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Abstract: Livestock’s live body dimensions are a pivotal indicator of economic output. Manual
measurement is labor-intensive and time-consuming, often eliciting stress responses in the livestock.
With the advancement of computer technology, the techniques for livestock live body dimension
measurement have progressed rapidly, yielding significant research achievements. This paper
presents a comprehensive review of the recent advancements in livestock live body dimension
measurement, emphasizing the crucial role of computer-vision-based sensors. The discussion covers
three main aspects: sensing data acquisition, sensing data processing, and sensing data analysis. The
common techniques and measurement procedures in, and the current research status of, live body
dimension measurement are introduced, along with a comparative analysis of their respective merits
and drawbacks. Livestock data acquisition is the initial phase of live body dimension measurement,
where sensors are employed as data collection equipment to obtain information conducive to precise
measurements. Subsequently, the acquired data undergo processing, leveraging techniques such
as 3D vision technology, computer graphics, image processing, and deep learning to calculate the
measurements accurately. Lastly, this paper addresses the existing challenges within the domain
of livestock live body dimension measurement in the livestock industry, highlighting the potential
contributions of computer-vision-based sensors. Moreover, it predicts the potential development
trends in the realm of high-throughput live body dimension measurement techniques for livestock.

Keywords: computer vision sensing; live body dimension measurement; 3D point cloud; image processing

1. Introduction

In the domain of animal husbandry, it is commonly believed that the size and physique
of livestock can reflect the superior characteristics of their breeds [1]. In the process of
enhancing livestock breeding techniques and selecting superior livestock breeds to in-
crease production, automated morphometric measurement technology is indispensable [2].
However, the livestock industry has long been plagued by issues such as inadequate tech-
nological contributions, low resource utilization efficiency, inconsistent product quality,
insufficient value conversion, and challenges in realizing environmental benefits, all of
which have severely impeded the process of agricultural modernization [3].

Presently, the livestock industry is undergoing rapid development. Overseeing live-
stock physiology encompasses various aspects, including temperature monitoring, body
weight measurement, and live body dimension assessment. In recent years, with the
advancement of scientific technology, live body dimension measurement in the realm of
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animal husbandry has garnered considerable attention. The dimensions of livestock hold
substantial importance as indicators for breeding facilities. Nevertheless, at present, the
majority of farms continue to rely on manual methods involving tape measures, measuring
rods, and other tools for the manual measurement of cattle, sheep, and other livestock. This
approach is not only limited by errors stemming from tools and human subjectivity but also
frequently triggers stress responses in animals, resulting in significant stress consequences.
This is particularly pronounced in the context of large-scale breeding facilities, where
the efficiency of manual measurement is notably insufficient both in terms of time and
space considerations.

In recent years, propelled by the rapid advancement of scientific and technological
progress, the integration of information technology with various industries has become
increasingly profound. With the incorporation of computer vision sensing, this integration
has reached new heights. Various advanced computer technologies such as big data, image
processing, and computer vision have gradually permeated across diverse sectors [4]. These
developments have given rise to a plethora of products that not only enhance productivity
in societal and economic activities but also elevate the overall quality of life [5]. The
livestock industry has consistently remained a crucial sector for agricultural efficiency
enhancement and rural income augmentation [6]. In the realm of information technology
being applied to animal husbandry, the technology for measuring the live body dimensions
of livestock typically utilizes sensors to acquire livestock data using methods such as
scanning and imaging. Subsequently, computer processing is applied to yield the live
body dimension measurements of the animals [7]. This approach is usually non-invasive,
mitigating stress reactions in livestock and thus constituting a non-destructive testing
method [8].

To date, researchers have made significant advancements in the measurement of
live body dimensions in various domesticated animals such as pigs, cattle, and sheep
utilizing computer vision sensing technology. Commendable results have been achieved
in this regard [9]. This paper conducts a comprehensive review and summary of the
relevant research in this domain. The survey encompasses three key aspects: livestock data
collection (sensing data acquisition), livestock data processing (sensing data processing),
and data analysis of live body dimension parameters (sensing data analysis), as illustrated
in Figure 1. According to the above three aspects, we have analyzed the current challenges
faced in automatic livestock body measurement, respectively, based on criteria such as
the timeliness of the measurement process, the accuracy of the measurement results, and
the robustness of the measurement technology. This paper also anticipates the main
development trends in this field for the future.
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Figure 1. Schematic diagram of the basic principles of measuring livestock dimensions based on
computer vision sensing.

2. Raw Sensing Data Acquisition for Live Livestock Body Dimensions

The primary step in the live body dimension measurement of livestock is the collec-
tion of livestock data. Currently, livestock data acquisition commonly employs sensing
devices such as depth cameras, 3D scanners, or 2D RGB cameras, as depicted in Table 1.
Subsequently, suitable equipment is utilized to capture images of cattle, sheep, and other
livestock in standing or walking states, thereby acquiring corresponding livestock data.
Livestock data acquisition primarily considers two aspects: the acquisition equipment
and the acquisition method, both of which exert a certain influence on the precision of the
subsequent live body dimension measurements.
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Table 1. Comparison of sensing data collection equipment.

Principle of Operation Purpose Advantage Limitations

Depth camera
(DC)

Distance from each point in the
image to the camera, coupled with
the two-dimensional coordinates
of that point within the 2D image,

derivation of the
three-dimensional spatial

coordinates of each point within
the image

Capturing the depth
distance within the
specific space and
spatial coordinate

information

Swift processing
times, spatial
coordinates

Exhibits lower relative
accuracy and generates

larger datasets

3D scan (3S)

Scanning the spatial exterior,
structure, and colors of an object,

spatial coordinates of the
object’s surface

Generating a
high-precision point

cloud representation of
the object’s geometric

surface

Highly accurate
spatial coordinates

Long scanning process,
demanding specific

environmental
conditions, large datasets

2D RGB
camera (2RC)

An apparatus that employs the
principles of optical imaging to

create images

Utilizes electronic
sensors to convert
optical images into

electronic data

Quick processing
times, smaller

datasets

Susceptible to
environmental changes

such as lighting and color

2.1. Sensing Technology for Collecting Animal Body Measurements

The selection of sensing livestock acquisition equipment is typically influenced by factors
such as price, acquisition environment, and the subjects being captured. Yang et al. (2022) [10]
used a Huawei P20 smartphone to capture images of cows and employed Structure from
Motion (SfM) technology to transform the farm environment and cow images into 3D
point clouds. While the camera cost was low, the 3D reconstruction process proved time-
consuming. Li et al. (2022) [11] used five Kinect DK cameras to capture and reconstruct
images of beef cattle, achieving swift 3D model reconstruction but with sensitivity to
lighting conditions. Zhao et al. (2015) [12] employed Kinect depth cameras to acquire color
and depth images of sheep bodies, considering lighting influences and necessitating precise
alignment between the measured objects and sensing sources.

