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Abstract: Smart cities are powered by several new technologies to enhance connectivity between
devices and develop a network of connected objects which can lead to many smart industrial
applications. This network known as the Industrial Internet of Things (IIoT) consists of sensor nodes
that have limited computing capacity and are sometimes not able to execute intricate industrial tasks
within their stipulated time frame. For faster execution, these tasks are offloaded to nearby fog nodes.
Internet access and the diverse nature of network types make IIoT nodes vulnerable and are under
serious malicious attacks. Malicious attacks can cause anomalies in the IIoT network by overloading
complex tasks, which can compromise the fog processing capabilities. This results in an increased
delay of task computation for trustworthy nodes. To improve the task execution capability of the fog
computing node, it is important to avoid complex offloaded tasks due to malicious attacks. However,
even after avoiding the malicious tasks, if the offloaded tasks are too complex for the fog node to
execute, then the fog nodes may struggle to process all legitimate tasks within their stipulated time
frame. To address these challenges, the Trust-based Efficient Execution of Offloaded IIoT Trusted
tasks (EEOIT) is proposed for fog nodes. EEOIT proposes a mechanism to detect malicious nodes
as well as manage the allocation of computing resources so that IIoT tasks can be completed in
the specified time frame. Simulation results demonstrate that EEOIT outperforms other techniques
in the literature in an IIoT setting with different task densities. Another significant feature of the
proposed EEOIT technique is that it enhances the computation of trustable tasks in the network.
The results show that EEOIT entertains more legitimate nodes in executing their offloaded tasks
with more executed data, with reduced time and with increased mean trust values as compared to
other schemes.

Keywords: secure computing; industrial IoT; trustable computing

1. Introduction

The emergence of smart cities represents a transformative shift in urban development,
integrating advanced technologies to enhance the quality of life for residents and improve
the efficiency of city operations. These cities leverage data and connectivity to optimize
infrastructure, utilities, transportation, and public services. Smart cities deploy IoT devices,
sensors, and data analytics to collect and analyze real-time information, enabling proactive
decision-making and resource allocation. By fostering sustainable practices and citizen
engagement, smart cities aim to address urban challenges such as traffic congestion, pol-
lution, and energy consumption [1,2]. As these initiatives continue to evolve, smart cities
are poised to drive innovation and economic growth and create more livable and resilient
urban environments [3].
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Smart cities encompass diverse applications empowered by a range of network
providers. Thus, establishing trust in such a network becomes a fundamental challenge,
necessitating the segmentation of networks across different infrastructures to accommo-
date diverse service providers and user types [4–6]. Additionally, the security of virtual
machines is a concern, as they are prone to various types of attacks that can compromise
network performance, seriously impacting the Quality of Service (QoS) [7,8]. There is also
a risk that third-party-deployed virtual networks may become infected during operation,
leading to communication disruptions [9,10].

The Internet of Things (IoT) plays a pivotal role in different smart city applications.
IoT-based Industrial (IIoT) optimizes operations by collecting real-time data with the help
of IoT sensors. IIoT enables predictive maintenance [11], asset tracking [12], and process
automation [3]. IoT devices with the assistance of data monitoring tools can provide
smart management of logistics [13]. Furthermore, data from IoT-based sensors help in
the smooth operation of equipment by predicting necessary maintenance to minimize
downtime by avoiding equipment failure. IIoT allows remote monitoring and control of
industrial processes, equipment, and systems, enabling operators to manage operations
from anywhere [14].

IoT nodes comprise sensor nodes that have limited processing and storing capac-
ity [15,16]. In IIoT, sensor nodes are required to perform different types of tasks and
sometimes have to run complex algorithms. Due to limited processing capacity, the sensor
nodes may take longer time to execute these tasks which might not be possible for some
time-constrained tasks. To execute these tasks within a specified time frame, these tasks
are required to be offloaded for faster execution. Offloading tasks to more powerful ma-
chines helps in optimizing the use of resources. Furthermore, offloading latency-sensitive
tasks in IIoT applications can achieve faster response times, which is crucial for real-time
applications. Fog computing nodes provide data storage and computing services to the
Industrial IoT nodes [17,18]. They are CPU servers that have better processing capacities
than the IoT nodes. Nodes that facilitate fog computing are preferably placed in different
areas at the edge of the different IoT networks in smart cities for increased storing and
processing capacity [19–21] as shown in Figure 1. These fog nodes can be used for efficient
task execution of these IIoT nodes. There are many industrial fog node products that are
used in real IoT environments [22].

