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Abstract: Autonomous driving recognition technology that can quickly and accurately recognize
even small objects must be developed in high-speed situations. This study proposes an object point
extraction method using rule-based LiDAR ring data and edge triggers to increase both speed and
performance. The LiDAR’s ring information is interpreted as a digital pulse to remove the ground,
and object points are extracted by detecting discontinuous edges of the z value aligned with the ring
ID and azimuth. A bounding box was simply created using DBSCAN and PCA to check recognition
performance from the extracted object points. Verification of the results of removing the ground and
extracting points through Ring Edge was conducted using SemanticKITTI and Waymo Open Dataset,
and it was confirmed that both F1 scores were superior to RANSAC. In addition, extracting bounding
boxes of objects also showed higher PDR index performance when verified in open datasets, virtual
driving environments, and actual driving environments.

Keywords: autonomous driving; object detection; rule-based; 3D LiDAR; edge-triggered

1. Introduction

For the advancement of autonomous driving LV3 and LV4 defined by [1], real-time
high-performance recognition technology is required even at high speeds. Many companies
have installed these LV3 self-driving technologies in their mass-produced cars in the form
of self-driving on highways. In the case of high speed, if the logic execution delay time and
recognition distance are not substantial, obstacles can quickly approach due to speed and
become dangerous. Therefore, efforts are needed to increase the cognitive distance and
speed up logic execution.

The deep learning method using the point cloud of LiDAR has steadily developed,
and its performance has been advanced [2]. It recognizes objects as bounding boxes by
learning datasets divided into three classes, mainly cars, pedestrians, and cyclists, with
neural networks. Its performance depends on learning datasets and network structures. To
improve the performance, studies that directly construct many object recognition datasets
in various real environments have been conducted [3]. Recently, many researchers also have
built a dataset in a virtual environment to expands the diversity of situations [4]. In addition,
researchers have actively conducted to improve the structure of neural network models [5,6].
However, performance-based network architectures cannot be used in actual driving unless
applied in real time. Also, regardless of real-time and recognition performance, learning
relies on datasets, mainly on three classes (vehicle, pedestrian, cyclist). So, other objects
that vehicles need to recognize must be correctly recognized.

To solve the limitations of the obstacle recognition type, on the contrary, there are also
studies to learn the driving area of the vehicle using semantic segmentation [7]. However,
semantic segmentation using the 3D point cloud has heavy data, so a model that satisfies
both performance and real-time requirements has yet to be developed. According to the
state of the art, in terms of performance alone, the best model [8]’s mIoU is 72.9. However,
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looking at the real-time models, the mIoU of the model [9] that satisfies the minimum
reference level of 98fps in real time is 46.9. So, the model that satisfies both real-time and
performance requirements still needs to be completed.

Most semantic segmentation models using a camera satisfy both real-time and per-
formance requirements [10]. Accordingly, a sensor fusion method was also studied to
determine the driving area with a camera and recognize the exact distance and actual size
with a LiDAR [11]. In this study, they identified the part where the ring of the LiDAR was
cut off due to a small obstacle in front of the VLP-16 LiDAR. Then, they matched with
the semantic segmentation learning results of the front camera image. However, as the
calibration of the front camera and LiDAR is also an important research topic, it is difficult
to match, and there is a limitation that only objects in the range of the front camera angle
can be recognized.

Then, how is it recognizable regardless of object type, satisfying both real-time and
performance requirements, and not requiring complex calibration? It is a rule-based
recognition technique using LiDAR’s point cloud. This method has been developed since
before using deep learning and was mainly studied by judging the ground, which is a
plane, and recognizing the part outside the ground as an object.

Recently, many researchers have conducted research to logically extract objects’ char-
acteristics from the point cloud [12]. It is a method of segmenting the area according to
the form of a polar coordinate system of the point cloud and extracting the object part by
the difference in slope within each area and between each area. It is cumbersome for this
method to adjust the slope parameters that determine the characteristics of dividing each
area or extracting it as an object. In general, rule-based algorithms have the disadvantage
of having many user-definable parameters, on which performance mainly depends.

However, among rule-based ground removal logics, there is an algorithm that reduces
the inconvenience of parameter tuning and is based on raw data from LiDAR that are not
separately filtered by RoI [13]. In that paper, parameters were calculated using adaptive
ground likelihood estimation and previous results, and a powerful ground segmentation
method was proposed by utilizing temporal ground characteristics, regional vertical plane
fitting, and noise removal techniques. However, ground clearance alone cannot accurately
determine the obstacles autonomous driving must avoid. The point cloud remaining after
the ground is removed contains various classes that need to be filtered, such as building
walls, curbs, and obstacles. Additionally, lighter and faster algorithms are needed to
reduce resources when running in high-speed situations or conjunction with other decision
and control algorithms. The algorithm proposed in this study is very simple and fast by
utilizing voxels.

