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Abstract: The monitoring of the lifetime of cutting tools often faces problems such as life data
loss, drift, and distortion. The prediction of the lifetime in this situation is greatly compromised
with respect to the accuracy. The recent rise of deep learning, such as Gated Recurrent Unit Units
(GRUs), Hidden Markov Models (HMMs), Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Attention networks, and Transformers, has dramatically improved the
data problems in tool lifetime prediction, substantially enhancing the accuracy of tool wear prediction.
In this paper, we introduce a novel approach known as PCHIP-Enhanced ConvGRU (PECG), which
leverages multiple—feature fusion for tool wear prediction. When compared to traditional models
such as CNNs, the CNN Block, and GRUs, our method consistently outperformed them across all
key performance metrics, with a primary focus on the accuracy. PECG addresses the challenge of
missing tool wear measurement data in relation to sensor data. By employing PCHIP interpolation
to fill in the gaps in the wear values, we have developed a model that combines the strengths
of both CNNs and GRUs with data augmentation. The experimental results demonstrate that
our proposed method achieved an exceptional relative accuracy of 0.8522, while also exhibiting a
Pearson’s Correlation Coefficient (PCC) exceeding 0.95. This innovative approach not only predicts
tool wear with remarkable precision, but also offers enhanced stability.

Keywords: deep learning; cutter wear prediction; Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP); Convolutional Neural Network (CNN); Gated Recurrent Unit (GRU)

1. Introduction

In industrial scenarios, when equipment is used for processing, the lifetime and
maintenance of the equipment are factors that must be considered. For example, in the
context of Computerized Numerical Control (CNC) machine processing, the maintenance
of the tool’s lifetime is particularly important and has the highest priority. This is due to
the necessity for more frequent replacement of severely worn tools, thereby increasing the
downtime and maintenance expenses along the production line. Meanwhile, tool wear
affects the quality of machined parts, leading to uneven machined surfaces, dimensional
inaccuracies, and potential damage to the workpiece. Severely worn tools can even pose a
safety hazard to the working environment and the operators. In essence, the prediction
of tool wear not only contributes to heightened production efficiency, cost control, and
product quality assurance, but also aligns with the trend towards intelligent manufacturing.
This progression fosters the development of the manufacturing industry in a direction that
is more advanced, sustainable, and intelligent.

The state of cutting tools has an important impact on production efficiency and surface
processing quality. Therefore, online monitoring and real-time prediction of tool wear are of
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great significance, and they also have become the most discussed and researched hot topic
in the mechanical field. Over the years, researchers have explored various methodologies
and techniques to predict tool wear, aiming to enhance productivity, optimize the tool
lifetime, and minimize machine downtime [1–3]. The earliest monitoring of cutting tool
conditions started with a single variable, known as direct measurement, and gradually
evolved to fewer variables, known as indirect measurement. For instance, the optical image
method was the earliest traditional method applied to tool wear monitoring [4,5]; it uses
the reflectance of the worn surface to evaluate the wear of the tool. Contact resistance
measurement is performed using electrical resistance and the radioactive elements [6].
However, a single signal has its own drawbacks. While some processes are too complicated,
some are not suitable for large workpieces, some will be affected by noise, some signal
acquisition will be delayed, and some are expensive (acoustic emission monitoring of the
equipment). Therefore, multiple sensor signals are widely used to monitor tool wear. The
incorporation of multi-signal conditions, which involves monitoring and analyzing a wide
range of parameters including vibration, temperature, acoustic emission, and cutting force,
among others, has provided a more-comprehensive understanding of the tool’s behavior
during machining processes. By considering a multitude of signals, engineers can gain a
more nuanced insight into the complex interactions that affect tool wear and failure. This
not only leads to more accurate predictions, but also enables proactive maintenance and
optimization strategies. Multiple sensor signals mean multiple features, and their fusion
starts to become the key [7,8].

