust.

The rest of the paper is organized as follows: Section 2 presents the relevant prepara-
tory work and the theoretical basis. Section 3 describes the implementation of the method
in detail. Section 4 is devoted to a discussion of the experiments. Section 5 is devoted to
the conclusion.

2. Preparatory Work
2.1. Current Signal for Diagnosis of a Fault in the Artillery Driving Motor

A typical motor-driven artillery automatic loading system is shown in Figure 2. It is
a typical mechatronic system, which consists of an ammunition swing arm, an ammunition
delivery mechanism, and a motor drive system to provide power. When the artillery
is loaded, the arm is driven by an electric motor to rotate around the shaft, and the
ammunition delivery mechanism is driven to complete the spatial conversion from one
magazine to the next. At the same time, the attitude adjustment motor drives the bullet
feeding mechanism to rotate around the rotating axis to realize the attitude adjustment
from the bullet receiving position (coaxial with the exit of the shell warehouse) to the
ammunition transporting position (coaxial with the artillery barrel). The process includes
two steps of work:
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(a) The ammunition delivery mechanism resets from the position of ammunition delivery
(barrel) to the position of receiving ammunition (magazine).

(b) The ammunition delivery mechanism carries ammunition from the position of receiving
ammunition (magazine) to the position of ammunition delivery (barrel).
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A governing equation for the driving motor of the artillery loading mechanism
was constructed.

The voltage element can be expressed as [34]:
ud =

dλd
dt

− λqωr + Rsid

uq =
dλq

dt
− λdωr + Rsiq

(1)

Here, ud and uq are the stator voltage d and q-axis components, id and iq are the stator
current d and q-axis components, λd and λq are the stator flux d and q-axis components, Rs
is the stator resistance and ωr is the rotor electrical angular velocity.

The kinetic element can be formulated as [34]:

Te − Tl = J
dωm

dt
+ Bωm (2)

Here, Te is the motor actuation torque, Tl is the load torque, J is the moment of inertia,
B is the friction coefficient, ωm is the mechanical angular velocity of the rotor, ωr = pωm
and p is the number of rotor poles in the motor.

During motor control, given the planning curve, the position loop outputs the command
speed; the loop outputs the instruction current; and the current loop outputs the command
voltage. Simultaneously, Equations (1) and (2) show that:

I = f (T, J, B, λ, ω)

I =

[
id
iq

] (3)

The artillery driving motor torque T and rotor angular velocity ω caused by changes
in the operation of the type of fault, the fault mechanism of the change of the moment of
inertia J, the wear failure of the change of the friction coefficient B and the motor internal
fault of the change of the stator flux linkage λ respond to the current I. Three of the motor
currents Ia, Ib, Ic have a simple projection relationship with I and can be obtained directly
from the motor monitoring equipment. In order to perform fault diagnosis on an artillery
driving motor via a three-phase current, the core task is to extract features of each fault
type from the current.
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2.2. Signal Preprocessing
2.2.1. Wavelet Transform

As a signal analysis tool that can obtain joint information in the time and frequency
domain, the wavelet transform has been widely used to deal with non-stationary signals.

Suppose that a current signal including noise is collected from the motor; this can be
expressed as follows:

x(t) = s(t) + n(t) (4)

Here, x(t) is the measurement signal; s(t) is the characteristic signal; and n(t) is the
signal containing multiple noisy interference signals.

The convolution of the function x(t) with a suitable wavelet basis function yields
a decomposition in frequency and time:

Wa,b(x(t), ψ(t)) =
1√
a

∫ +∞

−∞
x(t)ψ∗

(
t − b

a

)
dt (5)

Here, Wa,b(·) denotes the wavelet coefficients obtained from the decomposition, a is
the scale parameter proportional to the inverse of the center frequency, b is the translation
parameter of the localization signal, ψ∗(·) is the complex conjugate wavelet of a mother
wavelet basis ψ(·) scaled by the displacement, and t is the time step.