Therefore, in this work, we propose a simple small object detection logic that is
rule-based but minimizes setup elements and ensures that both performance and real-
time requirements are satisfied. After removing noise from the point cloud raw data, the
algorithm extracts edges based on the analysis of height value of the point cloud using
ring data. It contains the processes that align points with the same ring ID and azimuth to
mask object parts according to the rising edge/falling edge. In the last step, we cover edge
cases and supplement the algorithm using height and distance indicators. This algorithm
was verified by comparing recognition performance and real time in virtual scenarios and
actual autonomous driving competition environments with RANSAC [14].

2. Background Knowledge
2.1. Ring Data of LiDAR

Most autonomous vehicles or datasets for deep learning use four kinds of information
from the LiDAR point cloud: x, y, z, and intensity. Nevertheless, LiDAR manufacturers
provide more information, including ring data [15]. It means the channel ID according to
the vertical resolution. Looking at the point shape of the LiDAR beam corresponding to one
vertical resolution is described as a ‘ring’; it is called ring data (shown in Figure 1). The ring
ID for each point follows the order of small vertical angles (from negative numbers with
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large absolute values to positive numbers with large absolute values). The total number of
IDs equals the number of channels in the LiDAR. For example, the point cloud on a VLP-16
LiDAR has 16 ring IDs ranging from 0 to 15.
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Figure 1. Ring data of point cloud.

2.2. Edge Trigger

When designing logic circuits, the concept of ‘trigger’ is used to detect whether a
particular event occurs. The trigger consists of a level trigger and an edge trigger. An edge
trigger is an event that occurs when the clock, a state variable, changes. When it changes
from 0 to 1, it is a rising edge; when it changes from 1 to 0, it is a falling edge [16], as shown
in Figure 2.
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2.3. Analysis of Object Features in Point Cloud

Before looking at the Ring Edge algorithm in earnest, let us look at the characteristics
of objects in the point cloud.

The point cloud is divided into Ring ID groups, and each group is sorted according to
azimuth. When looking at the height/distance values, the characteristics displayed by the
object in each indicator are as follows. There is a group of points with the same ring ID, as
shown in Figure 3 (blue line). The blue circle of Figure 3 represent points corresponding
to the object part. The same part is indicated by blue circles in Figure 4. Figure 4 is an
enlarged view of the distribution around the object among the z values according to the
azimuth of the corresponding group. You can see that the difference in neighboring values
before and after the part corresponding to the object increases(inside the blue circle). In
particular, the z-value distribution suddenly increases in value with a rising edge at the
beginning of the object. It decreases significantly with a falling edge at the end of the object.
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3. Ring Edge-Triggered Detection Method

This section describes the ring edge-triggered LiDAR detection method and prepro-
cessing for applying the logic.

3.1. Noise Filtering

The Ring Edge algorithm proposed in this paper is an algorithm that separates the
ground and objects at once after sorting points according to ring ID and azimuth. It is very
vulnerable to noise because it is recognized based on when the value difference between
aligned neighboring points is large. Accordingly, a part to remove noise was added prior
to the full-scale application of the algorithm in the following manner.
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First, the edge is found based on a value smaller than the difference between the
indicator sizes to be recognized as the edge set as a parameter. Since the found edges are
differences between neighboring points in previously sorted points, edge indices can be
extracted continuously. Accordingly, the index difference between the extracted edges is
calculated, and if it is less than 3, the edges are judged to be noise. If the index difference
between edges to be judged as noise is too small, it is difficult to filter out all the noise, and
if it is too large, objects with fewer poles or points may also fly away, so some adjustment
is necessary.

3.2. Object Points Extraction with Ring Edge

The most basic edge trigger-based object point extraction logic is as follows. Edges
between neighboring points are extracted based on the parameters (hthres) set in the fil-
tered points.

If the z value indicates edge extraction, the part following the rising edge is viewed as
an object and masked as 1. The part following the falling edge is viewed as an object only
up to the front, and the back part is viewed as ground and is all masked as 0. When the
first falling edge is the first falling edge, the front part is viewed as an object, so masking of
the front part must also be done.