In recent years, with the popularity of machine learning and deep learning, new
directions have opened up for research on cutting tools, and numerous related studies have
sprung up using methods such as Artificial Neural Networks (ANNs) [9,10], Support Vector
Machines (SVMs) [11–13], the Hidden Markov Model (HMM) [14–17], Gaussian Process
Regression (GPR), etc. [18,19]. With the rise of deep learning, these types of methods have
advanced to a new level [20]. In the contemporary landscape of modern manufacturing,
the incorporation of multi-signal conditions and the utilization of deep learning in tool life-
time prediction are essential for fostering efficiency, reliability, and competitiveness. Deep
learning methods have shown significant promise in tool wear prediction for machining
processes due to their ability to automatically learn complex patterns and relationships
from large datasets [21]. They have the potential to outperform traditional analytical and
empirical models by capturing intricate nonlinearities in the machining process. Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Attention networks,
and so on, have skyrocketed in the mechanical field [22–24]. These models, primarily
known for their remarkable achievements in areas such as computer vision and language
translation, have found substantial relevance in the realm of mechanical production as well,
underpinning the evolution of smart manufacturing.

It is important to note that deep learning methods require large, labeled datasets for
effective training, which can be a challenge in some machining scenarios. Data augmen-
tation is a technique widely used in machine learning to artificially increase the size of
a training dataset by applying various transformations to the original data. This helps
improve the model’s generalization and robustness. When it comes to machine learning
for tool wear prediction, data augmentation can be particularly beneficial in enhancing the
model’s ability to recognize patterns associated with different states of tool wear. Usually,
in the collection of data on tool wear, only the values of the sensor signals (such as the
cutting force, vibration, acoustic emission, and current) are collected, but the value of
the tool wear is not measured. The main reason is that the signal acquisition sensors are
attached to, for example, a CNC machine tool, so they can collect the data at a relatively
high frequency, and the amount of wear of the tool is measured after the tool has been used
for a constant interval, so the frequency of the obtained data is much lower. Therefore, we
need to use data augmentation methods to improve the data availability. Data augmen-
tation is a commonly used technique in machine learning, involving the transformation
and expansion of training data to enhance their diversity and richness. It improves the
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model’s generalization capability, robustness, and accuracy. There are multiple methods
available for data augmentation, including random erasing [25], data interpolation [26],
and so on. By addressing issues such as overfitting, imbalanced data, missing data, and
limited samples, data augmentation effectively enhances the performance and reliability of
machine learning models [27].

In the context of tool wear prediction with deep learning, data augmentation refers
to the technique of artificially increasing the size and diversity of the training dataset by
applying various transformations to the original sensor data collected during machining
processes, with the goal of enhancing the generalization and robustness of the deep learning
model by exposing it to a wider range of variations and scenarios that may be encountered
in real-world tool wear conditions. For tool wear prediction, the input data often consist of
sensor readings, such as vibration signals, acoustic signals, current signals, or other sensor
data collected during the cutting or machining process. In such operating conditions, tool
wear stages, or machining scenarios simulated by introducing variations to sensor data
using a data augmentation method, the Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) interpolation method can be used to obtain the uniformly spaced interpolation
data series. In a modified grey model proposed by Wang F et al. to predict the RUL
of rolling bearings based on vibration data, the PCHIP method was used to process the
original data, and this method managed to maintain the trend characteristics of the original
signal while improving the reliability of RUL prediction results [28].

The PCHIP-Enhanced ConvGRU (PECG) model we introduced adeptly merges CNN
and GRU networks to effectively capture the time series characteristics of the tool wear
data. In our study, thanks to the National Natural Science Foundation of China, we were
able utilize real industrial tool data versus synthetic datasets, which lends credence to the
model’s wear prediction results. In real scenarios, we employed the PCHIP method to
interpolate and supplement the wear data, aimed at addressing incomplete tool wear data
due to rapid sensor data acquisition. This approach alleviates the issue of high-dimensional
but insufficient measurement data obtained from sensor-based tool wear measurements.
Notably, PCHIP interpolation substantially elevated the relative prediction accuracy of
the model from 0.8005 to 0.8522. Our methodology further involves the extraction of
local features via the CNN layer, leveraging the resulting feature map as input for the
GRU encoder to capture temporal dependencies. While fully exploiting the time series
information processing capabilities of GRU, PECG effectively harnesses the spatial feature
learning process of CNN, thereby organically combining and maximizing the strengths
of both.

In summary, based on the research trend of multi-feature fusion in the industry,
and the advantages of deep learning to mine data, a new PECG method under multiple
feature fusion for tool wear prediction has been developed. Our proposed method has the
following contributions:

• By employing the Piecewise Cubic Hermite Interpolating Polynomial method in
tandem with an understanding of the patterns associated with missing tool wear
data, we successfully interpolated and completed the wear data. This approach
effectively resolves the challenge posed by high-dimensional tool wear measurement
data collected by sensors, a scenario often characterized by relatively insufficient
measurement data.