Figure 1. Architecture of fog-enabled Smart City infrastructure.
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Advancement of diverse communication technologies, such as Sixth Generation (6G)
cellular communications and Low Power Wide Area Network (LoRaWAN), enables IoT
nodes to adapt to these technologies for efficient working of smart city applications. In
IIoT, nodes are wirelessly connected and chances of vulnerability increase due to diverse
heterogeneous wireless networks and chances of malicious attacks increase. Malicious
attacks may create anomalies in the communication process in different prospects and
result in a compromised QoS of the network. Malicious node attacks may also cause delays
in executing the offloaded tasks by fog nodes by offloading the time-consuming complex
tasks to fog nodes. These malicious node tasks utilize the computing resources of fog nodes,
causing delays in executing the tasks offloaded by the legitimate nodes.

To handle the above challenges for improved performance of the fog computing nodes,
the offloaded tasks anomaly is required to be resolved by differentiating the malicious and
legal nodes’ tasks. Tasks offloaded by malicious nodes affect the fog node’s performance in
executing legitimate tasks due to the limited processing and storing capacity of the fog node
and sometimes can not execute all the offloaded tasks within their stipulated time duration.
In this paper, an Efficient Execution of Offloaded IIoT Trusted Tasks (EEOIT) mechanism
for secure and reliable computing is proposed. EEOIT assists fog nodes in executing most
of the tasks transmitted by valid and trustable nodes in its processing cycle by applying the
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [23].

The salient features of the proposed EEOIT include:

1. A novel trust management scheme to prevent anomalies caused by security attacks
and differentiate the trustable tasks from the malicious tasks.

2. An efficient TOPSIS-based offloading task priority mechanism for all offloaded trusted
tasks within the task deadline.

The organization of the paper is structured as follows:
Section 2 discusses prior research endeavors, specifically exploring trust management

from various perspectives. An overview of the system model and details of our proposed
schemes are mentioned in Sections 3 and 4, respectively. Section 5 conducts a comparative
analysis through extensive simulations and presents the results. Finally, Section 6 serves as
the conclusion, summarizing key findings and concluding our manuscript.

2. Related Work

There have been several techniques that have worked on securing communications
and computing in smart city-enabled IoT. Numerous studies have explored trustful com-
munication in various communication domains.

The work in Ref. [24] proposed the MATS framework by using a game theoretical
approach to solve the issue of trustful communications. Moreover, the framework also
considers different situations and possible malicious issues for each scenario. The proposed
technique presents a dynamic trust solution that works for multiple scenarios. Experimental
results validate the framework’s performance in their work.

In Ref. [25], authors considered an Unmanned Aerial Vehicle (UAV) scenario that can
assist IoT-based Intelligent Transportation Systems (ITS). The proposal provides a trustable
data collection scheme that also considers data deadlines. Furthermore, the trajectory of
UAVs is also optimized so that trustable communications can be enhanced. Results provide
reduced delays and costs by the developed system.

Authors in Ref. [26] highlighted the scenario of online social networks where trust is a
major challenge and proposed a trust aware framework for online networks. The proposed
technique provides a mechanism to handle malicious nodes in the network. The trust
model is developed to assign a trust value to each user. Moreover, the work also provided
a data balancing technique. The simulation results highlight the improvement achievement
in terms of trust and data precision.

In Ref. [27], authors proposed a MapReduce-based Framework for the management
of big data along with handling trust. MapReduce-based framework focused on big data
problems for data processing. A trust framework is developed to handle the scheduling
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of MapReduce. Results show the significance of the proposed technique for managing
trustable big data.

Authors in Ref. [28] proposed a trust management for online systems that focused on
online web-based trust challenges and considered a virtual network scenario. Particularly,
the focus of the work is on handling the issues of virtual networks during their running
time as well as when the system reboots. Furthermore, the work also developed trust
management procedures. The work also implemented a prototype using an open-source
MANO platform and evaluated network performance in a dynamic environment.

In Ref. [29], an IoT-based healthcare system with a decentralized trust management
system for secure and distributed healthcare is explored. To implement trust-based com-
munication in the network, an evidence–theory-reliant solution is proposed. A reward
and punishment system is established to manage trust-based data communications. The
performance analysis of the proposed technique shows robustness and efficiency with
security against various types of attacks.