As the livestock industry evolves, live body dimension measurement technology is
progressively moving toward industrialization and commercialization. In the current phase,
the preferred characteristics for equipment selection in this field tend to prioritize stability,
high accuracy, and low cost.

Currently, most of the livestock acquisition equipment employs depth cameras, a
pioneering approach that maximizes animal welfare and provides improved means to
assess animal health and reactions [13,14]. Depth cameras, also referred to as 3D cameras,
discern the depth distances within the captured space, setting them apart significantly
from standard RGB cameras. The presently used depth cameras can be categorized into
three types based on their operating principles: binocular stereo vision, structured-light,
and time-of-flight (TOF), as illustrated in Figure 2. Table 2 contrasts the advantages and
disadvantages of these camera types, along with their key manufacturers, based on their
fundamental principles. Table 3 further compares these cameras based on aspects like
resolution, accuracy, frame rate, lighting conditions, and cost. Binocular stereo vision,
despite its resilience to lighting, often encounters image discrepancies due to changing
lighting conditions, leading to matching failures or reduced accuracy in practice [15]. TOF
cameras exhibit lower noise at longer distances and boast higher frame rates, rendering
them more suitable for dynamic scenes [16]. Structured-light technology is power-efficient,
mature, and better suited to static scenes [17]. Live body dimension intelligent measurement
in the livestock domain primarily occurs in dynamic environments, making TOF cameras
a more suitable choice due to their capacity to meet the data acquisition requirements,
especially for such scenarios.
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Depth Camera Fundamentals Advantages Disadvantages Company

Binocular stereo
vision

RGB image feature
point matching and
indirect calculation

through triangulation

Low hardware requirements,
low cost, applicable indoors

and outdoors, as long as
lighting conditions are

suitable and not too dim.

High sensitivity to ambient
light, unsuitable for

monotonous and
texture-lacking scenes, high

computational complexity, and
measurement range limited by
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Leap Motion
ZED
DJI

Structured-light

Active projection of
known encoded

patterns to enhance
feature-matching

Effectiveness

Convenient for
miniaturization, low
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light source, usable at night,

high precision within a
certain range, and
high resolution.

Prone to interference from
ambient light, with accuracy

decreasing as detection
distance increases.

Apple
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Intel
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Direct measurement

based on time-of-flight
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Detects distant objects, with
relatively minimal
interference from
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High equipment demands,
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Microsoft
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Table 3. Comparison of three types of depth cameras.

Binocular Stereo Vision Structured-Light TOF

Resolution Medium–high Middle Low
Precision Medium Medium–high Medium

Frame rate Low Medium High
Anti-light (principle angle) High Low Medium

Hardware cost High Low Medium

2.2. The Methods of Livestock Live Body Dimension Measurement

Currently, livestock data collection methods can primarily be categorized into three
types: channel archway style, suspended fixed style, and simple portable style. Table 4
provides a comparison of the advantages and disadvantages of these three collection
methods. When collecting data within livestock farms, it is essential to consider the specific
environmental context and opt for an appropriate collection approach.
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Table 4. Main collection methods of livestock data.

Collection Method Merit Shortcoming

Channel Archway Style (CA) Enables the collection of data during livestock
movement, reducing stress on the animals. Data loss due to obstruction by railings.

Suspended Fixed Style (SF) Requires only a single camera for suspended
installation, resulting in lower costs.

Single perspective of obtained livestock
data, with data collection requiring the

livestock to be in a stationary state.

Simple Portable Style (SP) Convenient for transportation and easy to install. Requires multi-angle

The channel archway method for livestock data collection typically involves construct-
ing an archway-style collection device next to the pathway where the livestock walk and
then capturing data as the livestock pass through the pathway, as depicted in Figure 3a.
Ruchay et al. (2020) [18] employed three Kinect v2 cameras installed in the left, right,
and top positions of the pathway. However, due to the narrow railing of the pathway,
certain safety concerns were present. Li et al. (2022) [19] established an archway device
with five Kinect DK cameras positioned in the top, upper-left, lower-left, upper-right, and
lower-right positions. The railing in the middle of the archway was thicker to address
equipment and personnel safety issues, but the data collection was somewhat compromised
due to the railing obstruction.
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During the collection process, when cows passed through the collection area, the equip-
ment first recognized the ear tag numbers of the cows and then initiated data collection
using the five depth cameras while the cows were in relatively stationary conditions. This
collection method not only saves time and effort but also ensures rapid data acquisition.
However, if the archway is sufficiently large and multiple cattle pass through simultane-
ously, occlusion issues may arise. Furthermore, given the diverse species and varied poses
of livestock, there is a higher demand for algorithmic sophistication.

Using the suspended fixed-style method for livestock data collection typically involves
installing a data collection device directly above the livestock and guiding the livestock
to stand beneath the device for data capture, as shown in Figure 3b. Ye et al. (2022) [20]
employed depth cameras to capture top-down depth video data on beef cattle, followed
by frame-by-frame processing of the video data. Kamchen et al. (2021) [21] utilized
depth cameras to capture images of the backs of livestock and subsequently employed a
multilayer perceptron neural network to select the highest-quality cattle image data. This
collection method generally requires only one depth camera, significantly reducing costs.
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However, since it only captures data from the back of the cattle, the measurement coverage
is limited and might not fulfill the measurement requirements for the other body parts of
the livestock.

Using the simple portable-style method for livestock data collection typically involves
utilizing readily available cameras or simple devices, as depicted in Figure 3c. This ap-
proach is suitable for complex farm environments. Shi et al. (2022) [22] used drones
to capture images and performed aerial triangulation calculations based on the images’
inherent position and orientation system (POS) information. After obtaining the initial
coordinate point cloud data through adjustment, three-dimensional reconstruction was
conducted. Although this process takes longer, it boasts low camera costs and rapid ini-
tialization. Pezzuolo et al. (2018) [23] created simple devices by placing Kinect v1 cameras
above and next to the pig feeding area, capturing imaging data from both the side and
the top of the animals. The simple portable-style method is often limited to capturing
data from individual livestock and might encounter challenges such as data loss and low
efficiency. It may struggle to meet the demands of large-scale livestock farms.