• We extract local features through the CNN layer, leveraging the feature map as input
for the GRU encoder to capture temporal dependencies. The PECG model effectively
harnesses the spatial feature learning capacity of CNN while fully optimizing the time
series data processing abilities of GRU. This results in the seamless integration and
maximization of the strengths of both models, making it particularly well-suited for
processing data characterized by both time series and spatial features.

• These two aspects are combined to form a comprehensive PECG method.

The remainder of this paper is organized as follows. Section 2 introduces the data
interpolation method, PCHIP. Section 3 describes the proposed wear prediction model
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in detail. In Section 4, we conduct experimental studies to compare the proposed model
with other methods and confirm its superiority. Section 5 provides conclusions. The
abbreviations are listed at the end of this paper.

2. PCHIP Interpolation Method

In the data acquisition process, the varying methods of acquiring data have led to
a significantly higher volume of sensor data compared to wear data, resulting in a lack
of corresponding wear data for certain sensor readings. Consequently, there are missing
values within the wear data. Previous approaches involved the deletion of sensor data
lacking corresponding wear data, inadvertently discarding valuable information inherent
in the sensor data. To address this issue, we have introduced the PCHIP interpolation
method to substitute the missing wear data. Through this method, we establish a one-to-
one correspondence between sensor data and tool wear data, ensuring the maximization of
information encapsulated within the sensor data. This approach enables us to fully leverage
the information gleaned from sensor data while circumventing the loss of valuable insights.

There are many interpolation methods. Among them, the simplest method is to define
a piecewise linear function between each number of points. The linear method is fast and
easy to implement, but linear interpolation does not produce a smooth curve. To solve this
problem, a higher-order polynomial can be chosen between each pair of data points, and
we can specify the gradient of this polynomial to ensure that the overall approximation
function is continuous and has continuous derivatives. Cubic spline interpolation resolves
sudden changes in gradients in the case of linear interpolation. But this also introduces a
problem that the interpolation may be outside the range of our data point values, which
can lead to overshooting issues.

We use Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) to avoid the above
two problems. The cubic Hermite polynomial is defined as follows:

p(t) = h00(t)p0 + h10(t)(xk+1 − xk)m0 + h01(t)p1 + h11(t)(xk+1 − xk)m1 (1)

where h00, h10, h01, h11 are Hermite basis functions. PCHIP interpolates using a piecewise
cubic polynomial P(x) with these properties:

• On each subinterval xk ≤ x ≤ x(k+1), the polynomial P(x) is a cubic Hermite in-
terpolating polynomial for the given data points with specified derivatives at the
interpolation points.

• P(x) interpolates y, that is, p(xj) = yj, and the first derivative dp
dx is continuous. The

second derivative d2 p
dx2 is probably not continuous, so jumps at xj are possible.

• The cubic interpolant P(x) is shape-preserving. The slopes at xj are chosen in such a
way that P(x) preserves the shape of the data and respects monotonicity. Therefore,
on intervals where the data are monotonic, so is P(x), and at points where the data
have a local extremum, so does P(x).

These properties of the piecewise cubic polynomial maintain the monotonicity of the points
on the interpolation curve [29]. They solve the problem of overshoot and the curve of the
interpolation result is smooth at the same time.

3. Model Construction

Data-driven methods predict tool wear using predictive models trained by machine
learning or pattern recognition algorithms [30]. When dealing with data-driven works,
deep learning is able to learn from large amounts of data and identify subtle patterns and
relationships between tool wear value and sensor data.

As shown in Figure 1, the proposed PECG mainly includes two stages: data prepro-
cessing and model construction. After the data preprocessing, we successfully resolved
the problem of missing wear data by employing the PCHIP interpolation technique. The
processed data were subsequently utilized to train the proposed model. The details of the
model construction are illustrated below.
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Figure 1. The framework of PECG method.

3.1. Convolutional Neural Network

CNNs are primarily used for image classification tasks and have become dominant in
various computer vision tasks, but they can also be used for regression problems. A CNN
has five basic layers: convolutional layer, pooling layer, activation layer, fully connected
layer, and dropout layer. In this paper, we use a CNN as a feature extractor and pass the
features to a GRU. In that case, the CNN in our method incorporates a convolutional layer
followed by batch normalization and an activation layer. The equation for this process is
as follows:

cik = ReLU(Wk ∗ xi + bk) (2)

where Wk indicates the convolutional filter, * denotes the convolution operation, bk is the
bias, and the activation function is ReLU. Here, cik represents the encoding result, which is
the extracted feature we use in the followed GRU.

