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Abstract: Large language models have found utility in the domain of robot task planning and
task decomposition. Nevertheless, the direct application of these models for instructing robots
in task execution is not without its challenges. Limitations arise in handling more intricate tasks,
encountering difficulties in effective interaction with the environment, and facing constraints in the
practical executability of machine control instructions directly generated by such models. In response
to these challenges, this research advocates for the implementation of a multi-layer large language
model to augment a robot’s proficiency in handling complex tasks. The proposed model facilitates a
meticulous layer-by-layer decomposition of tasks through the integration of multiple large language
models, with the overarching goal of enhancing the accuracy of task planning. Within the task
decomposition process, a visual language model is introduced as a sensor for environment perception.
The outcomes of this perception process are subsequently assimilated into the large language model,
thereby amalgamating the task objectives with environmental information. This integration, in
turn, results in the generation of robot motion planning tailored to the specific characteristics of
the current environment. Furthermore, to enhance the executability of task planning outputs from
the large language model, a semantic alignment method is introduced. This method aligns task
planning descriptions with the functional requirements of robot motion, thereby refining the overall
compatibility and coherence of the generated instructions. To validate the efficacy of the proposed
approach, an experimental platform is established utilizing an intelligent unmanned vehicle. This
platform serves as a means to empirically verify the proficiency of the multi-layer large language
model in addressing the intricate challenges associated with both robot task planning and execution.

Keywords: robots; large language models; natural language; semantic alignment method

1. Introduction

Grounded in experiential learning and knowledge accumulation, humans demon-
strate a remarkable ability to comprehend intricate tasks through simple communication.
Large language models (LLMs), when subjected to extensive and diverse datasets during
training, possess the capability to emulate human-like language understanding and the
discernment of human intentions. Exploiting the inherent augmentation capability within
large language models enables the decomposition of tasks into multiple subtasks of reduced
complexity [1]. This distinctive feature can be harnessed for task planning within robotic
systems, ultimately leading to more efficient and seamless human–robot interactions.

The current state of research on robotic task planning, grounded in large language
models, remains at its nascent stage. Prevailing studies have predominantly concentrated
on tasks characterized by low complexity, such as robotic arm trajectory planning and
robotic object handling. While these investigations have contributed significantly to es-
tablishing a theoretical framework for large-model-based robot control, they fall short
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in addressing tasks of elevated complexity. Illustratively, consider the task wherein Bob
requests a drink of water from Sam. Sam translates this request into a series of small tasks,
encompassing finding a cup, locating a water source, filling the cup, returning to Bob’s
location, and passing him the cup. The significance of hydration is often underestimated,
and the subdivision of such high-complexity tasks into smaller, manageable components is
pivotal. Each subtask should be designed to be straightforward, executed through muscle
memory. However, prevailing research has predominantly fixated on smaller and more
basic tasks. To navigate the intricacies of more complex tasks [2], the employment of a
large language model for robotic task planning on a macro level becomes imperative. Fur-
thermore, the expansion into more intricate tasks necessitates the robot’s ability to adeptly
handle and integrate complex environmental information into the task planning process.

In tackling this challenge, our investigation reveals that the direct generation of a robot
control code using a large language model (LLM) is impractical, leading to considerable
latency and errors. A comprehensive examination of cognitive processes underscores
that the precision of outcomes produced by a step-by-step model exceeds that of directly
generated results [3]. Consequently, it is advisable for the large language model to transition
to a step-by-step mode for optimizing the effectiveness of robot motion planning.

Recognizing the superior aptitude of large language models (LLMs) in understanding
semantic-level information and delivering accurate feedback, this paper introduces a
multi-layer task decomposition architecture employing large language models. The initial
step involves breaking down a complex task into a sequence of low-complexity tasks,
resembling a common-sense-like progression, aimed at mitigating the overall complexity
and execution difficulty of the task [4]. However, these task sequences remain impractical
for direct execution by the robot due to the absence of essential environmental information.

To address this limitation, a visual language model is constructed to sense the physical
attributes of environmental information. This model interacts with the information through
the large language model, thereby acquiring localized environmental information [5]. Sub-
sequently, a subsequent round of task decomposition ensues, generating fine-grained tasks
by amalgamating the acquired environment information with low-complexity tasks. To en-
able effective robot control, alignment between the decomposed tasks and robot commands
is achieved at the semantic level. This alignment ensures that the output of the LLM corre-
sponds seamlessly with the semantic requirements of the robot task commands, achieved
through feature vector alignment [6]. Consequently, the large language model can output
tasks at the semantic level that precisely control the robot to execute the corresponding
actions. The methodology outlined in Figure 1 provides a comprehensive overview of the
proposed approach in this paper.

We devised a two-dimensional computable space through the implementation of the
“heat map algorithm”. This methodology involves the mapping of visual information onto
a 2D computable space, offering insights into the relative positions of objects. The resultant
mapping guides the robot’s movements by generating dense, point-like trajectories within
the heat map. The real-time generation of this image-level mapping allows for dynamic
trajectory adjustments in response to changes in the environment.