In summary, the process of livestock body dimension measurement is significantly
reliant on livestock data collection. Hence, during the livestock data collection phase,
it is imperative to consider factors such as the rearing environment and the subject of
measurement in order to select suitable collection methods and sensing devices. This
approach ensures the acquisition of high-precision, information-rich, and low-noise raw
livestock data.

3. Processing of Raw Sensing Data

During the collection of point cloud data from livestock, we commonly utilize depth
cameras, regular RGB cameras, or other sensing devices to obtain three-dimensional point
cloud data or image data on the livestock. As a result, the data processing for livestock
mainly involves image data and point cloud data.

3.1. Processing of Livestock Image Sensing Data

Currently, digital image processing mainly involves methods such as denoising, image
equalization, image filtering, and edge contour detection. These techniques play a crucial
role in the correction, enhancement, and analysis of livestock image data.

3.1.1. Image Detection

Livestock image detection refers to the technology that employs computer processing
and analysis of livestock images in various complex environments, utilizing deep learning
algorithms to identify different livestock objects.

Brahim et al. (2020) [24] captured images of cow heads in a cowshed and used a
convolutional neural network (CNN)-based model for individual identification. This CNN-
based approach yielded excellent results even in complex farm environments, achieving an
accuracy of 97% in identification. However, this method solely relying on the head for recog-
nition cannot be applied to images containing only the body of a cow. Hu et al. (2020) [25]
obtained a set of side-view images of cows and performed cow localization in each im-
age. They then divided the images into three parts: head, torso, and legs. Deep features
were extracted from each part using a CNN, and a feature fusion strategy was designed
to combine these features. This approach achieved a recognition accuracy of 98.36% for
cows, as illustrated in Figure 4. This method not only identifies cows based on their heads
but also utilizes other parts of their bodies, leading to an improved recognition accuracy.
Shen et al. (2020) [26] proposed an automated algorithm for cow recognition using side-
view images. Based on the AlexNet model, the experimental results demonstrated the
superiority of this method over traditional recognition methods and deep learning methods
focusing on local regions. This method exhibits promising application prospects, offering a
robust approach to image-based livestock recognition.
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Figure 4. Schematic diagram of livestock image recognition [25].

Livestock image detection can accurately and efficiently identify specific livestock in
complex environments. This capability allows for the selection of appropriate measure-
ment methods for different livestock species in subsequent body measurement processes,
ultimately enhancing the accuracy of livestock body measurements.

3.1.2. Image Segmentation

Image segmentation for livestock refers to the process of separating livestock targets
from the background in an image. Initially, computers identify livestock objects in the
image and then extract various specific image features to differentiate the livestock from
the background.

Rotimi-Williams et al. (2021) [27] proposed an enhanced Mask R-CNN instance
segmentation method to support the extraction of cattle with blurred boundaries and
irregular shapes. This approach mitigates the negative effects of lighting variations during
cattle image capture, reducing the misclassification of pixels differentiating between actual
cattle bodies and shadows. Liu et al. (2020) [28] introduced the use of Gaussian Mixture
Models to separate cows from the background, as depicted in Figure 5. Additionally,
applying Gaussian Mixture Models to depth images was found to address challenges in
target detection due to background variations, offering a new approach to livestock object
extraction based on images.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 25 
 

 

Shen et al. (2020) [26] proposed an automated algorithm for cow recognition using side-
view images. Based on the AlexNet model, the experimental results demonstrated the su-
periority of this method over traditional recognition methods and deep learning methods 
focusing on local regions. This method exhibits promising application prospects, offering 
a robust approach to image-based livestock recognition. 

 
Figure 4. Schematic diagram of livestock image recognition [25]. 

Livestock image detection can accurately and efficiently identify specific livestock in 
complex environments. This capability allows for the selection of appropriate measure-
ment methods for different livestock species in subsequent body measurement processes, 
ultimately enhancing the accuracy of livestock body measurements. 

3.1.2. Image Segmentation 
Image segmentation for livestock refers to the process of separating livestock targets 

from the background in an image. Initially, computers identify livestock objects in the 
image and then extract various specific image features to differentiate the livestock from 
the background. 

Rotimi-Williams et al. (2021) [27] proposed an enhanced Mask R-CNN instance seg-
mentation method to support the extraction of cattle with blurred boundaries and irregu-
lar shapes. This approach mitigates the negative effects of lighting variations during cattle 
image capture, reducing the misclassification of pixels differentiating between actual cat-
tle bodies and shadows. Liu et al. (2020) [28] introduced the use of Gaussian Mixture Mod-
els to separate cows from the background, as depicted in Figure 5. Additionally, applying 
Gaussian Mixture Models to depth images was found to address challenges in target de-
tection due to background variations, offering a new approach to livestock object extrac-
tion based on images. 

 
Figure 5. Schematic diagram of livestock target segmentation [28]. Figure 5. Schematic diagram of livestock target segmentation [28].

Image segmentation for livestock can effectively identify diverse livestock objects in
various complex environments, laying an essential foundation for subsequent image-based
measurements of livestock dimensions.
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3.1.3. Image Posture Judgment

In various environments and situations, the same livestock can exhibit different poses.
To assess the various poses of the same livestock in images, computer technologies such as
deep learning are often employed. These technologies help recognize the diverse poses
of livestock.

Martin et al. (2020) [29] designed a deep learning system for position and pose
detection, using the Faster R-CNN object detection pipeline and Neural Architecture Search
(NAS) as the underlying network for feature extraction. This system can differentiate
between standing and lying pigs, as shown in Figure 6, where the blue bounding boxes
indicate standing pigs and the green ones indicate lying pigs. The method achieves
an average precision of 80.2% for position and pose detection with a sufficient number
of training images, but the precision is lower for datasets with limited training images.
Jessy et al. (2022) [30] extended the open-source pose estimation toolkit DeepLabCut,
demonstrating its powerful capabilities in animal pose estimation, identification, and
tracking using datasets of varying complexity. This method can evaluate the poses of
various animals, offering a robust solution to distinguish different poses of the same
livestock in images.
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Figure 6. Schematic diagram of livestock posture evaluation [29].

Livestock pose estimation effectively differentiates between various poses of livestock
in images, enabling the selection of appropriate poses for subsequent livestock dimen-
sion measurement. This would enhance the accuracy of measurements in livestock body
dimension assessment.

In summary, prior to dimension measurement, processing livestock images usually
involves several steps. Employing image processing techniques to identify the livestock
species in the images, precisely capturing the livestock’s outlines, segmenting the target
livestock from the background, and assessing posture to determine whether the subject
conforms to the standard measurement pose are common steps. Finally, the dimensions
of the body are measured. As image data usually have smaller file sizes and limited
information and occupy less space, researchers can process images in a short time. However,
with this approach, the measurement of certain parts of the livestock is often constrained.