In Ref. [30], authors focused on how technicians can easily and confidently intervene
on industrial equipment with the joint adoption of new technologies. In this work, the
authors describe the design of a software architecture aimed at simplifying the management,
configuration, and assessment of IIoT systems. Furthermore, they discuss their experiences
with the proposed architecture in a railways use case.

Authors in Ref. [31] addressed the management difficulty faced by such data owners’
authority that depends on a Trusted Third Party (TTP) by applying key aggregate searchable
encryption (KASE). The authors proposed a secure data-sharing system based on KASE in a
fog-enabled IoT environment using blockchain and applied Burrows–Abadi–Needham (BAN)
logic. The authors claimed that their proposed scheme guaranteed secure mutual authentication.

The authors of [32] have identified the conventional real-time security concerns that
end-users face in an IoT network. They have proposed a layered architecture within the fog
computing paradigm to address these issues. Furthermore, they have explored a range of
existing solutions that have been proposed to overcome these real-time security challenges.

A summary of all the references discussed in this section are represented in Table 1.

Table 1. Comparative summary of referenced research.

Ref. No. Addressed Area Proposed Scheme Results

[24] Trustful communication due to possible
malicious issues

Dynamic Trust MATS framework for
multiple communication scenarios

Experimental analysis to
validate framework

[25] IoT-based UAV for Intelligent
Transportation System

Trust Mechanism by optimizing the
trajectory of UAVs to enhance
trustable communications

Delay and cost of the system reduced

[26] Trust challenges of online social networks Assigned trust value by prioritizing
each user

Improved data and trust precision of
the network

[27] Trust management issue in big data MapReduce-based framework for
data processing

Convenience in managing trustable
big data

[28] Online web-based trust challenges in
virtual network during its reboot

Prototype based on open-source
MANO platform

Performance improvement in
dynamic environment

[29]
Explored an IoT-based healthcare system
with decentralized trust
management system

Evidence–theory reliant solution with
reward and punishment system Robustness and security enhancement

[30] Easy and confidential intervene of
technicians in industry

Software architecture to simplify the
management, configuration
and assessment

Experimented in railway use case

[31] Management issues by data owners
authority due to third party

Blockchain-based data sharing system by
applying BAN logic Guaranteed secure mutual authentication

[32] Real-time security issues in IoT network Layered architecture in fog
computing paradigm Real-time security issues are resolved
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3. System Model

The IoT-based industrial applications demand varying computing and processing
tasks. As the computing capability of these nodes is not high, these tasks can not be
processed in the required time frame and must utilize nearby fog servers. These tasks to
be offloaded are different in size and associated computing requirements. The fog node
receives a different number of offloaded tasks in different time intervals. There are chances
of malicious attacks in the network that may create anomalies in the network by offloading
tasks that may require a higher processing time; while the fog server has higher capacity
than the IIoT node, it still has a limited computing space, and if the offloaded tasks are more
than its processing capacity, these will be forwarded to the cloud servers for processing.
The considered system model is shown in Figure 2.

Figure 2. System model.

IIoT nodes are directly connected with fog nodes. The fog node after regular time in-
tervals monitors the tasks at their input. The monitoring time is calculated as the maximum
time (tmax) required by a node in transferring its task to the fog node. In this IIoT network,
there are N nodes attached to the fog node that is a combination of L number of trustable
nodes and M number of malicious nodes. A fog node receives the trust values from all the
attached IIoT nodes within its tmax. The fog node after each tmax time interval re-assesses
the values of trust for all attached nodes.

Suppose the number of tasks sent for computation by user A is Ti, and K out of the
available N number of nodes offloaded one or more tasks to the fog server. The sum of all
offloaded tasks σTot at the fog node after M number of processing intervals is calculated as
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σTot =
K

∑
i=1

M

∑
j=1

Tij (1)

If the data size of task Ti is Di and the computation capacity for processing tasks of
the fog node is PB, then the total amount of data executed (θTot) by the fog node along with
the processing time (ζTot) required by the fog node to execute σTot tasks is calculated as
mentioned in Equations (2) and (3), respectively.