It is pertinent to highlight that our approach incorporates the sensing of environmental
information through a visual language model, which subsequently feeds this information
into a large language model [7]. This collaborative interaction facilitates the generation
of environment-specific policies by the large language model, diverging from the reliance
on pre-trained policies derived from extensive robot data. As a result, our methodology
achieves zero-sample robot control within an open instruction set. The integration of the
heat map algorithm into a planning framework, encompassing multiple large language
models and visual language models, empowers the robot to comprehend abstract semantic
information [8]. This integration not only facilitates accurate task execution but also enables
free-form natural language control of robots for tasks of heightened complexity. Concur-
rently, we substantiate the efficacy of our approach in natural language understanding and
the guidance of robot behavior.
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Our contributions can be succinctly summarized as follows:
(1) Multi-Layer Task Decomposition: Our architecture uses large language models to

guide robot behaviors through natural language, enhancing control in complex tasks.
(2) Integration of Environmental Perception: We employ a visual language model to

input environmental information into the large language model, enabling task customization.
(3) Semantic Alignment for Task Control: Using semantic similarity methods, we align

natural language descriptions with robot control instructions.
(4) Heat Map Navigation Algorithm: Our novel algorithm generates motion trajecto-

ries in a 2D space, guiding realistic robot behaviors.
The remainder of the paper is structured as follows: Section 2 provides an overview of

related work; Section 3 delineates the architectural design and methodological principles;
and Section 4 expounds upon the experimental methodology and presents an analysis of
the results, while Sections 5 and 6 delve into discussions and summarize the methodology
elucidated in this paper.

2. Related Work

Natural Language Interaction: Natural languages have been extensively researched for
instruction extraction and robot control, where the language is able to make constraints and
give behavioral specifications for robot behavior. Tellex et al. [9] described core aspects of
language use in robots, including understanding natural language requests, using language
to drive learning about the physical world, and engaging in collaborative dialogue with
humans. These linguistic specifications can be used to reason about intermediate processes
in natural language [10]. Micheli et al. [11] introduced a two-stage process and enhanced
the performance of model training by interacting with the environment. Previous work
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has used classical methods for task sequence extraction, such as lexical analysis and formal
logic to disassemble tasks. Thomason et al. [12] designed a mobile robotic dialogue agent
that understands human commands through semantic analysis. More often than not, the
focus of existing research has shifted from online to offline control of robot motion, with
the help of local arithmetic enhancements, capable of executing local end-to-end behavioral
patterns [13,14]. Brown et al. [15] trained GPT-3 and demonstrated that large language
models can greatly improve the correctness of zero-sample recognition. A great deal of
work has revolved around giving robot data the form of building robot datasets through
natural language annotation. Model learning as we know it with imitation learning to
reinforcement learning, all of these methods require a large amount of data in the form of
natural language to generate a model with the robot’s data, and the control of the robot
can only be realized by interacting with a large amount of data Jiang et al. [16] argued
that the combinatorial nature of language is crucial for learning different sub-skills and
systematically generalizing them to new ones. The model of controlling a predictor for
behavioral interaction with a robot through linguistic commands is closer to our ideas.
Sharma et al. [17] optimized the predictor’s model through supervised learning while
generating collision-free trajectories in planar computable space. Huang et al. [18] used
the code generation and language interaction capabilities of a pre-trained large language
model to introduce the knowledge of the large language model into a three-dimensional
computational space to instruct a machine to perform precision actions. In contrast, our
work focuses on using the semantic understanding capability of the large language model
to align instructions at the semantic level, solving the problem of difficulty in matching the
task output from the large language model with the robot control instructions.

Language Models for Robotics: The use of large amounts of robotic data to train
language models for solving real-world problems in the physical world is a popular field. A
large amount of work has focused on the ability of models to understand natural language
and interact with it. Zeng et al. [19] showed that such pre-trained micromodels have generic
knowledge and that such models are capable of storing different forms of knowledge from
a variety of domains. As a carrier of generic knowledge, the large language model needs
to be combined with local scenario information to generate specialized knowledge, and
a large amount of work has focused on combining environmental information with the
macrolanguage model to enable the model to interact with the environment. Liang et al. [20]
demonstrated that the large language model is capable of generating policy code from
document strings, and they proposed a hierarchical code generation approach to enable the
generation of complex code. Huang et al. [21] implemented robot behaviors by constructing
action sequences using the general common sense of the large language model. After
obtaining the environment information, the large language model is able to understand
the environment information, but still lacks the ability to act, and executing the ability to
act requires the large language model to invoke robot motion control commands, which
often requires the provision of pre-generated libraries of action commands. Wu et al. [22]
found that the large language model has excellent summarization and inductive capabilities
and that the large language model summarizes user preferences, generates corresponding
motion strategies, and invokes the mechanical base and robotic arm to perform the task
of item summarization. In contrast, our focus is on improving the correctness of the
large language model in controlling the robot’s behavior so that the robot can understand
complex semantic information and perform more complex tasks.