Figure 5a is the point cloud scene where a small load is placed in front. If masking is
applied to a set of points bounded by the same ring ID, the object part is converted to 1, as
shown in Figure 5b. Algorithm 1 of Figure 5 summarizes the basic object extraction logic
using Ring Edge from the point cloud from which noise has been removed.

Algorithm 1. Algorithm to detect objects with edges

Input: Point cloud in multiple areas divided by azimuths
Output: Point cloud recognized as obstacle
for each point cloud area in P do

pr := p (sorted by ring id)
initialize presult
for each ring in R do

pcur := pr[pr.ring == each ring]
th := arctan(pcur.y/ pcur.x)
pcur = pcur(sorted by th)
maskedge := list of zeros (size : number of pcur)
diff := difference of z value between neighbor points of pcur
edges := index of pcur where diff > hthres
if diff[ first edge ] < 0 then // if first edge is falling edge

maskedge[before first edge] = 1
end if
for each edge in edges do

if diff[each edge] > 0 then // if edge is the rising edge
maskedge[after each edge] = 1

else then // if edge is the falling edge
maskedge[after each edge] = 0

end if
end for
presult = presult+pcur[maskedge]

end for
end for
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3.3. Covering Edge Cases

However, when using the basic Ring Edge algorithm, there were two edge cases as
follows, which were resolved.

The first case is when continuous rising edges appear, and the entire area between the
two rising edges is masked with an object, resulting in a misrecognition. If you carry this
out the original way, all parts behind the rising edge are considered objects, and all parts
behind the first rising edge are masked with 1. During this time, whether a falling edge
exists is determined based on a value slightly lower than. When extra falling edges exist,
misrecognition is improved by masking only the first rising edge to the falling edge with 1,
as shown in the example in Figure 6a.
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The second case is when continuous falling edges occur, and the object is not recog-
nized because all falling edges are masked with the ground. In this case, if the minimum
height between two edges is higher than the minimum height of the part previously masked
as an object, the part between the two edges is also considered an object and masked to 1,
as shown in the example in Figure 6b.

3.4. Results of Processes of Ring Edge

Finally, by applying the Ring Edge point extraction logic considering edge cases, the
results shown in Figure 7 can be obtained from the input point cloud frame in Figure 8.
Figure 8 is another frame from the same sequence in the Waymo Open Dataset. Ring Edge
result plots were expressed in BEV form according to azimuth, and raw data from a similar
time point was imported for comparison briefly.
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3.5. Estimation of Bounding Boxes

At points where buildings and walls have been removed to estimate the bounding
box based on rules, a clustering process is first necessary. Clustering is dividing points into
small sets according to their distribution. Each point is given an ID indicating how many
times it has been set.
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In this paper, we used DBSCAN [17] as the clustering logic. DBSCAN inputs the
number of points in a particular space as a parameter. Then, the input parameters become
the boundaries that separate each chunk. In this paper, we set it to judge whether at least
four points are in a 3 m radius space. Figure 9 clusters the filtered points and estimates the
bounding box without rotation based on the size and location of each cluster.
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Principal component analysis (PCA [18]) is a dimensionality reduction technique
in machine learning and statistics. It transforms high-dimensional data into a lower-
dimensional representation by identifying and retaining the most significant features,
known as principal components. These components capture the maximum variance in the
data, aiding in simplifying its complexity. PCA is valuable for visualization, noise reduction,
and speeding up machine learning algorithms. It works by computing eigenvectors and
eigenvalues from the covariance matrix of the data, allowing for the selection of the most
informative dimensions while minimizing information loss.

This paper uses this PCA algorithm to estimate an object’s heading angle from a
clustered point set [19]. We input the point set to find the covariance matrix and the
direction vector with the largest variance as eigenvectors. Because the data are three-
dimensional points, they return three principal component vectors perpendicular to each
other. Among the returned vectors, only two principal component vectors are projected
onto the xy-plane. Afterward, the vector’s angle obtained using the tangent becomes the
object’s heading angle (yaw).

4. Environments of Experiments
4.1. Experiments Environment Setting
4.1.1. Open-Source Datasets

We used SemanticKITTI and Waymo Open Dataset as open-source datasets, which
contain 3D semantic segmentation labels. SemanticKITTI [20] is most prevalent in 3D
semantic segmentation [21]. It was created using Velodyne HDL-64E and is divided into a
total of 28 classes. Because the point cloud in the dataset did not include ring data, which
is the critical point of Ring Edge, it must be created. The labeling range of SemanticKITTI
is approximately 50 m. Since this is insufficient to confirm the recognition distance, the
proposed algorithm was verified using the Waymo Open Dataset, WOD, which has a
labeling range of 80 m and is 30 m wider [3]. Figure 10 shows the examples of datasets.
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4.1.2. Virtual Driving Environments Setting

The simulation of the virtual environment used IPG’s CarMaker. This simulation
can use vehicle models considering vehicle dynamics and customize the location and
movement of various obstacles on the road.