θTot =
K

∑
i=1

M

∑
j=1

Dij (2)

ζTot =
K

∑
i=1

M

∑
j=1

Dij

PB
(3)

Suppose, out of the N number of nodes, there are NT non-trusted nodes in the
network, and out of these NT nodes, H number of nodes offloaded their tasks with data
DH , then the total legal offloaded data θNT computed by fog node in M number of sessions
is calculated as

θleg =
K

∑
i=1

M

∑
j=1

Dij − DH (4)

The task computation time for all trustable nodes ζleg is given by

ζleg =
K

∑
i=1

M

∑
j=1

Dij − DH

PB
(5)

4. Proposed EEOIT Scheme

This research introduces a trust management framework designed for fog computing
nodes to effectively handle the execution of offloaded tasks from various smart city appli-
cations. The scheme addresses the anomaly posed by malicious nodes, which attempt to
jeopardize the performance of the fog node by submitting tasks that utilize its resources
for execution, ultimately compromising the system’s integrity. In this work, an Efficient
Execution of Offloaded IIoT Trusted Tasks Mechanism (EEOIT) for fog nodes is proposed.
EEOIT provides a trust management system to avoid anomaly attacks by distinguishing
between malicious and legitimate nodes. Furthermore, the proposed scheme offers an
efficient algorithm for executing tasks on fog computing nodes. The main features of the
proposed schemes are

• A combination of both direct and indirect trust is used for trust evaluation for all
directly attached IIoT nodes.

• Task computation at the fog nodes is managed by using the TOPSIS value of input
tasks based on different parameters.

4.1. Trust Management

Malicious attacks disturb the QoS of the network. In IIoT networks, nodes offload
their tasks to nearby fog nodes. Malicious nodes compromise the processing capacity of
the fog node by uploading such offloaded tasks to fog nodes that require more execution
time. The problem can be resolved by identifying the legitimacy of the tasks. In this section,
the trust value of the offloaded tasks is calculated, which helps a fog node in differentiating
the trust value of the offloaded task nodes.

4.1.1. Trust Calculation of Directly Connected Nodes

The trust value of each node present in the IIoT network is calculated with the help of
their neighboring nodes. Each node evaluates the trustfulness of other nodes in the network
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by exchanging its information with other nodes. Suppose node A receives P packets from
its neighboring node B during the last periodic cycle. Out of these P packets, Pc packets
are error-free and correctly received by node A. To calculate the trustworthiness of node
B (TA

B ), node A considers the previously calculated trust value for the last N packets and
applies the following formula:

TA
B =

(TA
B × P) + (Pc × N × SNRA

B )

2P × SNRmax
(6)

Here, SNRA
B represents the signal-to-noise ratio between node A and node B which is

given as SNR =
Signal Power
Noise Power . The SNR gives us a measure of link quality among the nodes.

All the trust values calculated are in the range of 0 to 1.

4.1.2. Trust Calculation by Most Trusted Nodes

A node calculates the trust value of such a node that is not in its direct access through an
indirect method by obtaining the information forwarded by the most trusted intermediate
nodes. Suppose a node A wants to know the trust value of node F that is at the second hop
distance from it. The trust value of node A for trust finding node F through most trusted
nodes (TF

MTN) with the help of the intermediate node B is calculated as

TF
MTN =

TA
B + TB

F
2

(7)

When multiple trustworthy nodes are connected directly to the source node that is
linked with the trust-finding node, the directly connected nodes with the highest trust
value will be given preference. Suppose there is a fog node that needs to determine the
trust value of a node F. Node F is directly connected to nodes A, B, and C, which have
trust values of 0.9, 0.8, and 0.9, respectively. The fog node has calculated the trust values of
nodes A, B, and C to be 0.9, 0.8, and 0.7, respectively, as shown in Figure 3. In this scenario,
the trust value of node F will be computed through node A because it has the highest trust
value among all three nodes. If there are multiple directly connected nodes with the same
trust value, the node with the highest trust value towards the target node will be selected.
This increases the chances of finding the legitimate end node, as trustworthy nodes will
pass on all relevant information.

Figure 3. Nodes path selection through most trusted nodes.
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4.1.3. Indirect Trust Calculation

The trust value of a trust-finding node calculated by all its neighboring nodes is also
taken into consideration and is calculated by using an indirect trust calculation method.
Indirect trust is calculated as the average sum of trust values collected in favor of a trust-
finding node by all its neighboring nodes in the network.

Suppose there are X number of neighboring nodes of a trust finding node F, then the
indirect trust calculation by all its neighboring nodes (TF

ind) is calculated as

TF
ind =

∑X
i=1 TF

i
X

(8)

4.1.4. Trust Calculation

The updated trust value of each node for its associated node is forwarded to the fog
node after regular time intervals. The calculated trust value in the proposed scheme is
determined by the following methods:

1. The trust value calculated by the fog node about its directly connected nodes through
their self-calculated trust value as mentioned in Equation (6).