3. Method

First, we constructed a multi-layer large language model task decomposition archi-
tecture, describing in detail the design details and working principles of the architecture
(Section 3.1). We then intervened in the process of fine-grained task decomposition by
means of a semantic similarity approach to align the sequence of subtasks of the task
decomposition with the atomic tasks we set out to perform (Section 3.2). We then demon-
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strated the generation of trajectories in 2D space to guide realistic robot behavior by sensing
environmental information through visual and linguistic models (Section 3.3).

3.1. Multi-Layer Large Language Model Architecture for Task Decomposition

In our architectural framework, we incorporated two large language models, as
depicted in Figure 2. The first large language model is responsible for comprehending
human instructions and subsequently generating an executable coarse-grained plan for the
robot. This process involves task decomposition at the level of common sense. However, it
is essential to note that the task sequences produced by the first large language model may
not precisely reflect the robot’s behaviors [23]. This discrepancy arises from the inherent
limitation of common sense, as it lacks environmental information. Consequently, the
task sequences resulting from coarse-grained task decomposition exhibit a deficiency in
incorporating the capability for interaction with the physical world environment.
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To enhance the adaptability of the generalized knowledge within the large language
model across diverse environments, the outcomes of the coarse-grained task decomposition
were input into the subsequent functional module. This functional module comprises a
large language model and a visual model. The visual model is equipped with an extensive
repository of pre-trained a priori knowledge, enabling it to discern the categories of items
within an image and thereby acquire information about the items in the environment [24].
It is worth mentioning that both LLMs used in this paper were based on ChatGPT 3.5.
Additionally, the VLM, which interacts with the environment, is the OWL-ViT model
developed by Google and released as open source. We utilized the APIs of ChatGPT 3.5
and OWL-ViT separately to facilitate information exchange among the various models. The
large language model interacts with the visual model to extract environmental information
perceived by the latter. Subsequently, it engages in a refined task decomposition process,
incorporating the environment information. This iterative decomposition yields more
precise fine-grained tasks, aligning with the specific nuances of the environment [25]. The
generation of a sequence of fine-grained tasks is achieved by organizing these tasks based
on the general knowledge embedded in the large language model.

While these tasks provide a precise linguistic description of the robot’s motion, they
encounter a challenge in controlling the robot’s movement due to a misalignment issue
between the generated task sequences and the robot’s motion instructions. To facilitate
the invocation of robot motion by the large language model, we employed a semantic
similarity evaluation method to align task sequences with instruction sequences at the
vector level. In this process, the text is first vectorized to represent tasks and instructions
in a numerical format [26]. Subsequently, vector normalization is applied to mitigate the
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influence of text length on the vectors. Finally, at the vector level, tasks and instructions are
aligned, ensuring semantic consistency. This alignment process allowed the fine-grained
tasks generated by the large language model to be effectively mapped to the robot control
instructions, overcoming the challenge of controlling the robot’s motion.

Our approach involved transmitting the video captured by the camera to the visual
model for processing, enabling the robot to execute appropriate behaviors upon receiving
a command, such as navigating to single or multiple target locations [27]. Based on the
recognition results derived from the visual information, a two-dimensional planar heat
map is generated. In this heat map, the target location is characterized by a high heat value,
while the remaining objects exhibited lower heat values. These heat values diverged toward
the periphery, forming a comprehensive heat map. Specifically, in this experiment, the robot
is represented in the heat map as solid red and blue blocks. Areas with high heat values
are depicted as blocks with a red gradient, while non-target locations are represented by
blocks with a blue gradient. Utilizing the principles of a greedy algorithm, we can calculate
a trajectory to the target location with the highest heat value. The proposed thermal map is
designed for real-time updating, ensuring prompt responsiveness to changes in environ-
mental information [28]. Consequently, the navigation method based on the thermal map
can quickly adapt and generate corresponding navigation instructions as the environmental
context evolves.

3.2. Semantic Similarity-Based Alignment of Task Descriptions with Robot Control Instructions

Controlling robot motion through natural language strategies poses a significant
challenge due to potential discrepancies between the task planning output from the large
language model and the corresponding motion control functions of the robot. The content
of the task planning output by the large language model exhibits variations in specific
descriptions, introducing ambiguity in the understanding of the specific actions the robot
needs to perform. To address this challenge, we employed semantic similarity, emphasizing
semantic alignment rather than textual similarity [29], to correlate the task planning with
the robot motion control instructions. Recognizing that some fine-grained tasks may
require further decomposition to reach a machine-executable level, we proposed a cyclic
semantic alignment method. This method aims to iteratively refine the alignment process,
enhancing the correspondence between the nuanced task descriptions and the robot’s
motion control instructions.