3.2. Processing of Livestock Point Cloud Sensing Data

Point cloud data typically have larger file sizes and contain more information. Cur-
rently, the processing of livestock point cloud data is a key focus in the research of auto-
mated livestock dimension measurement. The processing of livestock point cloud data
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generally includes several steps, such as point cloud registration and reconstruction, point
cloud segmentation, point cloud simplification, point cloud completion, point cloud posture
judgment, and normalization [31].

3.2.1. Point Cloud Registration and 3D Reconstruction

Three-dimensional point cloud registration and reconstruction of the livestock are
generally the initial steps in livestock data processing. After obtaining the livestock’s point
cloud data, the corresponding point cloud data are registered, and a three-dimensional
point cloud is reconstructed to extract information for subsequent point cloud processing.
Point cloud registration techniques include the ICP (Iterative Closest Point) algorithm, the
NDT (Normal Distribution Transform) algorithm, and the PFH (Point Feature Histogram)
algorithm. Typically, data captured from multiple viewpoints are matched to ultimately
reconstruct the three-dimensional model of the livestock, as illustrated in Figure 7.
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Currently, numerous high-precision livestock point cloud registration algorithms have
been developed. Shi et al. (2020) [32] used a Kinect depth camera to capture point cloud
data on walking pigs from three different viewpoints. The registration parameters were
obtained from a bounding box, and three local point clouds were used for reconstruction.
The experimental results showed that the average error in measuring the dimensions of
40 pigs was less than 4.67%. However, due to the data being acquired from freely moving
pigs, which introduces noise and complex poses, the measurement algorithm requires
the animals to assume standard poses. Furthermore, the limitations of the environment
led to the design of barriers in the data collection setup to restrict the pigs’ movement,
which might have hindered data collection. Additionally, the experimental data only
covered a single pig breed, potentially limiting the system’s generalizability. Moreover, the
system’s operation is not very user-friendly for ordinary workers, as it requires specialized
personnel for installation and maintenance, posing practical operational challenges that
may hinder meeting commercial demands. Dang et al. (2022) [33] proposed a framework for
reconstructing three-dimensional point clouds of cows. This method utilized two cameras
to capture the cow data, enhanced the data quality using a convolutional neural network,
and then improved the point cloud registration accuracy using the SLAC algorithm. This
approach requires creating 3D point clouds for each part of the cow and then forming
the overall 3D cow point cloud, which reduces the translation during the registration
process and enhances cow point cloud reconstruction. However, this method necessitates a
sufficiently large and accurate dataset of cow data, covering a wide range of poses, and
the study did not mention the time required for reconstruction. Therefore, whether it is
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suitable for commercialization remains to be confirmed. In the context of livestock point
cloud registration and reconstruction, annotating key points in the point cloud is also an
essential task. Raphael et al. (2022) [34] reformulated key point extraction as a regression
problem based on the distances between the key points and the rest of the point cloud,
introducing a novel method for annotating key point cloud points. Li et al. [11] developed
a real-time system for collecting cow point cloud data, equipped with five depth cameras
in a gantry structure. The system can collect point cloud data from five different angles
within 0.09 s, and the process of reconstructing the cow’s three-dimensional point cloud
takes 10–15 s. The overall error ranges from 0.5% to 2%, indicating that the reconstructed
cow point cloud accurately represents its true shape. This system offers the potential for
automated animal growth monitoring and, with further refinement, could be applied to
ordinary farms commercially.

Point cloud registration and reconstruction constitute a crucial step in three-dimensional
machine vision. This process involves merging data from various point clouds defined
in local coordinate systems into a global coordinate system, resulting in a complete
three-dimensional livestock point cloud model dataset.

3.2.2. Point Cloud Object Extraction

Three-dimensional point cloud segmentation for livestock is an essential processing
step. Typically, the point cloud data obtained using depth cameras encompass not only the
livestock but also the surrounding scene elements, such as the ground and fences. Point
cloud segmentation is needed to isolate the livestock point cloud from the background.
Currently, there are various methods for point cloud segmentation, including random
sample consensus (RANSAC), Euclidean clustering, voxel-based segmentation, and deep-
learning-based segmentation.

In a study by Zhang et al. (2023) [35], after acquiring three-dimensional point clouds
of cattle using depth cameras, statistical outlier removal was applied to eliminate sparse
points, followed by RANSAC plane segmentation to remove ground points. Finally, a
threshold-based cutting method was used to eliminate background points. While this
approach produced reasonable results in terms of the cattle’s three-dimensional point
cloud, it exhibited several limitations. It was constrained by the use of a single depth
camera capturing data from only one perspective, leading to limited and non-universal data.
Additionally, the cattle model used lacked versatility. On the other hand, Li et al. (2022) [19]
also utilized depth cameras for data collection in cattle farms. Their method involved a
series of algorithms including spatial filtering, statistical outlier point filtering, random-
sample-consensus-based shape fitting, point cloud downsampling, and density-based
clustering to remove background interference, such as from fences, while preserving the
integrity of the point cloud. This approach effectively extracted point clouds of target
cattle from complex real-world environments, providing crucial support for subsequent
operations like livestock measurement, as shown in Figure 8.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 8. Schematic diagram of livestock target segmentation [19]. 

In summary, point cloud segmentation is instrumental in isolating the relevant live-
stock point cloud data for further operations such as body measurement from complex 
and cluttered environments, contributing significantly to the accuracy of livestock-related 
tasks. 

3.2.3. Point Cloud Simplification 
Livestock point cloud data typically exhibit a substantial data volume, leading to in-

efficiencies in data processing. To address this, a common practice involves point cloud 
simplification to retain the livestock’s essential features while improving the data pro-
cessing efficiency [36], as depicted in Figure 9. 

 
Figure 9. Schematic diagram of downsampling of point cloud. 

In a study by Zhang et al. (2019) [37], they employed Principal Component Analysis 
(PCA) to compute local plane normal vectors, which were combined with curvature infor-
mation to simplify the point cloud of the cow’s back. This method yielded an average 
absolute error of less than 1.17 cm in extracting the body measurement points, along with 
a 33.72% reduction in the point extraction time. Such techniques provide valuable tech-
nical support for automating livestock body measurement. Qin (2020) [38] introduced an 
octree-based K-means clustering approach to point cloud simplification. This method not 
only removed redundant data from pig point clouds but also effectively retained the fine 
details of the pig’s features. However, the experiments were conducted solely on three-
dimensional point clouds of pigs, and the general applicability of this method to other 
livestock types was not verified. 