2. The trust value calculated by a node about another node through such directly con-
nected nodes which have highest trust values as mentioned in Equation (7).

3. Information about trust obtained from other nodes in the network for a node that is
neither directly connected nor through the best-trusted nodes.

The trust value of any node in the network is calculated by assigning different weights
to the trust values collected in the above-mentioned three methods such as

• The highest weights are assigned to the trust value collected by the fog node directly.
• Medium weights are assigned to the trust value collected by the nodes that arrive

through the most trusted intermediate nodes as mentioned in Section 4.1.2.
• The least weights are assigned to the trust value determined through the indirect

methods as mentioned in Section 4.1.3.

The trust probability value of a trust finding nodes TF in a network is calculated with
the help of a sigmoid (η) function as mentioned in Equation (9).

σTF =
1

1 + e−[H(TTF
B )+M(TTF

MTN)+L(Tt f
ind)]

(9)

Here, H, M, and L are the weights added to the different trust values calculated for the
trust finding node TF with H representing the highest weight, M representing the medium
weight, and L representing the least weight. The trust evaluation mechanism is depicted
in Figure 4.

Fog servers after computing the trust value of each node present in the network
perform a comparison with a threshold. If the trust value calculated is higher than the
threshold value then it is considered as a legitimate node. However, if the trust value is
less than the threshold value, then it is considered a malicious node. A complete procedure
in differentiating the legitimate and malicious nodes is represented in the Algorithm 1.
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Figure 4. Trust calculation procedure for legitimate nodes.

Algorithm 1: Algorithm for Legitimate Nodes Detection

1 Trust evaluation
2 Inputs:
3 Trust finding nodes in the fog network K
4 Trust Threshold Value Tth
5 Trust value calculated without intermediate nodes by fog node

TTF
1 , TTF

2 , TTF
3 , . . . , TTF

K
6 Trust value by most trusted nodes for node TF = TTF

MTN

7 For node TF, find indirect trust as Tt f
ind

8 for k = 1 to K do
9 Evaluate ηTFi for all nodes

10 if ηTFi ≤ Tth then
11 Untrusted node
12 end
13 else
14 Trusted node
15 end
16 k ++

17 end

4.2. Proposed Task Execution Mechanism

The fog node, after receiving all the tasks offloaded by the IIoT nodes, calculates their
capacity to execute them. After this, the fog node scrutinizes the legitimate tasks after
discarding the tasks offloaded by malicious nodes using the proposed mechanism. If the
offloaded legitimate tasks received by the fog nodes are within the processing capacity of
the fog node, then all the offloaded tasks will be executed. However, if the offloaded tasks
are more than the processing limit of the fog node, then it has to scrutinize the offloaded
tasks before execution by applying a Technique for Order Preference by Similarity to the
Ideal Solution (TOPSIS).

TOPSIS is a multi-criteria technique that provides the solution based on the TOPSIS
score. The TOPSIS score is calculated to find the preference list based on the preference
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list provided to it. In this work, the TOPSIS is used to scrutinize the offloaded tasks that
are required to be executed by the fog node. The tasks with the highest TOPSIS value are
selected within the processing capacity of the fog node. The TOPSIS value in scrutinizing
the offloaded tasks is based on the following parameters.

1. Trust Value of Tasks The trust is an important parameter in scrutinizing the tasks to be
executed. The higher the trust value of the task, the higher the preference for the task.

2. Task Size The task size is also considered in such a way that the higher the size of the
tasks, the more will be their preferences.

3. Task Elapsed Duration The task deadline is another parameter that is taken into
consideration in computing the TOPSIS value of the task. The shorter the deadline of
the task, the higher its preference will be.

Considering the above-mentioned parameters, the TOPSIS value is calculated against
all the received tasks offloaded by legitimate nodes. After applying the TOPSIS algorithm,
a TOPSIS value for each legitimate task is calculated. The tasks with the highest TOPSIS
values are selected for the execution process. If there is still room for the tasks to be
placed in the queue, then the next highest TOPSIS value tasks are scrutinized. The process
continues until the processing capacity of the fog computing node is reached. A complete
task scrutiny mechanism for execution of offloaded tasks is shown in Algorithm 2.