3.2. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN)
architecture that has gained popularity in recent years due to its ability to model sequential
data with greater efficiency and accuracy. In this paper, we use a GRU model after the
CNN to obtain wear predictions. In a GRU model, there are two gates: an update gate and
a reset gate. The update gate determines how much of the previous hidden state should be
retained and how much of the current input should be added to the new hidden state, while
the reset gate controls how much of the previous hidden state should be ignored. These
gating mechanisms allow the GRU model to selectively remember or forget information
from the past. Equations for this process are as follows:

rt = σ
(

Wirxt + bir + Whrh(t−1) + bhr

)
(3)

zt = σ
(

Wizxt + biz + Whzh(t−1) + bhz

)
(4)

nt = tanh
(

Winxt + bin + rt ∗
(

Whnh(t−1) + bhn

))
(5)

ht = (1 − zt) ∗ nt + zt ∗ h(t−1) (6)

where ht is the hidden state at time t, xt is the input at time t, h(t−1) is the hidden state of
the layer at time t − 1 or the initial hidden state at time o, and rt, zt, nt are the reset, update,
and new gates, respectively. σ is the sigmoid function, and ∗ is the Hadamard product.
Then, the result of the hidden state is imported to a fully connected layer and the output is
the wear prediction result.
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3.3. Model Framework

The framework of PECG is illustrated in Figure 2. And details of our model structure
are shown in Table 1. In a CNN, the convolutional layers are used to extract features from
the input data. CNN has the ability to capture complex patterns and relationships in the
input data. In that case, after analyzing the data, which have high-dimensional sensor data
as input, we first use a one one-dimensional ten-layer CNN as an encoder to extract features
and reduce the dimensionality of the data. The output of the CNN encoder is then imported
to a GRU. Finally, the wear prediction is completed through a fully connected layer.

Figure 2. Structure of PECG.

Table 1. Details of model structure.

Layer Feature Maps Kernel Size Parameter Number

CNN-Block_1 128 5 5504
CNN-Block_2-10 128 5 82,304

GRU 384 123 99,072

4. Experiment and Result
4.1. Experimental Conditions

We utilized tool data acquired with support from the National Natural Science Foun-
dation of China, gathered from real industrial settings, as input for the model, rather than
relying on virtual datasets available through networks. This approach significantly en-
hances the credibility of the wear prediction results. The milling cutter under consideration
is the APMT1135 carbide cutter, a product of Duracarb. Its fundamental parameters include
a tool tip angle of 85 degrees, a blade relief angle of 11 degrees, a blade length of 11 mm,
a thickness of 3.5 mm, an inscribed circle diameter of 6.35 mm, and a maximum cutting
depth of 9 mm. Figure 3 depicts the actual state of tool wear observed on the machinery.

Figure 3. Real situation of tool wear on machine tools.
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There are four types of sensor signal collected during the cutting process: three-way
force signals, three-way vibration signals, acoustic signals, and current signals. The sensor
devices are shown in Figures 4 and 5. After one cutting path is completed (or after multiple
cutting paths are completed), the experimental tool is removed and the wear amount is
measured through a visual microscope. The measurement process of tool wear amount is
illustrated in Figure 6.

Figure 4. Sensor layout a. PHI Mechatronics Technology Laboratory, Chengdu, China.

Figure 5. Sensor layout b. PHI Mechatronics Technology Laboratory, Chengdu, China.

Figure 6. Wear amount collection. PHI Mechatronics Technology Laboratory, Chengdu, China.
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The vibration signal is captured using the PCB365A15 three-way acceleration sensor,
while the cutting force sensor employed is the KISTLER 9257B three-way load cell. Ad-
ditionally, the setup includes the Bruel Kjaer’s 4966-H-041 acoustic sensor, the PAC-WD
acoustic emission sensor, and the POLARISMMI200B (current model: CSA201-P030T01)
current sensor. These diverse datasets have been instrumental in supporting the publication
of several articles on milling cutter life prediction and intelligent operation in esteemed
journals [24,31–34]. Furthermore, these datasets represent the lifecycle patterns observed
in carbide cutters.