Adjusting the scale parameter can change the frequency of the wavelet, thus affecting
the resolution in both the time and frequency domains and then achieving the purpose
of displaying different details of the same signal. In past studies, different wavelet basis
have been designed to reveal hidden features of non-stationary signals. Wavelet transforms
composed using different scales and wavelet basis can be thought of as filters with different
characteristics and frequency bands.

The first important aspect to improve the fault diagnosis effect is, therefore, the
selection of an appropriate scale parameter and wavelet basis for the current signal of the
artillery driving motor.

2.2.2. Wavelet Signal Denoising

Wavelet transform is an important application of signal denoising. Electronic devices
used in modern equipment such as radar, wireless communications, satellite navigation,
and electronic countermeasure systems, among others, are very complex. In the actual
battlefield environment, artillery signals are inevitably mixed with a large amount of noise
due to self-interference and mutual interference of electronic devices.

After wavelet decomposition of the original signal, features tend to focus on large
wavelet coefficients. The wavelet coefficients of the noise are uniformly distributed
and small. By choosing an appropriate threshold, only signals consisting of wavelet
coefficients larger than the threshold are retained for denoising purposes. There are two
main approaches to thresholding [12]. The hard threshold is discontinuous in the real
number domain and changes from continuous to step-like at the threshold point; this
can easily lead to oscillations in the signal reconstruction and produce the pseudo-Gibbs
phenomenon. The soft threshold overcomes the drawback that the hard threshold function
is discontinuous at the threshold, but it has a constant deviation from the original wavelet
coefficients, which reduces the similarity between the denoised signal and the original
signal. The threshold function is shown in Figure 3. The threshold function can be defined
as follows:

F (W, τ) =

{
0 , |W| < τ

sgn(W)(|W| − aτ), |W| ⩾ τ
(6)

Here, τ is the threshold and W are the coefficients after thresholding. When a = 0,
F (·) is a hard threshold function. When a = 1, F (·) is a soft threshold function. When
0 < a < 1, F (·) is a compromise between soft and hard thresholds.
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The second important aspect is the design of an appropriate threshold function for the
wavelet coefficients to achieve good noise reduction.

2.3. Reinforcement Learning for Building a Fault Classification Model

The selection of the optimal wavelet basis and threshold for the wavelet coefficients
is equivalent to the optimization problem for the filter parameters. Traditional wavelet
filter optimization methods use a fixed, pre-given filter parameter, that is, a fixed band
assignment. However, the sample noise of the artillery driving motor is mixed and
uncertain. Correspondingly, the filter chosen based on the training set may not be optimal,
since the optimal parameters for a particular test set may not be included.

In this paper, filter parameters with certain effects are not discarded directly, but the
reinforcement learning method is used to attach appropriate weights to these filters so that
they play a role in the final faulty classifier.

2.3.1. The AdaBoost Algorithm

The AdaBoost [35] algorithm combines weak classifiers to obtain strong classifiers.
The algorithm is implemented by varying the data distribution. The weight values are
determined by the accuracy of each sample in the current training set and the accuracy of
the last overall classification. The new dataset with modified weights is sent to the next
classifier for training, and finally, the classifier obtained from each training is fused as the
final decision classifier, a weighted iterative process, as shown in Figure 4. The shaded
samples are those that were misclassified and whose weights required changing. The
samples, represented by circles of different colors, should have been categorized separately.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 4. Example of the weighting procedure given to misclassified samples by the AdaBoost algo-
rithm. 

The specific procedure of the algorithm is as follows: 
(1) Randomly select m sets of training data from the sample space and initialize the dis-

tribution weights of the test data: 

1 1( ) ( ) 1 , 1,2, ,i i m i mω= = =D   (7)

Several weak classifiers are trained through the initial data distribution and the best 
one is selected as the first base classifier, h1. 
(2) Iterative training: 1, 2, ,t T=  ; 

(a) The first t wheel base classifier ht on the distribution of Dt error: 

( ) ( )( )
1

m

t t t i i
i

e i h y
=

= ≠D x  (8)