Algorithm 2: Scrutiny of Offloaded Task Algorithm using TOPSIS

1 Inputs:
2 Parameters used for task scrutiny (Trust probability σTF, task size ts, time elapsed

t)
3 Steps of Algorithm:
4 1: Normalization of individual vectors per task offloading feature (σTF, ts, t). The

Objective of this algorithm is to maximize all the attribute values for the offloaded
tasks.

5 Normalized Value = Actual Value√
∑ Actual Value2

6 2: Calculation of the weighted normalized values for each offloaded task
7 WeightedValue = (σTF × WσTF ) + (ts × Wts) + (t × Wt)
8 where WσTF , Wts , and Wt are the weights.
9 3: Calculation of the negative-ideal and ideal solutions for each feature.

10 For the Ideal solution, use the Maximum normalized value for all the
parameters.

11 For the Negative-ideal solution, use minimum normalized value for all the
parameters.

12 4: Calculation of the nearness of every task to the negative-ideal and ideal
solutions using a Euclidean distance measure.

13 D+
i =

√
∑m

j=1(NormalizedValueij − IdealSolutionj)2

14 D−
i =

√
∑m

j=1(NormalizedValueij − NegativeIdealSolutionj)
2

15 Step 5: Computation of the TOPSIS measure for every task:

16 TOPSISi =
D−

i
D+

i +D−
i

17 Step 6: Ranking of the tasks based on their TOPSIS scores.
18 Tasks with a greater value of TOPSIS will be the most favorable for offloading

as they match the criteria of higher value for all the parameters.
19 Output:
20 The prioritized offloaded tasks for offloading based on TOPSIS scores.
21 Task offloading starting from highly ranked tasks based on TOPSIS.
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5. Comparative Results and Discussion

In this section, the EEOIT is compared and analyzed by creating a simulation environ-
ment in MATLAB R2023a. In this simulation environment, IIoT nodes are deployed over a
region of 10 × 15 m with diverse sizes of executable tasks having different deadlines. Each
node will have a particular trust value which will represent if the node lies in the legiti-
mate or a malicious category. Depending on the trust value, the nodes mainly comprise
legitimate nodes and some malicious nodes and their tasks are offloaded to the fog node.
The offloaded tasks are in the random range of 10 to 30 with a diverse data range of 50 kB
to 100 kB. The task computing capacity of the fog node ranges from 10 to 30 cycles and
each of the executed tasks is calculated in terms of processing cycles. The main parameter
values that are used in this simulation environment are mentioned in Table 2. We carried
out Monte-Carlo simulations of over a 1000 iterations to calculate the average value of all
the parameters.

EEOIT is analyzed and compared with three well-known standards Random [33],
Shortest Job First (SJF) [21], and Longest Job First (LJF) [34] algorithms. The results regard-
ing the number of offloaded tasks executed, total executed data, and mean trust value of
legal tasks are obtained. These results are analyzed for varying numbers of nodes and
varying computational capacities of fog servers with trust thresholds of 0.4 and 0.5.

Table 2. Simulation environmental parameters.

Parameter Value Range

Coverage Area 10 × 15 = 150 m2

Offloaded Tasks in each Time Interval 10:2:20

Size Range of Offloaded tasks (kBytes) 60 to 120

Computing Capability of Fog machine (kB) 300

Computing Cycle of Fog Node in each time interval 10

Deadline of Requested Tasks (Processing Cycles) 10 to 20

Malicious nodes 1 to 2

Legal nodes 9 to 18

Trust Threshold 0.4, 0.5

5.1. Execution of Legitimate Tasks

The offloaded tasks are supposed to be executed successfully if it is executed within
their defined deadline. The execution of offloaded tasks depends upon the offloaded tasks
received along with their size and computational capability of the fog node in executing
the tasks in a processing cycle for threshold values of 0.3 and 0.5.

In this section, the successful execution of legitimate tasks for the fog node’s varying
computing capability and an increasing trend of task requests received by the fog node
with fixed processing capacity are discussed as mentioned in Figures 5 and 6, respectively.
To obtain a better picture of these results, they are also represented in terms of percentage
as mentioned in Figures 7 and 8.