As can be seen from Figures 11 and 12, the virtual environment scenario consists of
two scenarios: a ramp and a flat road. In each scenario, small obstacles, such as small boxes,
garbage bags, and children, and obstacles in the commonly learned deep learning class,
such as vehicles, trucks, buses, and pedestrians, are located on the road.
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Additionally, a test scenario was created to check the perceived distance according to
the size and height of the obstacle. The size of each object used in the test scenario is shown
in Table 1.
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Table 1. The size of each object used in the test scenario.

Kind Length (m) Width (m) Height (m)

Warning tripod 0.16 0.44 0.39
Garbage bags 1.12 1.12 0.7

Boxes 1.46 2.55 1.18
Car 4.83 1.8 1.3
Bus 11.89 2.55 2.65

Each object was placed at a certain distance to determine the perceived distance in
units of 10 m. In addition, we tried to check the perceived distance according to size and
height by arranging objects of various sizes. Figure 13 shows the specific scenario.
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4.1.3. Real Driving Environments Setting

The actual driving environment was set in the 2022 College Student Self-Driving
Competition hosted by Daegu Metropolitan City and KIAPI in Korea, as shown in Figure 14.
The vehicle used Hyundai Motor’s Avante model, and the LiDAR sensor used Hesai’s
Pandar40P model [22] by attaching it to the central roof of the vehicle. The point cloud
contains x, y, z, intensity, and ring data elements, and it is a ROS2 middleware-based topic
at 20 Hz.
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4.1.4. Voxelization Setting

Voxels are an application of the ‘pixel’ concept used in images to point clouds, dividing
the three-dimensional space into units based on the point cloud range and voxel size. De-
pending on the voxel size, multiple points can be contained within one voxel. Additionally,
several empty voxels do not contain points due to the point cloud’s sparse features.
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Because multiple points can be expressed by compressing them into a single voxel,
voxelizing the point cloud can significantly reduce its size. The size of the point cloud
is an essential factor in executing learning networks or logic using the point cloud. For
example, PointPillars mentioned in the paper proposing this network that the speed is
breakneck at 62 Hz [23]. However, in real situations, the delay when inputting a point
cloud obtained from a lidar with 40 channels (Pandar40P) is 60 ms, which cannot maintain
20 Hz. This is because the lidar raw data in the KITTI Dataset [24], the dataset verified in
the paper [21], is 64-channel lidar, but only the front part of the ego vehicle is present. So,
the number of points is much smaller than that of LiDAR, with 40 channels that are used.
Therefore, in learning networks and algorithms, the size of the point cloud is an essential
factor that directly affects speed. Therefore, voxelization is necessary to reduce the point
cloud’s size primarily.

When voxelizing the WOD, the voxel parameters were set as follows:
range: x(−74.88~74.88), y(−74.88~74.88), z(−2.0~4.0)
voxel size: (x,y,z) = (0.32, 0.32, 0.05)
Before comparing the ground removal performance of Ring Edge when voxelized points

were input in earnest, we compared the performance difference before and after voxelizing.
First, regarding speed, when raw point cloud data were input to the Ring Edge, as

mentioned earlier, it was 20 ms. When using the PCL library for voxelizing the raw point
cloud, 5 ms came out (based on WOD). Then, when the voxel was entered into the Ring
Edge, 12 ms came out. It turned out to be faster when inputting the voxel, with a total
of 17 ms.