Point cloud simplification not only reduces the data volume but also preserves cru-
cial livestock details. This enhancement significantly boosts the efficiency of various data 
operations, thereby reducing the required processing time. 

Figure 8. Schematic diagram of livestock target segmentation [19].



Sensors 2024, 24, 1504 12 of 24

In summary, point cloud segmentation is instrumental in isolating the relevant live-
stock point cloud data for further operations such as body measurement from complex and
cluttered environments, contributing significantly to the accuracy of livestock-related tasks.

3.2.3. Point Cloud Simplification

Livestock point cloud data typically exhibit a substantial data volume, leading to
inefficiencies in data processing. To address this, a common practice involves point cloud
simplification to retain the livestock’s essential features while improving the data processing
efficiency [36], as depicted in Figure 9.
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In a study by Zhang et al. (2019) [37], they employed Principal Component Analy-
sis (PCA) to compute local plane normal vectors, which were combined with curvature
information to simplify the point cloud of the cow’s back. This method yielded an aver-
age absolute error of less than 1.17 cm in extracting the body measurement points, along
with a 33.72% reduction in the point extraction time. Such techniques provide valuable
technical support for automating livestock body measurement. Qin (2020) [38] introduced
an octree-based K-means clustering approach to point cloud simplification. This method
not only removed redundant data from pig point clouds but also effectively retained the
fine details of the pig’s features. However, the experiments were conducted solely on
three-dimensional point clouds of pigs, and the general applicability of this method to
other livestock types was not verified.

Point cloud simplification not only reduces the data volume but also preserves crucial
livestock details. This enhancement significantly boosts the efficiency of various data
operations, thereby reducing the required processing time.

3.2.4. Point Cloud Filling

During the process of collecting point cloud data from livestock using devices, various
factors often lead to missing points in the point clouds. For instance, when collecting
data from cows, safety measures such as setting up barriers are necessary. However, these
barriers can obstruct and result in missing portions of point cloud data.

Chu et al. (2020) [39] proposed a frame completion method based on video. They
captured depth videos of cows and synchronized a different view’s point cloud from
another frame to complete the missing areas in the side-view point cloud. While effective
in compensating for the missing data caused by barriers, this method relies on manually
selecting frames and involves significant computational overhead due to the depth videos,
which may not align with the needs of modern livestock informatics.

Li et al. (2021) [40] presented a method for completing missing sections in side-
view point clouds of pigs. This approach utilized threshold analysis, cubic spline curve
fitting, and edge detection, as illustrated in Figure 10. Although it successfully addressed
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pig point cloud completion, the experiments were performed on model pigs, limiting its
general applicability.
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Yang et al. (2022) [10] initially sliced cow point clouds and hole boundary points along
the principal direction of the cow’s body. They then employed a smoothing-factor-equipped
spline curve to fit and fill these sliced points in polar coordinates. This completion method,
compared to grid-based methods, generated points that are closer to reality, reducing the
measurement errors caused by point cloud gaps in livestock data.

In summary, point cloud completion effectively resolves incomplete livestock point
cloud data due to environmental factors. It enhances the adaptability of equipment during
body measurement procedures, laying a robust foundation for commercialization.

3.2.5. Posture Judgment and Normalization

During the process of livestock body measurement, variations in the posture of the
animals can lead to different measurement results. To ensure accurate measurement of
livestock dimensions, it is common to perform an assessment of an animal’s posture first.
Hu et al. (2022) [41] proposed a curve skeleton extraction method specifically designed
for incomplete livestock point clouds. This method extracts the skeleton, which is then
used for posture assessment to determine whether a pig is in the correct posture for body
measurements. While this method was tested on other livestock as well, it exhibited a
relatively high error rate. Therefore, further improvements are needed when dealing with
different species of animals.

Pose normalization involves transforming data from various coordinate systems into
a unified coordinate system. This facilitates data comparison and processing and enhances
the algorithm’s precision [42]. Guo et al. (2019) [43] introduced a pose normalization
method for 3D livestock point clouds, leveraging the bilateral symmetry of cows or pigs
to transform them into a standardized coordinate system. However, this method cannot
standardize all livestock to the same reference pose. Lu et al. (2022) [44] improved upon
this method by using 2D object detection to determine the orientation of livestock in 3D
space. They then projected the 2D detection results into 3D to locate the livestock targets.
Finally, they applied a bilateral symmetry-based pose normalization framework, as depicted
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in Figure 11, effectively normalizing the livestock poses. This 2D/3D fusion approach
addresses the issues caused by noise and missing values in depth camera captures and
provides stability and practicality. Luo et al. (2023) [7] collected livestock data during free
movement. Given the diverse poses of the fitted mesh, they employed a shape statistical
model to normalize different poses to a reference pose, thereby mitigating the posture-
related measurement errors induced by animal movements. Although the iterative process
of model fitting in this method is time-consuming, it can readily adapt to measuring non-
rigidly joint-deformed objects, effectively addressing the issue of inconsistent livestock data
due to pose normalization. In cattle body measurements, the overall estimation accuracy
was 91.95%, while in pig body measurements, the accuracy was 87.63%. This approach
provides a solution for accurate reconstruction and the measurement of livestock after pose
normalization in precision livestock farming.
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Posture assessment and normalization play a crucial role in addressing non-standard
postures of livestock, reducing errors and achieving more accurate measurements of live-
stock dimensions.

In conclusion, the processing of livestock point cloud data plays a crucial role in the
automation of livestock body measurements. After collecting data from livestock using
suitable sensing devices, various processing operations, such as point cloud registration
and reconstruction, point cloud segmentation, point cloud simplification, point cloud
completion, point cloud posture judgment, and normalization, are employed. These
operations resulted in more comprehensive and higher-quality livestock data, achieving a
more precise delineation of the livestock’s contours and laying a solid foundation for the
accuracy of subsequent livestock body measurements.