Results in Figure 5 are a combination of two sub-figures that are obtained for trust
threshold values of 0.3 and 0.5. The results show that for both of the trust threshold
values, the fog node executes more offloaded tasks in the proposed scheme in comparison
to all compared schemes against all varying computing capabilities of fog computing
machines because EEOIT scrutinizes the legitimate nodes’ tasks first. In addition, the
TOPSIS algorithm helps the fog node in executing more tasks within the same processing
cycles. It has been observed from the results that the number of tasks executed by the
fog node increases with its increased processing capability. For a threshold level value of
0.4, more offloaded tasks are considered legal nodes as compared to the threshold level
of 0.5, and consequently, EEOIT executes more offloaded tasks for a threshold value of
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0.4 as compared to 0.5 threshold values. It has also been observed from the results that the
number of executed task requests by SJF is more than Random and LJF in both sub-figures
as SJF allows the fog node to execute those tasks that are shorter in size, resulting in more
tasks to execute within the specified processing cycle.
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Figure 5. Executed legal tasks against fog processing capacity.
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Figure 6. Executed legal tasks against varying number of task requests.

The same trend follows for a varying number of offloaded tasks when the number
of offloaded tasks is increased by fixing the fog node’s processing capacity as shown in
both sub-plots of Figure 6. It is evident for both threshold values of 0.4 and 0.5 that the
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number of offloaded tasks executed by the fog node in EEOIT is higher than for all the
compared schemes. It has been observed from the results that for a threshold value of
0.4, more offloaded tasks are considered as legal as compared to a threshold value of 0.5.
The higher the trusted tasks, the more the tasks will be executed by SJF, LJF, and Random.
However, the number of executed tasks in EEOIT is the same when task requests increase
because the fog node has already executed the maximum number of tasks. The results
further show that the task requests entertained in LJF are the minimum among all, because,
with the increased number of tasks, the number of larger tasks increases, and a smaller
number of larger tasks will be executed in a specified time.
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Figure 7. Percentage of executed legal tasks against fog processing capacity.
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Figure 8. Percentage of executed legal tasks against varying number of task requests.
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The percentage of the executed tasks is observed for an increasing trend of computing
capability of the fog machine as well as for an increasing number of received tasks as
shown in Figures 7 and 8, respectively. Each of the results is a combination of two sub-plots
with trust threshold values of 0.4 and 0.5. The percentage is determined by calculating
the total number of legitimate tasks executed by the fog node against the legitimate task
requests of IIoT nodes. It is evident from the results in both sub-figures that the percentage
calculated for the executed tasks in the proposed EEOIT algorithm is more than the
other three schemes. Results in Figure 7 represent that the increased task computing
capability of the fog machine improves the execution percentage of task requests for both
trust threshold values of 0.4 and 0.5. The fog node executes more tasks against the fixed
number of 10 offloaded tasks in all processing cycles, and the percentage of executed tasks
increases from 37% to 90% when the trust threshold is 0.4 and from 42% to 96% for the
trust threshold value of 0.5 for the same amount of tasks requests. The same trend follows
in all the compared algorithms as the executed tasks percentage improves with the rise
in fog computing capability. However, the maximum percentage of the executed tasks in
SJF, LJF, and Random are 72%, 48%, and 62%, respectively, for both the threshold values of
0.4 and 0.5.

For varying numbers of received task requests, the executed tasks percentage in
EEOIT is more than the other three schemes for both trust threshold values as shown in
both sub-plots of Figure 8. It is emphasized from the results that an increased number of
task requests reduces the executed tasks percentage as the fog machine holds the same
computing capability and can execute only a limited number of offloaded tasks, and
consequently, the percentage of the executed tasks reduces. The results show that when the
threshold value is 0.4, the executed tasks percentage reduces from 67% to 23% as compared
to 52% to 23% in SJF, 35% to 8% in LJF, and 42% to 16% in Random. The results further show
that for a threshold value of 0.4, there will be more offloaded trusted nodes in different
sizes. For a threshold value of 0.5, the number of legitimate nodes in the offloaded tasks is
less as compared to the threshold value of 0.4. For a threshold value of 0.5, the executed
tasks by the proposed scheme are more than the other three schemes for fixed processing
capacity and consequently an increase in the percentage of the executed tasks. The results
show that the task execution percentage in the proposed scheme decreased from 78% to
32% as compared to 50% to 24% in SJF, 30% to 8% in LJF, and 40% to 15% in Random.

5.2. Executed Data

The executed data are calculated by accumulating the amount of data executed by the
fog node against all the legitimate task requests initiated by IIoT nodes. The performance
of the proposed EEOIT in terms of the executed amount of data for the increasing trend
of computing capability of the fog machine and for different amounts of task requests as
represented in Figures 9 and 10, respectively. Each of the results is a combination of two
sub-results for two threshold values of 0.4 and 0.5. The results of the proposed scheme are
compared with other Random, SJF, and LJF.