In executable task planning, the task description output from the large language model
and the robot control instruction are essentially two semantically similar texts, and we
usually used cosine similarity to judge when measuring the similarity of the two texts. The
semantic similarity can be computed by first embedding the text in the feature space, and
then performing the similarity computation in the feature space [30]. Specifically, this paper
used cosine similarity to compute semantic similarity.

We vectorized the text, assuming that the task output from the large language model
is text A and the robot control command is text B. We first represented them as vectors
vA and vB, which are vectorized using the word embedding method, and these vectors
represent the position of the text in the vector space.

vA = (wA1, wA2, . . . , wAn)
vB = (wB1, wB2, . . . , wBm)

(1)

where n and m denote the size of the vocabulary in texts A and B, respectively, and wAi
and wBi are the corresponding vocabulary weights.

In order to remove the effect of text length, the text vector can be normalized. The
normalized vectors are denoted as uA and uB:

uA = vA
‖vA‖

uB = vB
‖vB‖

(2)
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In Equation (2), uA and uB represent the normalized text vectors, while ‖ vA ‖ and
‖ vB ‖ represent the norms of vectors vA and vB, respectively. The normalization operation
essentially involves dividing each element in the vector by the vector’s norm.

The effect of doing this is that, regardless of the original length of the text vector, the
normalized text vectors all have unit lengths. As a result, when computing distances or
comparing similarities between text vectors, they are not affected by the length of the text,
thus allowing for better comparison of text similarities.

Cosine similarity is measured by calculating the dot product of two vectors and
dividing by the product of the norms of the two vectors. The cosine similarity formula is
as follows:

Similarity(uA, uB) =
uA·uB

‖ uA ‖ · ‖ uB ‖
(3)

Similarity(uA, uB) =

n
∑

i=1
wAi·wBi√

∑n
i=1 w2

Ai·
√

∑m
i=1 w2

Bi

(4)

With text similarity matching, we were able to perform alignment between tasks and
instructions. The detailed procedure is in Algorithm 1.

In the process of generating task plans, one situation that may occur is that the tasks
generated by the large language model in conjunction with the environmental information
are incorrect, and this error results in the semantics of the tasks not being able to be aligned
with the semantics of the commands, leading to the inability to invoke the robot control
commands [31]. For text that cannot be aligned at the semantic level, we fed the task output
from the large language model back into the model for a new round of decomposition to
re-generate the task sequence, and this process continued until the latest coarse-grained
task is fed into the model [32].

Algorithm 1: Semantic Information Vector Space Alignment Methods
Cosine similarity vector alignment (outline)

1. Input: text message
2. quantitative:

3.
vA = (wA1, wA2, . . . , wAn)
vB = (wB1, wB2, . . . , wBm)

//vectorization and location information

4. normalization:

5.
uA = vA

‖vA‖
uB = vB

‖vB‖
//vector normalization

6. cosine similarity:
7. Similarity(uA, uB) =

uA·uB
‖uA‖·‖uB‖ //Text Similarity Determination

8. Similarity(uA, uB) =
∑n

i=1 wAi·wBi√
∑n

i=1 w2
Ai·
√

∑m
i=1 w2

Bi
//Alignment of text A and text B

9. Determining text similarity: (−1 to 1) The closer to 1 the vectors are, the more similar they are.

3.3. Robot Heatmap Navigation Algorithm for Open Environment Awareness

Based on Sections 3.1 and 3.2, we modeled the behavior of a robot controlled by
an open natural language `, e.g., by having the robot go first to location A and then to
location B. However, generating a robot trajectory based on ` is very difficult because the
information in ` is too granular and lacks the detailed process of the task and, at the same
time, lacks information about the environment [32]. Considering that the environment in
which the robot works is not static, it is necessary to allow the robot to consider real-time
environmental information when performing tasks. Assuming that the large language
model decomposes ` into several subtasks (`1, `2, . . . , `n), at this stage of task generation,
we concentrated on the real-time environment to create detailed tasks `i to generate motion
control commands that the robot can execute [33]. The above approach decomposes
complex tasks into subtasks of lower complexity and senses the environment for each of
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the low-complexity tasks. The core problem of this subsection is how to make full use of
the environment information to generate the motion trajectory τr

i for the robot for each
task `i. In this paper, the real robots that execute the motion trajectory τr

i are multiple
McNamee-wheeled unmanned vehicles, and with reference to the work of voxposer [18],
we combined the environment information with the trajectory generation problem and
summarized the problem as follows:

minτr
i
{Ftask(Ti, `i) +Fcontrol(τ

r
i )} subject to C(Ti) (5)

where Ti is an environmental sensing information, τr
i ⊆ Ti is the trajectory of the unmanned

cart in the dynamic environment, C(Ti) denotes the constraints of the unmanned cart in
the dynamic environment, F task(Ti, `i) denotes the completion of the corresponding task
within the confines of the dynamic environment, and F control

(
τr

i
)

specifies the control cost
desired by the shortest path or the least task execution time.