(b) Take the partial derivative of the loss function exp t tl β D（ | ） and find the zero so-
lution to obtain the weight of ht in the final classifier: 

11 ln
2

t
t

t

e
e

β
 −

=  
 

 (9)

(c) To update the training sample weight distribution Dt+1: 

( ) ( ) ( )( )

( )

1

exp

2 1

t t i t i
t

t

t t t

i y h
i

Z

Z e e

β
+

−
=

= −

D x
D



 (10)

Here, Zt is a normalization constant. 
A base classifier with a small classification error rate has a large weight, and a base 

classifier with a large classification error rate has a small weight. We then obtain T as a 
linear combination of the base classifiers. Based on the linear combination, the eigenfunc-
tions are transformed to obtain the results of the strong classifier. 

Figure 4. Example of the weighting procedure given to misclassified samples by the AdaBoost algorithm.



Sensors 2024, 24, 847 7 of 19

The specific procedure of the algorithm is as follows:

(1) Randomly select m sets of training data from the sample space and initialize the
distribution weights of the test data:

D1(i) = ω1(i) = 1/m, i = 1, 2, · · · , m (7)

Several weak classifiers are trained through the initial data distribution and the best
one is selected as the first base classifier, h1.

(2) Iterative training: t = 1, 2, · · · , T;

(a) The first t wheel base classifier ht on the distribution of Dt error:

et =
m

∑
i = 1

Dt(i)
(

ht

(→
x i

)
̸= yi

)
(8)

(b) Take the partial derivative of the loss function lexp(βt
∣∣Dt) and find the zero

solution to obtain the weight of ht in the final classifier:

βt =
1
2

ln
(

1 − et

et

)
(9)

(c) To update the training sample weight distribution Dt+1:

Dt+1(i) =
Dt(i) exp

(
−βtyiht

(→
x i

))
Zt

Zt = 2
√

et(1 − et)

(10)

Here, Zt is a normalization constant.
A base classifier with a small classification error rate has a large weight, and a base

classifier with a large classification error rate has a small weight. We then obtain T as a linear
combination of the base classifiers. Based on the linear combination, the eigenfunctions are
transformed to obtain the results of the strong classifier.

Hfinal = sign

(
T

∑
t = 1

βtht

)
(11)

The AdaBoost classifier can remove some unwanted features of the training data
and focus on the important features. At the same time, it has the property that the upper
bound on the classification error rate steadily decreases with the amount of training and no
overfitting occurs.

2.3.2. Attention Mechanism

An attention mechanism is a well-known concept in the field of NLP. It can be understood
as selecting and focusing on a small amount of important information from a large amount of
information while ignoring most of the unimportant information. This idea still holds in the
field of fault diagnosis. The essence of an attention mechanism is weighted summation [36].

In terms of practical engineering practice, this study notes that artillery loading
devices drive motor faults with diversity and specificity. That is, the health status of the
actuation motor of each piece of artillery is different and, moreover, there is a mixture of
different noise levels. In a specific working condition, the fault diagnosis model trained
by the samples collected by a specific artillery driving motor cannot be directly applied
to other working conditions or other artillery driving motor fault diagnosis problems. In
mathematical language, this can be expressed as:

Ps(xs, y) ̸= P(x, y) (12)
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Here, x denotes the data used for fault diagnosis, y is the corresponding classification
label of the data, P(·) is the joint probability distribution of x and y, the subscript s denotes
the situation for a particular artillery driving motor and the subscripts without it denote
the global situation. The poor performance filter in the global sample space is likely to be
optimal depending on the sample distribution of a particular piece of artillery.

In this paper, we improved the AdaBoost algorithm by introducing an attention
mechanism. After training the weights of the base classifier model, the weights were again
optimized so that the classification model performed better in fault diagnosis on artillery
motors in complex noisy environments.