4. Livestock Body Measurement Sensing Data Analysis

Livestock body dimension measurement involves the collection and processing of
livestock data, followed by the use of technologies such as digital image processing, deep
learning, and computer vision to perform body measurements on the obtained 3D point
cloud or image sensing data on livestock, as illustrated in Figure 12. This section primarily
covers the standards for livestock body measurement and the methods of performing such
measurements using 3D point cloud or image sensing data.
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4.1. Livestock Body Dimension Measurement Standards

Body dimension measurement is a crucial indicator for assessing the growth and
development of livestock. These measurements are typically expressed in numerical form
using units such as length, angles, and areas to represent the size of various parts of
the livestock, such as body height, body length, chest circumference, girth, etc. These
measurements reflect the physical size of the livestock and hold significant importance
for livestock management and breeding purposes [45,46]. Manual body dimension mea-
surements often involve tools like measuring sticks and tape measures [47]. During the
measurement process, the livestock are usually secured within a device made of iron to
ensure the safety of the measurement personnel and to maintain the livestock in a proper
posture. Measurements are then taken using the measurement tools, as shown in Figure 13.
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Currently, there are a wealth of livestock resources available [48]. Figure 14 illustrates
the measurement standards for pigs, cattle, and sheep, which include various indicators
such as chest circumference, abdominal circumference, body height, body length, body
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width, girth, chest depth, chest width, and more. Table 5 provides specific locations on
the body of pigs, cattle, sheep, etc., where specialized measurement instruments are used
for measurement purposes [49–51]. The aforementioned morphometric parameters are
commonly employed for phenotypic assessment in the breeding process.
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Table 5. Position definition for measuring the body dimensions of livestock.

Species Pig Cow Sheep

Chest girth
(CG)

The diameter of the chest is
measured at the posterior corner of

the shoulder blade.

Surrounds vertically around the
circumference of the base of the

chest.

The diameter of the chest
circumference at the posterior
corner of the shoulder blade.

Abdominal
girth (AG)

The circumference of the largest
part of the abdomen.

The circumference of the widest
part of the abdomen. The circumference of the abdomen.

Body length
(BL)

The distance from the occipital
ridge to the caudal root.

That is, the oblique length of the
body, the straight length from the

anterior edge of the shoulder end to
the outer edge of the ischial end.

That is, the oblique length of the
body, the straight-line distance from

the anterior edge of the shoulder
end to the posterior edge of the

ischial tubercle.

Body height
(BH)

The vertical distance from the
manor to the ground.

The middle of the mane is
perpendicular to the height of the

ground along the posterior edge of
the forelimb.

The vertical distance from the
highest point of the mane to

the ground.

Body width
(BW) The distance between the hips. The horizontal maximum width of

the outer edges of both hips.
The maximum horizontal distance

between the hips and thighs.

Tube girth
(TG)

The circumference of the thinnest
part of the tubular bone.

The circumference of the upper 1/3
of the tibia of the left forelimb.

The circumference of the thinnest
part of 1/3 of the tube bone.

Chest depth
(CD)

The vertical distance from the mane
to the lower edge of the ribs.

The shortest distance from the
posterior edge of the mane to the
base of the chest perpendicular.

The straight-line distance from the
highest point of the nail to the

lower edge of the sternum.

Chest width
(CW)

The maximum distance between
the vertical tangents on the left and
right sides of the posterior corner of

the scapula.

The minimum width behind the
shoulders is measured at the same

depth as the chest depth.

The straight-line distance at the
widest point of the posterior edge of
the shoulder blades on both sides.

4.2. Measurement of Livestock Body Dimensions Using Images Sensing Data

During the initial stages of researching livestock body intelligent dimension mea-
surement techniques, many studies were primarily based on image sensing data due
to limitations in the software and hardware and other factors. However, with the ad-
vancement of technology, image sensing data have become more diverse, leading to the
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emergence of various new techniques. Table 6 provides a summary of the recent and
relatively typical research outcomes in the field of livestock body measurement conducted
using image-based approaches.

4.2.1. Body Dimension Measurement Based on Color Image Sensing Data

In the early stages of research on automated livestock body measurement, most
researchers used regular RGB cameras to capture color image data on the animals. For
instance, Shi et al. (2020) [52] employed image processing techniques to measure simple
dimensions of cattle, achieving low measurement errors and high accuracy. However, the
measurements were limited to only a few aspects of the cattle’s body, such as height and
length. To extend the coverage of the livestock body measurements, some researchers
adopted a multi-view approach to data collection [53,54].

In recent years, with the rapid development of new technologies like deep learning,
some researchers have harnessed convolutional neural networks (CNNs) to enhance
the measurement accuracy, showcasing the potential of these emerging techniques.
Zhao et al. (2021) [55] utilized the Mask R-CNN algorithm to effectively extract the contour
of cattle against complex backgrounds. They smoothed the contours and divided it into seg-
ments to extract feature regions. Using the chord length curvature method, they computed
the maximum curvature point within each feature region to obtain cattle body measure-
ment data. While this method effectively extracts the cattle’s contours, variations in the
cattle’s standing posture can still impact the measurement results. Zhang et al. (2021) [56]
introduced a data-mining-based approach to estimate the body size of yaks. The results
showed that this method was convenient and efficient, offering an effective means to
measure the body size of yaks.

The aforementioned studies primarily relied on RGB cameras and image processing
techniques, with some assistance from technologies like deep learning. Nevertheless, there
is still room for improvement in terms of the measurement coverage and accuracy.

4.2.2. Body Dimension Measurement Based on Depth Image Sensing Data

Recently, with the continuous development of consumer-grade depth cameras, many
researchers have turned their attention to depth images. For instance, Yuan et al. (2022) [57]
employed a watershed algorithm to extract cattle from depth images. They then used the
Hough transform to extract key points from the image. By utilizing polynomial curve
fitting methods and leveraging the skeletal features of the cattle’s head area, they re-
moved the head and neck regions. Lastly, based on the spatial features of the cattle’s
body measurement points, they calculated various body measurement data. This method
achieved a relative measurement error of less than 3.3%, effectively enhancing the accuracy
of automated cattle body dimension measurements. Zhao et al. (2023) [58] proposed a
non-contact method for rapid pig body measurement based on the DeepLabCut algorithm.
This approach combined depth images with deep learning to calculate five body dimension
measurement indicators for pigs: length, width, height, hip width, and hip height. Not
only did this method increase the coverage of the body measurements but it also achieved
a maximum root mean square error of 1.79 cm and a processing time of 0.27 s per frame.
The approach exhibited minimal errors and even a shorter processing time.

4.2.3. Body Dimension Measurement Based on the Fusion of Color and Depth Image
Sensing Data

Furthermore, some researchers have combined color images with depth images.
Nan et al. (2021) [59] proposed a method that uses depth and color images of cows, em-
ploying an improved template-matching approach to detect and segment body parts. This
method not only achieves a high average segmentation accuracy but also offers a new
avenue for cattle body measurement. Zhao et al. (2022) [60] utilized the Kinect v4 depth
camera to capture color and depth images of cows. They employed deep learning YOLOv5
object detection, Canny edge detection, and three-point circular arc curvature algorithms to
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extract cows’ body feature points and then calculated the body measurement data. The
average relative measurement error of this method does not exceed 2.14%, exhibiting high
accuracy in complex real-world environments and providing a novel research direction for
machine-vision-based cattle body dimension measurement.