4.2. Dataset

We carry out basic data cleaning for the collected wear data, which is divided into
three parts: standardization, partial correction, and elimination. When we collect these
eight types of data, we first standardize them:

xs =
xi − x̄

σ
(7)

where xs is the standardized data. x̄ represents the mean of the data. σ represents the
standard deviation of the data.

The reason for this is obvious: to scale the data so that they fall into a small, specific
interval. Standardization solves the problem of small difference in working conditions by
scaling according to variance. It is often used in some comparison and evaluation index
processing to remove the unit restriction of the data and convert it into a dimensionless pure
value, so that indicators of different units or magnitudes can be compared and weighted.

The signal drift of the data is shown in Figure 7. The obvious missing and drifting
parts of life data monitoring are shown in the red and green boxes, respectively. We use
Exponential Moving Average (EMA) to bring significantly drifting segments of the data
back into the normal range:

vt = β · vt−1 + (1 − β) · θt (8)

where vt represents the average value of the first t bars (v0 = 0), β is the weighting value
(generally set to 0.9–0.999), and θt is the standardized data.

Figure 7. Signal loss and signal drift.

Furthermore, we eliminate obviously abnormal data [35]:

δ =

√√√√√ 1
m − 1

m

∑
k=1

(SK −

m
∑

k=1
SK

m
)2 (9)

where δ is the abnormal data. The pseudocodes for describing the processes to display the
data that cannot be used directly and need to be eliminated are shown in the following
Algorithm 1.
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Our dataset includes data collected from 28 milling cutters under eight different
cutting conditions. The details of the cutting conditions of the cutters are shown in Table 2.
In this table, Cm_n is the sign of a cutter, which means no. n cutter under condition
m. The signals of cutters C4_3 and C7_9 are used as the test data, and the rest of the
cutters are used as the training set. Deep learning makes it possible to involve all signals,
making wear prediction accurate and efficient. Single sensor signals often have their own
limitations, but deep learning possesses powerful feature learning capabilities. By using a
multi-signal variable matrix for prediction, it is possible to extract rich information from
multiple features, effectively avoiding the limitations associated with relying on a single
feature. We use a total of eight variables: current, force (three directions, x,y,z), sound, and
vibration (three directions, x,y,z) to predict the wear process.

Algorithm 1 Signal_Segment (Sigorg, Lw, dw)
Inputs:
Sigorg—original time-domain signal
Lw—width of sliding window
dw—moving step length of sliding window
Outputs:
Matwindow—data window matrix

1: Calculate cl
2: Initialize Matwindow
3: for i = 1 to cl do
4: if i = 1
5: Assign the data from 1 to Lw in Sigorg to the ith column of the Matwindow.
6: else if i! = cl
7: Assign the data who are located from the (i ∗ dw + 1)th to the (i ∗ dw + 1 + Lw)th in
Sigorg to the ith column of Matwindow.
8: else
9: Assign the data who are located from the (i ∗ dw + 1)th to the end of Sigorg to the ith
column of Matwindow and replace the Null in the ith column with 0.
11: End if
12: End for

Table 2. Tool working conditions.

Condition Cutter Spindle Speed Feed Rate Depth of Cut

Condition 1 C1_1 C1_2 2750 rpm 220 mm/min 1.75 mm
Condition 2 C2_1 3000 rpm 200 mm/min 1.75 mm
Condition 3 C3_1 3000 rpm 240 mm/min 1.75 mm
Condition 4 C4_1 . . . C4_6 3000 rpm 250 mm/min 1.75 mm
Condition 5 C5_1 3250 rpm 275 mm/min 1.75 mm
Condition 6 C6_1 3500 rpm 250 mm/min 1.75 mm
Condition 7 C7_1 . . . C7_9 3500 rpm 300 mm/min 1.75 mm
Condition 8 C8_1 . . . C8_7 4500 rpm 400 mm/min 1.5 mm

Figure 8 shows the used sensor signal of cutter C4_3, including the vibration signal,
current signal, sound signal, and force signal. It can be found that there is no clear trend in
the data. In that case, we employ our model to extract more information.
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Figure 8. Monitoring signal data of C4_3.