It is very difficult to compute F task(Ti, `i) based on open natural language, on the
one hand because of the problem of difficult alignment between the natural language and
the robot task `i, and on the other hand, because of the lack of dynamic environment
information and real-time robot position. In this regard, we provided a 2D computable
space describing the relative position information of objects in a dynamic environment
V ∈ Rw×h. We called it a calorific heatmap. It reflects objects in the environment that we
are interested in or not interested in [34]; for objects of interest, we defined a high heat
value for them, and objects that are not of interest are reflected in the heat map as low
heat values. It directs the movement of objects with high heat values in the environment,
creating trajectory curves between the robot and the objects of interest. The heat map
assigns heat values to various objects in the surroundings. Using sub-tasks defined by the
large language model, the task objective is labeled with a high heat value, attracting the
robot toward the target area. Objects not of interest have low heat values on the heat map,
repelling the robot and guiding it away from non-target areas.

We denoted the high calorific heat target as e and the robot trajectory as τe. For the
subtask `i in F task(Ti, `i), we can numericalize the task in the two-dimensional space
V ∈ Rw×h by means of a calorific heatmap. The corresponding task F task in the environ-
ment can be approximated by the continuous accumulation of e in the two-dimensional
space V ∈ Rw×h. The formula is as follows:

F task = −∑|τe
i |

j=1 V
(

pe
j

)
, where pe

j ∈ N2 is e discrete position (x, y) in step j. (6)

Large language models (LLMs) exhibit the capability to adapt their output in response
to contextual information. We can influence the LLM to generate content aligning with
our preferences through a prompting approach. In this study, prompt engineering is
implemented through question-and-answer pairs, comprising questions and results, along
with related objects and corresponding questions [35]. Illustrated in Figure 3, for the
robot’s shortest path-planning problem, we integrated information about objects in the
environment. Using a second LLM, we decomposed the problem into a fine-grained
task sequence. The resulting task sequences incorporated environmental information,
empowering the robot to execute tasks in a real-world setting.
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The prompt-engineered large language model is capable of recognizing objects of
interest and understanding the relative spatial information in order to generate motion
strategies [36]. Specifically, it can (1) perceive the environmental information by calling
the visual model Application Programming Interface (API) to obtain the relative position
information of the scene objects; (2) generate the task for the specialized scene based on
the perceived environmental information combined with the generic knowledge of the
first large language model; and (3) input the tasks into the heat map module through code
form to generate the robot motion trajectory τe corresponding to each step of the task
`i. The heat map Vt

i = heatmap
(
ot, `i

)
can be further obtained, where ot is the camera

observation at the moment t and `i is the task being executed.
In order to be able to generate a smooth trajectory for the robot to travel to the target

area, we represented each step of the task as a mathematical problem F task(Ti, `i). The
motion trajectory can now be planned through the problem defined in Equation (1). The
heat map reveals item properties and their positions in the scene. Objects of interest have
high heat values, drawing the robot toward them, while non-target items are seen as
obstacles with low heat values, pushing the robot away. All positions in the heat map
have computable heat values. Our goal is to create a trajectory with the highest heat value,
capable of reaching specified subtask locations. We defined the path’s “heat value” as the
sum of heat values of all nodes on the path.

R(P) =
k

∑
i=1

H(vi) (7)

where k denotes the path length and H(v) denotes the heat value of node v. We wished to
find a path P that maximises the value of R(P). A greedy idea was used to select the next
node vi in each step such that H(vi) is maximal, which can be expressed as:

vi = argmaxv∈N(vi−1)
H(v) (8)

where N(vi−1) denotes the set of neighbouring nodes of node vi−1. In this way, we can
find a path P = {v1, v2, . . . , vk}, where v1 is the starting point, and vi chosen at each
step makes H(vi) maximal until the node with the highest calorific value is reached. We
provided dense rewards in the space to generate a planning path. During robot operation,
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because 2D visual information does not contain complete spatial information, it provides
a positional relationship between the robot and the environment relative to each other.
The robot continuously approximates our generated motion trajectory through this real-
time feedback of the heat map [37]. Specifically, the process of updating the environment
information in real time provides continuous feedback to control the robot motion nodes
so that the robot’s motion profile continuously approaches our generated path trajectory,
and when the robot’s behavior is shifted, it is possible to replan the real robot motion
trajectory through this feedback. Please refer to Algorithm 2 for more specific details about
the algorithm.