3. Proposed Approach: Adaptive Fusion of Various Wavelet Basis to Extract Each Feature
in the Signal
3.1. A Filter Framework Based on Fused Wavelet Convolution Method

Based on the conclusions drawn in Section 2.2.1, the selection of appropriate wavelet
scale parameters and wavelet basis is an important aspect of signal processing. The current
signal of an artillery motor contains many types of fault features and many types of noise;
these are difficult to manage on a single wavelet basis, and the wavelet scale parameters
are difficult to learn using conventional methods. This paper proposes a fused wavelet
convolution approach to address the problem.

The form of the wavelet transform is similar to the 1D convolution case. By replacing
the output of the original convolutional layer with the output of the wavelet basis, we can
train the parameters of the wavelet basis using the method of training 1D convolutional
layers [26].

Equation (5) can be simplified into convolution form:

Wa,b = ψ(t) ∗ x(t) (13)

Here, Wa,b is the wavelet coefficient that replaces the output of the convolutional layer,
and ψ is the trainable wavelet basis.

An effective approach is to combine multiple wavelet bases into a new wavelet basis
and then perform data-driven pruning on the fused wavelet basis. Suppose that there
are C0 basic wavelet bases at the beginning and C fusion wavelet bases left after fusion
and pruning:

ψ′
i =

C0

∑
j = 1

pi.jψj, i = 1, 2, · · · , C (14)

Here, ψ′
i represents the new fusion wavelet basis and ψj denotes the original

wavelet base.
We need to keep track of the real-time importance of each filter as we train the model.

The fusion weight pi,j can be defined as:

pi,j = Softmax(−D(ψ′i, ψj)× ε), j = 1, 2, · · · , C0 (15)

Here, D(·, ·) denotes a distance measurement: as a rule of thumb, the Euclidean
distance works best. The parameter ε is capable of being acquired through learning. The
Softmax() function guarantees that ∑C0

j = 1 pi,j = 1.
The logic of this weighted design is that if a wavelet basis is significantly different from

other wavelet bases, and this wavelet basis plays an active role in the training process, then
it should be represented. At the same time, the maximum possible use of large difference
wavelet bases is also conducive to improving the generalization of the model. We used KL
divergence [37] to design an importance index for the convolutional wavelet kernel:

Ii =
1
C

C

∑
m = 1

C0

∑
n = 1

pi,n log
pi,n

pm.n
, i = 1, 2, · · · , C (16)
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Based on the importance index, C important bases were selected; we then generated
Equation (17) to implement the fused wavelet convolution:

Wc = x(t) ∗ ψc
′(t) (17)

The subscript c denotes the cth output channel. The fused wavelet convolution
procedure is shown in Figure 5.
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3.2. Filter Optimization and Selection

As mentioned in Section 2.2, another key task for wavelet denoising is to determine
the threshold of the wavelet coefficients at each scale.

In this paper, residual shrinkage networks were used to learn thresholds and fine-tune
parameters. We named this the wavelet denoising layer (WDL); its network structure is
shown in Figure 6:
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The threshold function of Equation (6) is updated as follows:

F (Wc, τ) =


0,−τ − B < Wc < τ − B
Wc + B − τ, Wc ⩾ τ − B

Wc + B + τ, Wc ⩽ −τ − B
(18)
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B is the fine-tuning parameter of the threshold and τ is the threshold at which the
network learns.

The wavelet denoising layer can be expressed as Equation (18). W and W̃ are the
inputs and outputs of the wavelet denoising layer, respectively.

W̃ = F (W, τ) + W (19)

Next, a loss function was designed to optimize the filter. According to the literature,
energy is a widely used metric for finding wavelet filters with defect-related features. The
central idea is that the energy of the wavelet coefficients in the defect-dependent band
is higher than in the other bands. The energy can be calculated from the corresponding
wavelet coefficients. The design was based on energy loss:

lis f = − L
C

C

∑
i = 1

L
∑

j = 1
Ŵi(j)4

(
L
∑

j = 1
Ŵi(j)2

)2 (20)

Here, Ŵ is the envelope of W̃:

Ŵ =

√
W̃2 + Hilbert

(
W̃
)2

(21)

After optimization, there are C-wavelet filters corresponding to the output of the
C-channel.