The wear data of the tool indicate that the process of tool wear can be divided into
three stages: the initial wear stage, the normal wear stage, and the rapid wear stage. First,
there is the initial wear stage. Due to the regrinding of the tool, the cutting edge and tool
surface are not smooth enough, resulting in a small actual contact area between the back
surface of the tool and the cutting surface, but with high pressure. Therefore, the wear is
rapid but for a short period of time. Next is the normal wear stage. After the initial wear,
the contact area between the back surface of the tool and the workpiece increases, and the
pressure per unit area decreases gradually. The micro-rough surface of the back surface of
the tool is smoothed out, resulting in a slower wear rate. This stage represents the tool’s
effective working phase. Finally, there is the rapid wear stage. When the amount of tool
wear reaches a certain limit, the cutting force and cutting temperature increase dramatically,
leading to an accelerated tool wear rate until the tool loses its cutting ability. This stage is
referred to as the rapid wear stage. The tool must be replaced before entering the rapid
wear stage. As shown in Figure 9, three tools, C1_1, C2_1, and C4_3, demonstrate the three
stages of wear. It can be observed that initially, the tool wear rapidly increases within a
short period, then the growth rate slows down until the rapid wear stage, where the wear
value starts to increase rapidly again.

Figure 9. Wear stage of C1_1, C2_1, C4_3.
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After data cleaning, we utilized the PCHIP method to conduct data augmentation
on the missing portions of tool wear in the dataset, aiming to expand the application of
information within the dataset. The interpolation results are depicted in Figures 10 and 11.
Figure 10 showcases the interpolated outcome for C6_1, and Figure 11 displays the in-
terpolated outcome for C8_1. The PCHIP interpolation method significantly resolves the
problem of missing wear data, enabling the utilization of rich sensor feature information
associated with the previously absent wear values.

Figure 10. Interpolation results of C6_1.

Figure 11. Interpolation results of C8_1.

We evaluate the performance of interpolation methods by choosing the data which
do not have missing wear values and part of the true wear values, comparing the true
wear values with the interpolation values. We compare PCHIP with three other common
approaches—cubic spline, spline and linear by PCC, MAE, RMSE, MAPE, and standard
deviation. The result is shown in Table 3. It shows that the result of PCHIP is the best
among all methods below. According to the results below, it can be seen that PCHIP
interpolation is better than other interpolation methods in PCC, MAE, RMSE, and standard
deviation. PCHIP has the best interpolation performance. Therefore, we choose the PCHIP
interpolation method to perform wear data interpolation work.
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Table 3. Results of interpolation methods.

Methods PCC MAE RMSE MAPE Standard Deviation

pchip [29] 0.9948 3.1701 4.7902 0.0191 4.7682
cubic spline 0.9942 3.2968 5.0278 0.0189 5.0265

spline 0.9932 3.3427 5.4407 0.0206 5.4278
linear 0.9934 3.2514 5.4306 0.0201 5.3822

Bold indicates optimal performance.

4.3. Prediction Results and Comparison

To demonstrate the effectiveness of the proposed methods, we compare it with the
other three methods on the same test dataset. We represent the proposed method as PECG.
And the other three models are denoted as CNN, CNN Blocks, and GRU. The CNN method
only uses a one-dimensional CNN. And the CNN Blocks method contains a configurable
number of convolutional blocks. The GRU method only includes a GRU model. The tool
wear prediction result of the cutters C4_3 and C7_9 using the four different models is shown
in Figures 12 and 13. It can be seen that our combination of CNN and GRU is superior
to the model which only uses CNN or RNN. It shows that PECG can effectively extract
features from high-dimensional data and as we can see, it can more accurately capture
the underlying trend in the data. The CNN Blocks model captures the trend at first, but
when the wear value suddenly changes, it fails to complete the prediction. This result also
demonstrates that our model produces more robust and less volatile predictions compared
to the other models.

To further quantify the effectiveness of our proposed model, we introduced five key
evaluation metrics, including Pearson Correlation Coefficient (PCC), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Standard Deviation, and Relative Accuracy.
These metrics were calculated using the same test set to assess the performance of our
model. The equations for these metrics are as follows:

• Pearson Correlation Coefficient (PCC)
PCC measures the linear correlation between predicted and actual values, ranging
from −1 to 1.