Algorithm 2: Dynamic navigation algorithms for calorific heat maps
Environmental Interaction and Mathematical Representation (outline)

1. Input: natural language representation task `
2. Breakdown of tasks:
3. (`1, `2, . . . , `n)
4. The problem is reduced to the optimization equation
5. minτr

i

{
F task(Ti, `i) +F control

(
τr

i
)}

subject to C(Ti)

6. Constructing a mathematical representation of F task

7. F task = −∑
|τe

i |
j=1 V

(
pe

j

)
, where pe

j ∈ N2

8. Construct a two-dimensional space: V ∈ Rw×h

9. Constructing calorific heat maps:
10. Vt

i = heatmap
(
ot, `i

)
11. Define a high calorific value path:
12. R(P) = ∑k

i=1 H(vi)//We define the heat value of a path as the sum of the heat values of all
nodes on the path.
13. Path generation:
14. vi = argmaxv∈N(vi−1)H(v)//N(vi−1) denotes the set of neighbouring nodes of node vi−1
15. Output: P = {v1, v2, . . . , vk} //Path with the highest calorific value

4. Experiments and Analyses

We first discuss the design and execution of the holistic experiment and implement the
holistic experiment in a real-world environment (Section 4.1). In order to make the holistic
task planning more interpretable, we added an intermediate process of task planning, which
allows humans to intervene in the intermediate process if the results do not meet human
expectations (Section 4.2). We conducted semantic similarity-based feedback experiments
and discussed the optimal number of loops (Section 4.3). We presented some failed cases
from the experiment and conducted discussions and analyses on these cases (Section 4.4).

4.1. Experimental Design

In this experiment, we constructed a real-world experimental platform to support
the theory proposed in this paper, and the large language model and the visual model
were deployed in the server to extract the generic knowledge by calling API [38]. In this
experiment, we used three unmanned carts and a drone to achieve the motion control of
the robots through the Ros system. Specifically, the drone provides visual information; the
visual information is transmitted back to the server to perceive the environment informa-
tion through the visual model; and the large language model combines the environment
information with the generic knowledge to generate the robot motion scheme to cope with
the environment [39] and then generates the optimized trajectory through the heat map
algorithm to guide the robots to complete the corresponding tasks as shown in Figure 4.
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Figure 4. Overall structure of the experiment. In the figure we have used VLM to recognize real
images and determined three different categories of target objects, robots, and obstacles, and mapped
these categories of objects differently so that they are represented differently in the heat map.

In Figure 5, we present a detailed design of the experiment, illustrating the intermedi-
ate process from the task given in natural language to the generation of heat maps depicting
the movement trajectories of robotic; As depicted in Figure 5, the video is captured by the
camera mounted on the UAV, providing a global view. Extracting environment information
by intercepting images from the video allows us to discern details about the items in the
surroundings. The large-scale language model receives a natural language task from a
human and, in conjunction with the information extracted by the visual model, decom-
poses the task and collaboratively generates a sequence of subtasks [40]. This process
breaks down the complex task into steps executable by the robot and performs semantic
similarity matching in vector space to align with the robot instructions. Trajectories for
each task step are generated in a heat map, enabling the robot to approach the target using
relative position information provided by these trajectories. Continuous correction of offset
through visual information feedback ensures successful execution of the navigation task.
For clarity, we used color blocks to cover the unmanned vehicle throughout the experiment,
facilitating observation. In the task illustrated in Figure 5, the objective is for the vehicle
to initially reach the area where the yellow color block is located and subsequently reach
the area where the green color block is situated. To enhance visual representation of the
experimental flow, the vehicle is covered with red color blocks in this particular task.
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Figure 6 displays five tasks of varying difficulty levels designed by us. We described
these five tasks using natural language and employed the framework proposed in this
paper to enable the robot to accomplish navigation tasks. It is worth mentioning that all
five tasks are types of robot navigation tasks. We progressively increased the complexity of
navigation tasks from simple to complex. These tasks required the LLMs to understand
natural language and make accurate judgments. In the navigation tasks, we introduced
obstacle detection conditions and multi-robot multi-target navigation, covering various
difficulty levels of the experimental scenarios. We (1) had the robot arrive at two specified
target locations in succession; (2) had the robot arrive at three specified target locations in
succession; (3) planned the shortest path through the human-specified locations, focusing
on judging whether the strategy generated by the large language model is consistent with
the robot’s execution; (4) determined whether there is a human-specified marker in the
field and travelled to a specified location A if there is, and to a specified location B if
there is not; and (5) designed a task rich in complex semantic information that instructs
three unmanned vehicles to perform multi-robot, multi-objective navigation tasks that
incorporate and temporally sequence task judgment conditions. Specifically, unmanned
vehicle A and unmanned vehicle B each travel to a different human-specified location,
and unmanned vehicle C judges that vehicle A has arrived at the specified location before
starting to travel to a new location. It is worth noting that all of the above tasks can be
interacted with real robots using natural language, and dynamic feedback can be provided
in real time to reduce interference caused by changes in environmental information. We
successfully completed the above five experiments in a real environment, and the images
in Figure 6 were all captured during the actual experimental process. The experiments
show that the task decomposition of the large language model, with the addition of
environmental awareness and semantic alignment, can control the robots to perform tasks
of higher complexity.
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4.2. Intermediate Process of Task Planning