Finally, the optimal filter was selected from the optimized C-wavelet filter, defined as
hard filter selection in this paper.

The literature proposes a soft filter selection that preserves all features and implicitly
selects the optimal filter. Considering that the FWConv used in this paper has already
performed the dynamic fusion of important wavelet basis, the computational load is greatly
increased if multiple mixed wavelet basis are retained, so only the optimal filter was used,
and the others were discarded. In addition, a more efficient attention mechanism was
used as the weight allocation metric for each round of wavelet basis. The structure of the
index-based soft filtering module is shown in Figure 7.
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Since energy is widely used to construct band selection indices in wavelet transforms,
we constructed a new energy-based index. Note that the N-wavelet basis in FWConv leads
to N-energy features and the channels should be divided into N-groups and their relative
indices computed. However, FWConv dynamically fuses important wavelet bases, making
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packet computation complex and resource-intensive. A simple idea is to use convolution to
compute the local relative index. Based on channel energy, the index (soft selection) can be
expressed as:

ω̃ = sigmod(conv(E)) (22)

x̃out = W̃c ⊙ ω̃c + W̃c , if c = argmax(ω̃(i)) (23)

Finally, the module consisting of fused wavelet convolution, soft thresholding, and
index-based soft filtering was named the Denoising Wavelet Convolutional Network (DWCN).

The synthesis of Equations (13), (19) and (23) can be obtained as follows:

x̃out = DWCN(x) (24)

Referring to the approach used in ref. [38], we constructed a simple CNN multi-class
classification module. The general case consists of a 1D convolutional layer, a BN layer,
ReLU, a max pooling layer, and FC layers.

For class labels ỹ, there is cross-entropy loss as follows:

lcls = −
N

∑
i = 1

yi log(ỹi) (25)

Here, yi is the real label of x. N is the number of categories of labels y.
In the proposed approach, the DWCN is connected to the CNN classification module,

and an end-to-end fault classifier can be trained; this is named the base classifier. The l oss
function expression of the base classifier is:

lbase = lcls + klis f (26)

where k is the tradeoff parameter and can be determined via hyperparameter search
methods, such as a grid search [23].

3.3. Improved AdaBoost Multi-Classification Algorithm Based on an Attention Mechanism

In this paper, the AdaBoost algorithm used many base classifiers to integrate a final clas-
sifier. After iterating the T-wheel using the AdaBoost method described in Equations (7)–(11)
in Section 2.3, T base classifiers were obtained and a strong classifier was integrated to
resolve the fault-diagnosis problem in the artillery drive motor.

However, in practical engineering applications, a global sample space is used in the
model training process. However, when sampling a certain artillery-driven motor for fault
diagnosis, there are insufficient labeled samples for pretraining. Due to the different health
status and working conditions of the motors, the SNR and noise form of the noise contained
in the samples used are also different, and the distribution of the samples is also different
from the global sample space. To improve the diagnostic effect, it is possible to redistribute
the weights of the base classifier through the attention mechanism. The full algorithmic
flowchart is shown in Figure 8.

For a set of motor samples I on a certain piece of artillery, the output processed
by the DWCN module of base classifier ht is represented as xt,out , and the healthy
noise-free samples under corresponding working conditions are represented as s. In
order to facilitate the direct similarity comparison between the two types of samples,
PCA was used to reconstruct the two types of samples. PCA is a simple and efficient
feature extraction method that preserves the most original information and minimizes
the reconstruction error.
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Figure 8. Flowchart of the fault diagnosis algorithm.