PCC =
n ∑n

i=1 xiyi − ∑n
i=1 xi ∑n

i=1 yi√[
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
][

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
] (10)

• Mean Absolute Error (MAE)
MAE measures the average absolute difference between predicted and actual values.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (11)

• Root Mean Squared Error (RMSE)
RMSE measures the square root of the average squared difference between predicted
and actual values.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

• Standard Deviation
The standard deviation of errors is an indicator of the robustness of a model. A lower
standard deviation signifies a higher degree of stability of the prediction performance.

SD =

√
∑n

i=1(ei − ē)2

n
(13)



Sensors 2024, 24, 1129 13 of 20

• Relative Accuracy
Relative accuracy is a measure of the error or difference between a measured or
calculated value and the true value of a quantity, ranging from 0 to 1.

RA = 1 − 1
n

∑n
i=1|yi − ŷi|
∑n

i=1 yi
(14)

Figure 12. Tool wear prediction results of C4_3.

The metrics of the four models are illustrated in Table 4 and Figure 14. Among these
models, PECG performs the best in all metrics. GRU performs the worst due to poor feature
extraction. The PCC of GRU is quite low, at only 0.1947, and the relative accuracy is 0.6383,
which is terrible, too. The results shows that the single GRU is not suitable for performing
regression. It can be seen that the CNN Blocks method performs better than CNN. Its
PCC is 16.4% higher than CNN. Nevertheless,its performance can be improved. When
we combine GRU with CNN Blocks, PECG outperforms those of all other models tested,
providing strong evidence for its superior performance. The PCC of PECG is 0.9538, which
highlights the strong correlation between predicted and actual wear values. Its standard
deviation is about half of CNN. As a result of the integration of CNN Blocks and GRU,
the relative accuracy of PECG is 0.8522, which is superior to the other three models. The
design of PECG is less complex than the time–space attention model [24], while delivering
superior performance outcomes. The relative accuracy of the time–space attention model is
0.7890. In comparison, PECG exhibits a relative accuracy that is 8% higher.

Table 4. Tool wear performance estimation results of four networks.

Methods PCC Relative Accuracy MAE RMSE Standard Deviation

CNN [36] 0.7957 0.7898 40.2158 56.3456 44.3952
CNN Blocks 0.9258 0.8097 34.0152 41.8622 28.8696

GRU 0.1947 0.6383 56.6794 70.6391 70.6137
PECG 0.9538 0.8522 23.8362 28.5240 22.2840

Bold indicates optimal performance.
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Figure 13. Tool wear prediction results of C7_9.

Figure 14. Tool wear performance estimation results of four networks.

In order to further illustrate the effectiveness of the PCHIP method, we take predic-
tion results of four models trained without interpolation processing of missing data on
the test set as the baseline. By comparing the predictive outcomes of interpolated and
non-interpolated models, it can be inferred that the four models trained on interpolated
data exhibit superior performance across all metrics when compared to the models trained
on non-interpolated data. Results are shown in Figure 15. It can be seen from the dark blue
bars that PECG outperforms other models even when we do not use the PCHIP interpola-
tion method. This demonstrates the superiority of our model architecture. When combined
with the PCHIP method, all major metrics of the four models have been improved, further
illustrating the effectiveness of the interpolation method we have adopted. The light blue
bars in Figure 15 show that by incorporating the PCHIP interpolation method, notewor-
thy improvements are observed among the evaluated models. Specifically, the standard
deviation of CNN Blocks decreases from 53.5264 to 28.8696, representing a significant
reduction of approximately 46%. Similarly, the RMSE of PECG decreased from 41.0460 to
28.5240, indicating a substantial decline of approximately 31%. These findings underscore
the efficacy of the employed interpolation approach.
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Figure 15. Comparison results with and without interpolation.

4.4. Phm 2010 Dataset Results

We validate the performance of the proposed method on the PHM 2010 dataset [37].
The platform of the PHM 2010 competition is shown in Figure 16. The cutting conditions of
the dataset remain unchanged, utilizing a 6 mm ball nose tungsten carbide cutter to perform
straight tool path cuts on the sidewall of an aluminum alloy blank. The experimental
parameters are shown in Table 5. C1 and C4 are used as the training set, while C6 is used
as the testing set. The tool scrap standard is 170 µm [18]. The results of different methods
are shown below. As is shown in Figure 11, the proposed ConvGRU performs the best
when the tool wear value is less than 170 µm. It seems that the other three models predict
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more accurately than ConvGRU after the wear value exceeds 170 µm. However, in practice,
these good performances have no practical significance, because when the tool wear value
reaches 170 µm, it is considered to have reached the scrapping criteria and is no longer used.
Therefore, the prediction results before reaching the tool scrap criteria are more important.
As shown in Figure 17, the proposed ConvGRU model outperforms the other three models
significantly in this aspect.