In terms of performance, some points are lost during the voxel process. As shown in
Figure 15, it was confirmed that parts that were well recognized and had no misrecognition
in the raw data results showed minor errors in the voxel. However, because there is no
significant difference in overall performance except for some, VDR was compared based
on voxel.
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4.2. Evaluation Metrics
4.2.1. F1 Score

The confusion matrix is TP (true positive), where the predicted value is the same
number as the correct answer; FP (false positive), which means misrecognition of the
predicted value; FN (false negative), which means unrecognized; and TN (true negative),
which means neither of the remaining two is correct. F1 score is the harmonic mean value of
precision and recall and is a performance index that can consider both misrecognition and
non-recognition. It ranges from 0 to 1, with 1 indicating perfect precision and recall balance.

precision =
TP

TP + FP
, recall =

TP
TP + FN

(1)
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F1 score =
2

1
precision + 1

recall
= 2· precision·recall

precision + recall
(2)

4.2.2. Voxel Detection Rate and Point Detection Rate

PDR is originally the pixel detection rate, mainly used in performance verification
through camera image pixels [11]. Because the image consists of a dense grid called a
‘pixel’, it is easy to understand that the performance is verified by comparing the pixel area
corresponding to the correct answer with the recognized pixel area. To apply this evaluation
method to a point cloud, it is usually necessary to convert it into a ‘voxel’ corresponding to
a ‘pixel’.

Therefore, all points were converted to voxels through voxelization and entered into
Ring Edge. As a result of the ring edge, the VDR (voxel detection rate) indicator was used
to determine whether the ground was removed from all points and only the object part
was filtered. This is the ratio of the portion of voxels estimated to be an object among the
total object ground truth voxels.

VDRobstacle =
TPVobstacle
GTVobstacle

(3)

In addition, the rule-based object bounding box estimation logic was verified using the
point detection rate, which the pixel detection rate also inspired. In a virtual environment
and 3D object detection datasets, they provide accurate bounding box information for each
object, and we can easily extract points in this box.

PDRobstacle =
TPXobstacle
GTXobstacle

(4)

5. Results
5.1. Results of Point Extraction Performance
5.1.1. Real-Time Performance

The standard for logic execution speed was the SemanticKITTI point cloud. When
comparing logic execution speeds, RANSAC took 15 ms, Ring Edges took 20 ms, and
Patchwork++ [13] took 28 ms. Therefore, Ring Edge was confirmed to be slightly slower
than RANSAC and faster than Patchwork++.

5.1.2. Detection Performance with F1 Score

Regarding performance, the F1 score was confirmed to be higher for Ring Edge in
both semanticKITTI and Waymo Open Dataset. Tables 2 and 3 provide specific precision
and recall values, and the F1 score is calculated accordingly.

Table 2. Results of performance validation with SemanticKITTI.

Precision (%) Recall (%) F1 Score (%)

Ring Edge 95.59 87.86 91.56
RANSAC 93.09 89.14 91.07

Table 3. Results of performance validation with WOD.

Precision (%) Recall (%) F1 Score (%)

Ring Edge 94.18 85.48 89.62
RANSAC 87.02 74.48 80.26

Overall, the F1 scores of the proposed algorithms were all higher than RANSAC.
Because RANSAC includes randomness in the algorithm, its performance varies each time
it is repeated, making it unstable. On the other hand, Ring Edge was confirmed to be more
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stable and perform better because it always produces the same value. Figures 16 and 17
show RANSAC’s instability and Ring Edge’s excellence.
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In particular, the performance of the proposed algorithm was slightly reduced in noisy
WOD due to the broader raw data range, while that of RANSAC was noticeably reduced.
Because RANSAC is an algorithm that estimates the plane, it cannot estimate correctly if
the ground is curved, such as a ramp or a curved road.

5.1.3. Detection Performance with VDR

Next, when the result of converting WOD into voxels was input, the performance
was verified using the VDR index. As a result of the comparison, Ring Edge was 0.929,
and RANSAC was 0.904, confirming that Ring Edge was superior, like the F1 score index.
Looking at Figure 18, Ring Edge removes the ground part well when it is not flat, while
RANSAC recognizes it as an object.
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ground (RANSAC).

5.2. Bounding Box Estimation Results
5.2.1. Results with WOD

As a result of estimating the object bounding box of the voxel-processed WOD based
on rules from object partial points from the ring edge, the PDR index was found to be 0.905.
The performance was slightly lower than the precision of 94.18% in WOD, which was
output when verifying Ring Edge’s performance earlier. This is because object points are
lost while removing walls and buildings from points where only the ground was removed.
Figure 19 shows the bounding box result estimated from WOD.
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5.2.2. Virtual Driving Test Results of Performance

We acted verification in the virtual environment in three scenarios: (1) flatland (mixed
objects with small objects) and (2) slope. The point cloud in each scenario was entered in
one frame every 0.1 s, and the entire number of points shown in Table 4 represents the total
number of points in the bounding box labeled in each frame.
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Table 4. PDR and the number of points of each method.