The xt,out and s were constructed as autocorrelation matrices of the same dimension
and PCA was then performed to obtain the feature vectors xt,PCA and sPCA of the same
dimension. A similarity analysis was then performed:

ct = sim(xout, s) =

¯
x t,PCA · ¯

sPCA∣∣∣∣¯x t,PCA

∣∣∣∣× ∣∣∣∣¯sPCA

∣∣∣∣
αt = softmax(ct) =

exp(ct)

∑T
t = 1 exp(ct)

(27)

Here,
−
x t,PCA and

−
s PCA are the mean values of the feature vectors obtained after PCA

processing of the selected samples; ct is the similarity and αt is the attention weight assigned
to the classifier based on. By rewriting Equation (11), the classification label of the final
classifier is described by Equation (28):

Hfinal = sign
(

T
∑

t = 1
αtβtht

)
y = argmax(Hfinal(x))

(28)

As shown in Figure 8, the area outlined by the dotted line, including noise reduction,
feature extraction, classification, and attention weight calculation, is merged into the base
classifier of the AdaBoost algorithm. Finally, T base classifiers are combined to form the
final classifier. The final classifier was named the Denoising Fault Diagnosis Attention
Network (DFAN).

4. Experimental Analysis

In this section, we describe the experiments performed on two different datasets to
verify the noise robustness, generalization ability, and component effectiveness of the
proposed DFAN. The DFAN network is based on Python3.7, Pytorch 1.10.0, CUDA 11.6,
and NVIDIA GeForce RTX 3080.

4.1. Experiments Using Different Eccentricity Motors

In practice, it was found that the states of the motors on different pieces of artillery
did not agree. We found that, after a certain period of use, the motors on the artillery have
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different degrees of eccentricity. Although the function of the motor does not affect use
within a reasonable range of eccentricity, it still interferes with fault diagnosis.

In Experiment 1, several common motor failure states were realized by motors with
different degrees of eccentricity. Experimental data were used to verify the effectiveness of
the proposed method and explore the hyperparameters of the method.

4.1.1. Description of the Experimental Environment and Data

The vibrational signals were collected for four different eccentricity states, namely,
normal and 5%, 10%, and 15% eccentricity, at a sampling frequency of 10 kHz. Motor
health status includes normal state, interturn short circuit, open-circuit fault, and bearing
failure. In order to simulate the working state of the artillery mount, signals were collected
under three loading conditions, corresponding to the load of the mount when the mount
was unloaded, when the propellant was loaded, and when the standard bottom concave
was loaded.

In each crossover condition, 600 samples were collected, 80% of which were used as
the training set. Thus, there were 28,800 samples in the training set and 7200 samples in the
test set under all cross-conditions. Each sample had 1024 points. The experimental setup is
shown in Figure 9.
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4.1.2. Experimental Analysis

In the samples presented in Section 4.1.1, noise with SNRs of −4 dB, 0 dB, and 4 dB
was further added. In this section, we describe how the DFAN method could better find
the appropriate wavelet basis and hyperparameters without setting mixing noise that is
inconvenient to quantify.

Eight fault diagnosis networks were constructed for comparison.
Based on ref. [16], we constructed a PCA–SVM as the most basic FFD model, and to be

the baseline.
In a simplified model, the DWCN module in the DFAN method was substituted

with a conventional convolutional layer (CNN). In an anti-noise model, the first layer of
the previous model was replaced with a wide kernel convolution layer (WCNN). The
classification networks of CNN and WCNN were constructed according to the method
reported by ref. [29].

Using the method described in ref. [26], three mononuclear wavelet kernel networks
with Morlet, Mexhat, and Laplacian wavelets as the kernels were constructed (named
wavelet nets-M, wavelet nets-H, and wavelet nets-L, respectively).

Following the method in ref. [39] and based on transfer learning, we constructed
a PCA–SVM and TrAdaBoost method.
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In the DFAN method reported in this paper, the original channel C0 was set to 64, and
the fused channel C was set to 32. In the fusion wavelet kernel, the Morlet wavelet occupied
22 primitive channels, and the Mexhat wavelet and Laplace wavelet occupied 20 primitive
channels each. Their scaling parameters were initially set to be evenly distributed among
different channels, with the Morlet, Mexhat, and Laplace values being [0.1, 3], [0.1, 4.5],
and [0.1, 2], respectively.