Table 6. Research on image-based measurement of livestock body dimensions.

Acquisition
Method

Collecting
Device

Collecting
Data Object Position Technical

Method Research Results Time Literature

SP

2RC 2D image Cows BL, BH Image processing The relative errors are
2.28% and 0.06%. 2020 Shi [52]

2RC 2D image Cows BL, BH,
BW Image processing The average error is less

than 1.21%. 2020 Zhang [54]

2RC 2D image Cows BL, BH Deep learning
Image processing

The average relative error
of on-site system

validation for a certain
pasture is less than 6.85%.

2020 Li [61]

2RC
2D image

Depth
image

Pigs BL, BH,
etc. Image processing

The average relative error
within the normal

bending range of a pig’s
body is less than 2.93%.

2021 Xu [62]

2RC 2D image Cows BL, CD,
etc.

Image processing
Data mining

The average error is
within 4.91%. 2021 Zhang [56]

DC 2D image Cows BL, BH Deep learning
Image processing

The average relative error
is within 8.36%. 2021 Zhao [55]

DC
2D image

Depth
image

Cows BL, BH,
etc.

Image processing The average relative error
is within 2.14%. 2022 Zhao [60]

DC Depth
image Cows BL, BH Deep learning

Image processing
The average relative error

is within 3.3%. 2022 Zhao [63]

CA 2RC 2D image Cows BL, BH,
BW

Machine vision
Image processing

The average relative error
is within 3.73%. 2020 Hu [53]

SF

DC Depth
image Cows CW, etc. Deep learning

Image processing
The average absolute

percentage error is 3.13%. 2021 Kamchen
[21]

DC Depth
image Pigs BL, BH,

BW, etc.
Deep learning

Image processing
The maximum root mean

square error is 1.79 cm. 2023 Zhao [58]

DC Depth
image Cows BL, BH,

AG, etc. Image processing The average absolute
error is within 2.73 cm. 2022 Ye [20]

DC Depth
image Cows BL, AG,

etc. Image processing The average relative error
is within 3.3%. 2022 Chu [57]

The aforementioned developments represent recent advancements in image-based
livestock body measurement. While image processing algorithms currently exhibit fast
computational speeds, there are still limitations in terms of their accuracy and the coverage
of the body dimension measurement areas. With the ongoing development of depth imag-
ing, it is anticipated that these limitations will be addressed in the future. In conclusion, the
technology in this field is gradually maturing and holds substantial commercial potential.

4.3. Body Dimension Measurement of Livestock Using 3D Point Cloud Sensing Data

With the advancement of technology, laser scanners and consumer-grade depth cam-
eras are continually evolving and improving. Three-dimensional information acquisition
techniques based on computer vision sensing theory are gradually becoming the main-
stream in this field [64], Many researchers have applied three-dimensional point cloud
technology to the field of livestock husbandry for measuring livestock body dimensions.
Table 7 provides a summary of recent and noteworthy research outcomes in the realm of
livestock body measurement based on three-dimensional point clouds.
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4.3.1. Body Dimension Measurement of Livestock Using Geometric
Segmentation Algorithms

In the initial stages of using three-dimensional point clouds for livestock body mea-
surement, many approaches were developed based on point cloud segmentation algorithms.
Ma et al. (2020) [65] proposed an improved region growing method for segmenting sheep
point clouds and then performing body measurement. This method achieved a maximum
relative error of 2.36%, indicating a high measurement accuracy. However, the method
relies on manually selecting measurement points during the measurement process, which
introduces issues such as inaccurate point selection, slow measurement times, and cum-
bersome operations. Zhang et al. (2023) [35] also utilized point cloud segmentation to
obtain better cattle body outlines for subsequent body dimension measurement. While
this method is straightforward, its limitation lies in the fact that only one side of the cattle
body is captured in the acquired point cloud data. Li et al. (2022) [66] developed a fully
automated method for measuring beef cattle’s body dimensions. This approach not only
achieved a high accuracy and speed in measurement but also covered a comprehensive set
of measurement locations, making it a practical solution for cattle body measurement with
significant commercial potential. However, when measuring the same livestock in different
poses, noticeable errors were observed in the results.

4.3.2. Body Dimension Measurement of Livestock Using Deep Learning
Segmentation Algorithms

In recent years, with the rapid development of deep learning, there have been signif-
icant advancements in the deep learning techniques applied to three-dimensional point
clouds [67]. Huang et al. (2019) [68] proposed a method for measuring the body dimen-
sions of live cattle using deep learning. This method achieved a high accuracy with its
errors within 2.36%, which generally meets the practical requirements. However, it is only
suitable for cattle breeds with short to medium hair; for other cattle breeds, the measure-
ment errors are significantly higher, making it unsuitable for commercial applications. Hu
et al. (2023) [69] improved the PointNet++ model and divided entire pig point clouds
into various parts, such as the head, ears, torso, limbs, and tail. They then used the point
clouds from the different parts to locate and calculate key measurement points, effectively
eliminating the interference caused by the other parts of the point cloud. This approach
effectively addresses the issue of interference between different body parts due to pigs’
movement or other behaviors, which can affect the accuracy of measurements in areas
such as height, chest circumference, and hip circumference. This method provides a more
accurate measurement of pigs’ body dimensions in different poses and offers a promising
approach to incorporating deep learning with three-dimensional point clouds into the field
of livestock farming.

4.3.3. Body Dimension Measurement of Livestock Using 2D and 3D Fusion Methods

In the present context, due to the intricate rearing environments of livestock farms,
directly acquiring three-dimensional point clouds of livestock is not straightforward. Some
researchers opt to initially capture two-dimensional images using regular RGB cameras
and then reconstruct these multiple images into three-dimensional point clouds. For
instance, Shi et al. (2022) [22] employ unmanned aerial vehicles to capture images of
cattle bodies, followed by three-dimensional reconstruction. Subsequently, based on the
reconstructed cattle point clouds, they performed body dimension measurements. This
method primarily suits large-scale and low-density farming environments. Simultaneously,
certain researchers consider utilizing images as an auxiliary during the process of three-
dimensional point-cloud-based body dimension measurements. Du et al. (2022) [70]
propose a method that combines two-dimensional images with three-dimensional point
clouds for livestock body dimension measurements. This approach not only enables
measurements of more anatomical parts but also yields more accurate results, extending its
applicability across a broader range.