Scenario 1 Flatland 2 Slope

True positive 87,417 12,286
False negative 2347 410
Entire points 89,764 12,696

PDR 0.974 0.968

The results of the test scenario were determined to be recognizable if the points
extracted as the Ring Edge results satisfied the minimum number of 3 points of DBSCAN,
a rule-based bounding box estimation logic for each object. The results and the distance
seen in BEV are shown in Figure 20. Since each division is 10 m, the size and recognition
distance for each object can be checked in Table 5.
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Table 5. The detection distance of each object in the test scenario.

Kind Length (m) Width (m) Height (m) Detection Distance (m)

Warning tripod 0.16 0.44 0.39 20
Garbage bags 1.12 1.12 0.7 70

Boxes 1.46 2.55 1.18 80
Car 4.83 1.8 1.3 90
Bus 11.89 2.55 2.65 90

Therefore, it was confirmed that the recognition distance was longer depending on
the object’s height. The tripod was so small at 0.39 m in height that the perceived distance
was only 20 m. However, it was confirmed that even when the height was only 0.7 m,
the recognition distance increased significantly to 70 m. In the case of cars and buses, the
experiment was conducted with the maximum recognition distance in the scenario being
90 m, so the maximum distance for both was 90 m. In the case of buses, they are expected
to be recognized even further away due to their large height.

In this scenario, testing was conducted based on Hesai’s Pandar40P LiDAR. Even if a
different channel lidar is used, the logic will operate similarly because the group judges it
for each ring ID. However, depending on the number of channels, resolution, and LiDAR
ray scanning angle, the recognition distance may vary as the number of points captured
becomes smaller, even for the same object.

5.2.3. Real Driving Test Results of Performance

There are no points or bounding box correct answers for objects that can be objectively
verified when tested in an actual driving environment. It was inevitable to receive and
visualize point cloud data in real time and qualitatively evaluate how well they detect.
Therefore, we intuitively compared the performance by visualizing the point cloud and the
recognition results of each algorithm.
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Figure 21 results from extracting object points in each method when a bent person and
a child dummy forward cross the crosswalk. The other color refers to IDs bound to another
object the clustering algorithm assigns. Looking at the points extracted as obstacles, the
results extracted through the ring edge have much less noise than RANSAC. In addition,
Figure 22 shows that both the front load and the competition management vehicle following
from the rear were recognized. A complete video related to this can be seen in the following
link (https://www.youtube.com/watch?v=lKLvyVGrqDs) (accessed on 15 April 2023) [25].

1 

 

 
(a) (b) 

 
Figure 21. Real driving test results (a) RANSAC; (b) Ring Edge (ours).
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ronment. 

The proposed algorithm guarantees performance and real-time requirements, so it 
can be applied and used immediately when an autonomous vehicle drives. It was proved 
by participating in an actual autonomous driving competition and performing a mission 
to recognize small obstacles by applying this algorithm. Afterward, we will research to 
learn the bounding box by featuring the object points extracted with this Ring Edge algo-
rithm. Compared to existing end-to-end deep learning methods in terms of speed and 
performance, we will find the most efficient network and develop logic that can quickly 
recognize regardless of class. 

Figure 22. Results of recognizing both front and rear objects (ours).

6. Conclusions

This paper proposes a ground removal logic that interprets a group of points aligned
with LiDAR Ring ID and azimuth as digital pulses to find edges and mask object parts.
In addition, beyond ground removal, the object’s bounding box was estimated using a
rule-based algorithm through DBSCAN and principal component analysis.

Ring Edge’s ground removal speed is 20 ms, slightly slower than RANSAC (15 ms)
and faster than Patchwork++ (28 ms). In addition, compared to RANSAC based on Se-
manticKITTI and the Waymo Open Dataset, the F1 score was higher, proving its superiority.
The results of estimating the object’s bounding box based on rules from the extracted object
voxels were confirmed to be well estimated with a PDR index of over 90% when verified in
the Waymo Open Dataset, virtual driving environment, and actual driving environment.

https://www.youtube.com/watch?v=lKLvyVGrqDs
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The proposed algorithm guarantees performance and real-time requirements, so it
can be applied and used immediately when an autonomous vehicle drives. It was proved
by participating in an actual autonomous driving competition and performing a mission
to recognize small obstacles by applying this algorithm. Afterward, we will research
to learn the bounding box by featuring the object points extracted with this Ring Edge
algorithm. Compared to existing end-to-end deep learning methods in terms of speed and
performance, we will find the most efficient network and develop logic that can quickly
recognize regardless of class.
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