The experiment was performed five times on each model to remove randomness.
In addition to comparing the classification accuracy of each model, the study introduced

NI, which represents the robustness of the model against noise, defined as follows:

NI =
∆Acc

∆SNR · Accbest
(%) (29)

∆ represents the difference between the best and worst accuracy; NI is inversely
proportional to model robustness.

Figure 10 shows the classification performance of the different models. Detailed values
are shown in Table 1.
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Table 1. Performance of classification models under different SNRS.

Model Average Accuracy
−4 dB

Average Accuracy
0 dB

Average Accuracy
4 dB

Noise Influence
(NI)

PCA-SVM 63.36 75.67 83.05 2.96
TrAdaBoost 76.78 86.33 95.52 2.45

Wav-M 83.98 89.78 92.59 1.16
Wav-H 71.54 77.4 85.56 2.39
Wav-L 70.2 84.6 89.38 2.68
CNN 75.68 84.2 88.1 1.44

WCNN 82.25 85.15 90.95 1.20
DFN 86.67 91.3 94.74 1.06

DFAN 92.3 95.9 98.1 0.74

As a very basic FFD model, PCA–SVM performed poorly under different noise
conditions. Although PCA was also used in this method to align the samples before
introducing the attention mechanism, the poor performance of the PCA–SVM model
demonstrates that its performance had little to do with the introduction of the PCA steps.
The TrAdaBoost method had similar NI values to the PCA–SVM model. However, since
there were sufficient training samples, as an ensemble learning model, the classification
accuracy was higher.
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The main differences between Wavelet-M, Wavelet-H, Wavelet-L, CNN, WCNN,
and the methods presented here, were the difference in signal processing in the first
layer and the absence of attention-based AdaBoost ensemble learning in the subsequent
layers. As an improved version of the CNN with noise reduction capability, the WCNN
performed slightly better than the CNN under the three SNR conditions, which was in
line with expectations.

Wavelet-M performed better than the other wavelet basis but more weakly than the
DFAN. The proposed method achieved the best performance. This result confirms that
although the effect of individual wavelet basis was not necessarily stronger than that of the
WCNN, the combination of different wavelet basis improved the performance of the model,
since the fused wavelet basis allocated more channels to the appropriate wavelet basis. The
attention-mechanism-based AdaBoost method retained more possible wavelet basis for
fault diagnosis and assigned higher weights for use. At the same time, the generalization
and robustness of the model were also good. The fault accuracy was 92.3%, 95.9%, and
98.1% for the −4 dB, 0 dB, and 4 dB signals, respectively.

The settings of some DFAN hyperparameters are shown in Figure 11.
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Figure 11. Effects of hyperparameters on model accuracy.

The appropriate number of epochs facilitates the fusion of wavelet kernels to update
the weights of each basic wavelet basis, and 32 was also empirically consistent.

As the number of fused convolution kernels increased, the classification accuracy also
slowly increased, indicating that this method is effective for some extreme samples. However,
given the computational cost, setting the number at 32 was a more appropriate choice.

When there was only one base classifier, the proposed method degenerated into
a WCNN-like model. When the number of base classifiers was increased, the accuracy rate
increased rapidly, achieving its highest value at 7, which was 10% higher than when there
was only one base classifier.

4.2. Experiments with an Automated Loading Test System
4.2.1. Description of the Experimental Environment and Data

The motor-driven artillery automatic ammunition loading test system is shown in
Figure 12. It included the host computer, PLC controller (PLC-X20 IF 1072 and PLC-X20
CP 0484, B&R, Eggelsberg, Austria), driver (SOL-GUIA50/100E, Elmo, Tokyo, Japan) and
PMSM (ASM-V-05D-32, Siemens, Yangzhou, China). Metallurgical Automation Design and
Research Institute servo Institute), and a reducer (reduction ratio of 150). The current loop
sampling frequency was 1 kHz.
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Figure 12. Automatic ammunition loading test system for artillery.

The data were divided into six categories, and the loads of the coordinated actions
were all filled with standard module charges. Detailed data information is given in Table 2.
Each test was recorded from the time the control signal was sent, and 1024 points were
taken as samples to cover a coordinated action process. In model building and testing, 80%
of the samples are the training set and 20% are the test set, resulting in 480 training samples
and 120 test samples.