We used Figure 7 to visually illustrate the output formats of the two LLMs. This enables
controllability of each module’s output, allowing for manual intervention in a specific
module to generate results that align with our expectations. Introducing an intermediate
step of task planning can enhance the interpretability of the overall task planning process.
Simultaneously, this intermediate step opens up the opportunity for human intervention
in the task planning process, particularly when the generated results deviate from the
intended human task execution process [40]. Human intervention is facilitated across three
dimensions: coarse-grained task decomposition, fine-grained task decomposition, and
motion control instructions [41]. Foreseeably, by controlling the robot through a human-in-
the-loop model built upon the foundation laid in this paper, we can enhance the reliability
and safety of the robot’s control.
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Figure 7. Example of the intermediate process of task planning.

Figure 7 illustrates an example of the intermediate task planning process, wherein
the given problem involves selecting a robot to traverse all yellow objects. The task is
decomposed, and a detailed intermediate process is displayed. Initially, the first large lan-
guage model (LLM) conducts a coarse-grained decomposition of the problem, generating
a sequence of tasks devoid of environmental information. These tasks involve finding
the yellow objects and locating the robot to execute the tasks, followed by sequential
movements of the robots to the positions of the yellow objects. In this process, lacking
environmental information, these decomposed tasks are answered based on the informa-
tion contained in the question. The second LLM utilizes environmental information and
incorporates the fine-grained task breakdown from sequences produced by the first LLM.
This integration results in new task sequences enriched with scene information. It is evident
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that the LLM can generate more realistic task sequences by incorporating environmental
information. Subsequently, by aligning with corresponding motion control commands, a
motion trajectory is generated in the heat map to guide the robot in executing the task.

4.3. Feedback Experiments Based on Semantic Similarity

The output of semantically similar results by the large language model indicates its
ability to comprehend the problem and generate relatively accurate results, which are
already acceptable at the semantic level [42]. We facilitated the mapping of the results
generated by the large language model to robot control commands through vector align-
ment. It is noteworthy that when alignment is conducted at the semantic level, the large
language model is proficient in decomposing semantically correct tasks [43]. Consequently,
these tasks can be successfully mapped to corresponding motion commands through
semantic-level alignment.

We conducted a feedback experiment based on semantic similarity and explored the
optimal number of iterations. Throughout the experimentation process, we observed that
the results generated by the large language model are not consistently optimal. This incon-
sistency stems from the fact that the process of prompting the large language model does
not encompass all working conditions [44]. Consequently, when describing certain complex
tasks with detailed natural language, the large language model may face challenges in
understanding, leading to difficulties in comprehending intricate task nuances [45]. As a
result of the understanding deviation in the problem formulation process, the output results
of the large language model may occasionally deviate from our anticipated direction [46].

As shown in Figure 8, we provide feedback on the tasks that posed challenges in
aligning at the semantic level. Subsequently, we reintroduced the erroneous task sequences
into the second macro-language model for a new round of task decomposition. This
iterative process serves to semantically bias the macro-language model toward our cue
words by incorporating feedback information about the erroneous tasks [47]. Given that the
cue words encompass robot motion instructions, this bias encourages the macro-language
model to generate natural language that aligns with the correct instructions enriched
with semantic information. This approach enhances the likelihood of outputting correct
command results at the semantic level.
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To illustrate this process in detail, as shown in Figure 9, we present an example of
prompts for the second LLM. This segment indicates that when the LLM receives feedback
indicating semantic mismatch, the next output will prefer the format of prompt words we
designed. This pattern is advantageous for the LLM to generate outputs biased toward our
desired expectations.
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As indicated in Table 1, the feedback proves advantageous in improving the success
rate of task execution. By informing the large language model about the inaccuracies in task
decompositions through feedback, it effectively reduces information uncertainty and steers
the decomposition preference toward our cue words [48,49]. The experimental results reveal
that the correctness rate reaches 78% after the third feedback. From the fourth feedback
onwards, the increase in task success becomes slow. We considered three or four iterations
as the optimal number of feedback attempts, demonstrating high system efficiency.

Table 1. In the middle of the two steps of task decomposition and vector alignment, different
numbers of feedback attempts were set, and five tasks were performed to compare mandated
execution success rates.