Sensors 2024, 24, 1504 20 of 24

Currently, although three-dimensional point cloud technology is rapidly advancing
and being integrated into livestock body dimension measurements, there is ongoing re-
finement. Numerous distinguished researchers have made substantial contributions to
its development. However, challenges remain in accurately measuring livestock body
dimensions across different postures. Yin et al. (2022) [71] introduce a pig posture classifi-
cation algorithm and use regression models to adjust the measurements in non-standard
postures, thereby enhancing the measurement precision. Li et al. (2023) [72] devise a Pose
Measurement Adjustment (PMA) model for calibrating various poses of cattle, predicting
the calculation errors under different postures, and significantly reducing measurement
result discrepancies.

Table 7. Research on measurement of livestock body dimensions based on 3D point cloud.

Acquisition
Method

Collecting
Device

Collecting
Data Object Position Technical

Method Research Results Time Literature

SP

DC 3D point
cloud Cows BL, BH,

AG, etc.
3D Visual

Technology

The maximum error is
9.36%, and the minimum

error is 1.10%
2023 Zhang [35]

DC 3D point
cloud Sheep BL, BH,

CD, etc.
3D Visual

Technology
The maximum relative

error is 2.36% 2020 Ma [65]

2RC 2D image Cows BL, BH,
CG

Image Processing
3D Visual

Technology

The average relative
errors are 3.87%, 4.16%,
and 5.06%, respectively

2022 Shi [22]

2RC 2D image Cows BL, CG,
CW, etc.

Image Processing
3D Visual

Technology

The average relative error
is less than 4.67% 2022 Yang [10]

2RC 2D image Cows BL, BH,
CG

Image Processing
3D Visual

Technology

The average errors are
3.34%, 3.74%, and 4.73%,

respectively
2023 Chen [73]

CA

DC

Digital
image

3D point
cloud

Pigs
Cows

BL, BH,
BW, CW,

etc.

Image Processing
3D Visual

Technology

Reduce the average
absolute percentage error

to below 10%
2022 Du [70]

DC 3D point
cloud Pigs

BL, BH,
BW, AG,

etc.

3D Visual
Technology

The average relative error
is less than 4.67% 2020 Shi [32]

DC 3D point
cloud Pigs

BL, BH,
BW, AG,

etc.

Deep Learning
3D Visual

Technology

The average relative error
is less than 5.26% 2023 Hu [69]

DC 3D point
cloud Cows

BL, BH,
BW, CG,

etc.

3D Visual
Technology

The average relative error
is less than 2.8% 2022 Li [66]

DC 3D point
cloud

Pigs,
cows

BL, CD,
CW, etc.

3D Visual
Technology

For cattle body
measurement, the overall

estimated accuracy is
91.95%, while in pig body

measurement, the
accuracy is 87.63%

2023 Luo [7]

In summary, compared to measurement based on image sensing data, livestock body
dimension measurements based on three-dimensional point cloud sensing data generally
yield superior results and can encompass more body parts. However, due to the substantial
data volume of point clouds and lengthy computation times, real-time commercial collec-
tion demands high-performance hardware. With researchers continually innovating and
enhancing the algorithms, the rapid development of three-dimensional point cloud-based
body dimension measurement technology is underway, gradually addressing challenges
related to the processing times, costs, and commercial viability.
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5. Discussion
5.1. The Current Challenges

Currently, despite significant innovations and continuous improvements by researchers
in the field of the measurement of livestock body dimensions both domestically and in-
ternationally, yielding a substantial body of research outcomes, there still exist some
key challenges:

In the livestock data collection process, the sensing equipment costs are generally high,
restricting widespread adoption and application of the technology. The acquired point
cloud data have a large volume, leading to long algorithm computation times and a low
processing efficiency, which is unfavorable for automation. Moreover, the current technolo-
gies often have specific requirements for measurement scenes, limiting their applicability
to various real-world scenarios.

During the measurement process, considerations for sensing equipment safety are
typically necessary, leading to the addition of barriers and other protective measures around
the measurement devices and personnel. However, determining the optimal placement to
minimize the impact on the data collection remains a critical challenge. Additionally, the
current technologies often involve measuring livestock individually, hindering scalability
and efficiency in mass production. Furthermore, the accuracy of measurements in areas
such as chest girth and abdominal girth is often suboptimal. Presently, most of the research
has not achieved full automation and still requires manual assistance.

5.2. Outlook for the Future

Based on the challenges and issues identified in automated livestock body dimension
measurement technology, the future key areas of research and development trends are
as follows:

In the process of point cloud acquisition, further efforts should be directed at reducing
costs. This can be achieved by optimizing body dimension measurement algorithms to
decrease sensing device expenses, thereby facilitating better commercialization. Addition-
ally, depth cameras can directly reduce the amount of point cloud data, simplify the point
clouds, and retain the inherent features of the livestock data. Given the rapid development
of the livestock industry, various ranch environments possess unique characteristics. It is
hoped that future research methods can adapt to diverse livestock settings.

During the process of livestock body dimension measurement, the future research
can involve collaborating with experts in livestock husbandry. By considering factors such
as livestock breeds and behaviors, specialized measurement devices can be developed.
These devices would safeguard equipment and personnel while minimizing any impact
on the livestock. Efforts can also focus on investigating methods for batch measurement
of livestock body dimensions. This approach would enhance scalability and efficiency,
thus contributing to increased overall effectiveness. Furthermore, researchers can explore
the integration of both livestock images and point cloud sensing data. By harnessing the
complementary strengths of these data sources, the accuracy of livestock body dimension
measurements can be improved. In the current landscape of advancing AI technology,
the incorporation of AI-powered robots into the process of livestock body dimension
measurement can be considered. This integration aims to enhance overall livestock body
dimension measurement, ultimately advancing the commercialization of this technology.

6. Conclusions

This article primarily introduces the livestock body dimension measurement technol-
ogy from three aspects: livestock sensing data acquisition, livestock sensing data processing,
and livestock sensing data analysis. A comparison is made among three types of depth
cameras—structured-light, binocular vision, and time-of-flight—and conventional RGB
cameras regarding their advantages, disadvantages, and suitable scenarios for livestock
data acquisition. Currently, livestock data collection employs three main methods: channel
archway style, suspended fixed style and simple portable style. Subsequently, the handling
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of livestock data for both image and point cloud sensing data is discussed. A comparative
analysis reveals that both sensing data acquisition and processing significantly influence
the results of livestock body dimension analysis measurements. Finally, we summarize
the research on livestock body dimension measurements in both the image and 3D point
cloud domains, while also contrasting and analyzing the current achievements in this field.
The challenges faced in current livestock body dimension sensing technology, such as low
efficiency and high costs, are highlighted. Furthermore, potential future development
trends in this field are proposed.
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