Table 2. Distribution of the number of samples in each class.

Barrel Angle Fault Condition Sample Size

0◦ Motor inter-turn short circuit 80
36◦ Motor inter-turn short circuit 80
0◦ Broken teeth of reduction gear 70
36◦ Broken teeth of reduction gear 70
0◦ Normal state 150
36◦ Normal state 150

4.2.2. Experimental Analysis

Noise was added to the samples in Section 4.2.1 below, and the SNR was set from
−4 dB to 4 dB with an interval of 2 dB. After obtaining the expanded noisy sample set,
resampling was performed on the noisy sample set to select six training sample sets.

The number of samples in each sample set was 1000, and the noise included was
−4 dB, −2 dB, 0 dB, 2 dB, 4 dB, and mixed noise, respectively. The distribution of various
fault conditions in the sample set was also balanced. The nine fault diagnosis networks
were the same as those described in Section 4.1.2 for comparison.

The model performance at different SNRs is shown in Figure 13.
The second experiment was closer to actual gun current data, and almost all models

performed poorly on the mixed-noise treatment.
The performances of the Wavelet-H and Wavelet-M models were almost the same.

This is, in fact, because they focused on different fault types and the distribution of the two
types of faults in the sample was approximately the same.

The classification performance of the CNN improved rapidly with increasing SNR,
which indicates that robustness to noise was the main factor affecting its performance.
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The Wavelet-L curve was similar to that of the CNN and illustrates the oxygen content
of the noisy signal in Experiment 2 with the wavelet basis mismatched under low noise
performance and CNN conditions.

The TrAdaBoost curve trend was similar to that of the CNN, but its overall performance
was better than the CNN; this demonstrates that ensemble learning played a role in the study,
but to achieve better results, the base classifier itself requires a certain degree of accuracy.

The DFN method excluded the attention mechanism and ensemble learning. In
addition to the case of small noise, it was second only to the DFAN, which shows that it
had the ability to denoise samples with mixed noise, but requires ensemble learning to
further strengthen its performance.

The performance of WCNN in the mixed noise environment was second only to the
DFN and DFAN, and in other cases, it performed similarly to the Wavelet-H and Wavelet-M
kernels. Their main difference was also in their noise reduction ability.

The DFAN method still had obvious advantages in the mixed noise link, exhibiting
the best classification performance in each case.

5. Conclusions

In terms of research into artillery motor fault diagnosis in complex environments,
the proposed DFAN method demonstrated its ability to extract fault features from motor
current data containing compound noise and classification faults. As a motor fault diagnosis
method integrating the attention mechanism, AdaBoost ensemble learning, and wavelet
fusion noise reduction, the DFAN method demonstrated better robustness to noise at all
levels of SNR compared with conventional methods.

Each base classifier of the DFAN is trained through the global sample space, while
the attention mechanism finds the most suitable base classifier for the current sample
during the diagnosis of a particular sample. The classification performance of the DFAN in
Experiment 1 was better than that in Experiment 2, as the AdaBoost method was able to
improve the generalization of the classifier and lower the upper bound of the error rate by
expanding the training sample size.

Particularly in the context of fault diagnosis of sample signals under mixed SNR
conditions, DFAN’s comprehensive accuracy surpassed that of the second-best DFN
method by 8.5%. The overall test results demonstrate a 14.6% higher comprehensive
diagnostic accuracy compared with the mature TrAdaBoost method without a noise
reduction module, highlighting the crucial role played by the noise reduction module and
attention ensemble learning component in this model.

Although the DFAN method achieves the expected accuracy, the computational
complexity of integrating wavelet fusion, attention mechanism, and AdaBoost ensemble
learning is relatively high, leading to poor timeliness in fault diagnosis. In future
research endeavors, it is imperative to explore simplified operational mechanisms while
maintaining accuracy levels to enhance the timeliness of fault diagnosis.
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