Task Feedback 0 Feedback 1 Feedback 2 Feedback 3 Feedback 4 Feedback 5

Task 1: Travel to two target sites 4/10 7/10 8/10 9/10 10/10 10/10
Task 2: Travel to three target sites 3/10 6/10 8/10 8/10 8/10 8/10

Task 3: Planning the shortest route 3/10 6/10 7/10 8/10 8/10 8/10
Task 4: Self-determination of target location 4/10 5/10 7/10 7/10 7/10 7/10
Task 5: Multi-robot to multi-objective tasks 2/10 5/10 6/10 7/10 7/10 7/10

total 32% 58% 72% 78% 80% 80%

4.4. Discussion and Analysis of Failed Cases

During the experiment, there may be reasons leading to the failure of the experiment,
specifically when the robot fails to execute the correct tasks. We analyzed these failed
cases, which resulted from either the LLMs misinterpreting natural language or the VLM
detecting targets incorrectly during the environmental perception process. Because the
motion command is aimed at directing the robot to a specific location, which is relatively
simple natural language, errors in semantic similarity modules often occur due to incor-
rect semantic information provided by the LLMs and VLM or incorrect target detections.
Therefore, we focused on discussing the failures caused by these two modules, the LLMs
and VLM.
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When transmitting natural language to the LLMs, it is essential for the LLMs to
correctly understand the semantics of the natural language and generate the correct strategy.
However, the LLMs cannot always produce accurate results. As shown in Figure 10, when
given a task like “Select a robot to pass through all yellow-colored blocks,” the correct task
decomposition logic should be for the robot to pass through blocks it has not reached yet.
However, the LLMs occasionally generate confused task decomposition processes, such
as generating a task to go to a yellow-colored block, which is obviously incorrect. Such
logical errors in the task decomposition process can result in the robot failing to execute the
task successfully.
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Another scenario is when the VLM makes errors during environmental perception, as
shown in Figure 11. The VLM may misidentify targets in the presence of changes in light,
leading the LLMs to receive incorrect environmental information, resulting in the failure of
the robot to execute tasks. Alternatively, the VLM may identify irrelevant items in the scene
that users do not want it to recognize, causing interference in the experimental process and
potentially generating incorrect results in the heat map.
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when there are changes in light brightness. (b) VLM will recognize the objects along with the attached
blocks, such as identifying black wheel.
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5. Discussion

In this work, we achieved semantic-level alignment between the output of the large
language model and the robot control commands and experimentally validated that the
approach is capable of controlling a robot using natural language for tasks of higher
complexity [50]. The method proposed in this paper enables easier human–robot interaction
to accomplish corresponding tasks in the real world, without requiring extensive expertise
or skills. Humans can describe task requirements in natural language, and using the
framework designed in this paper, the tasks can be understood at the semantic level
and translated into task sequences that the robot can execute, thereby driving the robot
to achieve task goals. Importantly, this method, through the form of multi-layer task
decomposition and interaction with the environment, enables robots to understand and
complete tasks with complex semantic information. Compared to traditional natural
language-controlled robot technologies that can only handle relatively simple tasks, this
method enables robots to perform more complex and abstract tasks.

This work has some limitations. First, this experiment relies on the environment
perception module to obtain environment information, which will be limited by the per-
ception module when the visual language model analyzes the object properties. Second,
this work performs a numerical analysis in a two-dimensional computable space, which
does not provide the robot with high-precision environmental information and constrains
the robot from performing more detailed tasks [51]. The third point is that this work
designs a feedback mechanism during the task decomposition process, although it solves
the problem of aligning the task decomposition with the robot control instructions. But it
does not guarantee that the results generated by the large language model do not have logic
problems [52]. The robot displacement caused by such logic errors can only be adjusted by
the real-time feedback of visual information, and the system will make the robot re-plan
the correct trajectory through subsequent task sequences. This process increases the time
for task execution.

We can enhance the specificity of the model output through fine-tuning. Specifically,
we can use the self-instruct method [53] to generate corpora for each model in the multi-
layered large model architecture. We can then fine-tune the respective models using these
corpora to improve the accuracy of task decomposition.

We can utilize additional environmental perception modules, which will help to better
transform the open environment into a computable space for guiding precise robot actions.
Because we are currently only using cameras, in the future, we can enhance the complexity
of numerical space by adding different sensors, such as LiDAR and depth cameras, and
fusing multimodal sensor information.

In future work, firstly, we can add the multi-environmental sensing module, which can
obtain more three-dimensional and rich environmental information through multi-modal
environmental sensing. Secondly, we can construct more complex numerical spaces to
optimize the motion control strategy so that the robot can perform more delicate tasks.
Finally, we will also design prompt words with more semantic information and use prompt
engineering to reduce the number of cycles in the task decomposition process and optimize
the model system.

6. Conclusions

In this research, we present a novel methodology that integrates a large language
model (LLM) with a visual language model (VLM) and a calorific heat map. This approach
facilitated a multi-layer decomposition of tasks, thereby elevating the precision of task
decomposition. Additionally, we introduced an intermediate task planning process to
bolster the reliability of robot control. To ensure alignment between LLM outputs and
motion control instructions, a vector alignment method is employed. Through rigorous
testing and evaluation in a real-world robot scenario, our findings substantiate that the
proposed methodology enhances the LLM’s proficiency in comprehending intricate real-
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world tasks. Furthermore, it amplifies the likelihood of aligning the LLM outputs with
motion control commands.
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