Figure 16. PHM 2010 competition platform [38].

Table 5. PHM 2010 competition experimental parameters.

Classification Model/Value Classification Value

Machine model Roders Tech RFM 760 Radial cutting depth 0.125 mm
Workpiece material Nickel-based superalloy 718 Axial cutting depth 0.2 mm

Tool 3-tooth ball nose milling cutter Number of sensors 3
Spindle speed 10,400 RPM Number of sensing channels 7

Feed rate 1555 mm/min Sampling frequency 50 kHZ

Figure 17. Comparison of results on PHM 2010 dataset.

We also prove the effectiveness of data augmentation on the PHM 2010 dataset. Firstly,
we randomly selected 20% of the data from the dataset and removed these data points to
simulate the scenario where tool wear values are missing in practice. Then, we applied
PCHIP interpolation to fill in the missing data, and trained the ConvGRU model on the
interpolated dataset. The results are shown in Table 6 and Figure 18. As shown in Table
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6, after adopting the data augmentation method of PCHIP interpolation, the prediction
performance of the PECG model outperforms the simple ConvGRU model, which is trained
without interpolation, in terms of four evaluation metrics: PCC, Relative Accuracy, MAE,
and RMSE. Furthermore, the prediction results of PECG are very close to the original
dataset, indicating that the proposed PECG model with the data augmentation method
PCHIP yields favorable results and exhibits a small gap compared to the results of the
model trained by the actual dataset. Therefore, PECG effectively addresses the issue of
missing wear data in practical applications while also reducing the cost of multiple wear
value measurements.

Table 6. Tool wear prediction performance of PECG on PHM 2010 dataset.

Data PCC Relative Accuracy MAE RMSE

Original data 0.9793 0.8724 18.7152 24.8331
Missing data 0.9592 0.8344 22.4959 27.0046

Interpolated data 0.9690 0.8622 19.6308 25.4882

Figure 18. Tool wear prediction performance of PECG on PHM 2010 dataset.

5. Conclusions

In this paper, we introduce an efficient interpolation method known as PCHIP to
address the challenge of missing data, specifically in the context of 397 wear prediction.
Additionally, we present a novel model named PECG designed for wear prediction tasks.

CNNs possess a remarkable ability to learn hierarchical features from high-dimensional
data, rendering them highly effective in capturing informative features for regression tasks.
On the other hand, GRUs are known for their efficiency with fewer parameters and faster
training speeds. GRUs, as a type of RNN, excel at capturing and modeling long-term
dependencies within sequential data, making them particularly suited for time-series re-
gression tasks. Moreover, the inclusion of gating mechanisms in GRUs means they need
to learn a limited number of parameters, leading to accelerated training and improved
generalization performance when compared to traditional RNNs.

In our approach, we unify CNN and GRU to craft the innovative PECG model. Initially,
CNN plays a pivotal role in reducing the input data’s dimensionality and complexity, thus
enabling precision in modeling temporal dependencies by the GRU. This fusion capitalizes
on the exceptional feature extraction capabilities of CNN and the adeptness of GRU in
handling time-series data. Consequently, PECG emerges as an effective predictive model
for tool wear prediction, harnessing the strengths of both CNN and GRU.
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Abbreviations
The following abbreviations are used in this manuscript:

SAE Stacked Autoencoder
RUL Remaining Useful Life
GRU Gated Recurrent Unit
HMM Hidden Markov Model
CNN Convolutional Neural Network
CNN Block Convolutional Neural Network Block
PCHIP Piecewise Cubic Hermite Interpolating Polynomial
PECG PCHIP-Enhanced ConvGRU
PCC Pearson’s Correlation Coefficient
CNC machine Computerized Numerical Control Machine
MGRU Multi-head gated recurrent unit
PCA Principal component analysis
ANN Artificial Neural Network
SVM Support Vector Machine
GPR Gaussian Process Regression
RNN Recurrent Neural Network
DNN Deep Neural Network
ReLU Rectified Linear Unit
EMA Exponential Moving Average
MAE Mean Absolute Error
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
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