Results in Figure 9 highlight that the executed data in EEOIT are the highest among
all for both the threshold trust values. The results further verify that the amount of data
executed by the fog node increases with the increase in its computing capacity. With the
trust threshold value of 0.4, when the fog processing capacity is 10, the amount of data
executed against legitimate offloaded tasks is 360 kB as compared to 330 kB, 160 kB, and
190 kB of data for SJF, LJF, and Random, respectively. The amount of executed data in the
proposed scheme increases to 845 kB as compared to 625 kB, 415 kB, and 585 kB of data in
SJF, LJF, and Random, respectively, when the fog computing capacity increases to 30 for
the fixed number of offloaded tasks with the threshold value of 0.4. When the threshold
value is 0.5, the legitimate task requests decrease and the executed amount of legitimate
data by the fog node also decreases. However, executed data in EEOIT are prominently
higher than the other competitors. It has been observed from the generated results that the
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amount of data expected by the proposed scheme is 725 kB as compared to 530 kB, 375 kB,
and 430 kB data in SJF, LJF, and Random, respectively,
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Figure 9. Total executed data against fog processing capacity.
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Figure 10. Total executed data against varying number of task requests.

To validate the performance of our proposed scheme for the executed amount of
data, the expected data by the fog machine for increasing the trend of task requests are
represented in Figure 10. It is highlighted from the results that threshold trust values of
0.4 and 0.5 are represented in subplots. The results show that for both the threshold trust
values of 0.4 and 0.5, when the number of legitimate tasks is more, the amount of data
executed by the fog node also increases. When the threshold value is 0.4, the amount of
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data executed by the fog node in the proposed scheme increases from 300 kB to 330 kB,
when task requests rise from 10 to 30 tasks. However, the amount of data executed in SJF,
LJF, and Random increased from 250 kB to 310 kB, 160 kB to 130 kB, and 210 kB to 210 kB of
executed data, respectively. When the threshold trust value is 0.5, the amount of executed
data is reduced as the number of legitimate tasks reduces. The results show that EEOIT
due to an efficient TOPSIS-based algorithm executes 350 kB of data as compared to 285 kB
in SJF, 110 kB in LJF, and 180 kB in Random algorithms when the number of offloaded tasks
is 30 tasks.

5.3. Trust Value of Executed Tasks

In this section, the mean trust values (MTVs) of all those tasks that are successfully
executed in a specified time are calculated. Suppose K task requests are originated by IIoT
nodes. If trust value of one of node i is calculated as Ti then MTV calculated for k number
offloaded tasks in a sessions as

MTV =
K

∑
i=1

Ti
K

(10)

The MTV is calculated against the executed legitimate tasks for the increasing trend of
the tasks processing capability of a fog machine and for different task requests as shown in
Figures 11 and 12, respectively. These are also analyzed for two different trust threshold
values of 0.4 and 0.5 and represented in each of the sub-plots.

It has been observed that the MTV of the tasks in EEOIT is 0.73 when the trust
threshold value is 0.4 and more than 0.78 when the threshold value is 0.5 against all
different computing capabilities of fog machines as shown in both sub-figures of the results
represented in Figure 11. However, the mean trust value calculated in the other three
schemes is about 0.4 for all varying capacities of fog nodes when the threshold value
is 0.4 and less than 0.4 when the trust threshold value is 0.5. This huge difference in
mean trust value calculations is due to the preference in task selection by applying the
TOPSIS algorithm in the proposed scheme. However, SJF, LJF, and Random do not consider
the trusted task requests, and some low trust-valued tasks are also executed resulting in
reduced mean trust values.
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Figure 11. Mean trust value against fog processing capacity.
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Figure 12. Mean trust value against varying number of task requests.

The results in Figure 12 consist of two subplots and represent the MTV of the executed
tasks for increasing the trend of requested tasks when the threshold trust value is 0.4 and 0.5.
It is evident from the results that the MTV calculated in the proposed scheme is significantly
greater than the other three schemes for all different task requests. It has been observed from
the results that the MTV calculated in the proposed EEOIT reaches 0.76 when the threshold
value is 0.4. However, the MTV calculated in SJF, LJF, and Random is just above 0.4 for all
task requests against the same trust threshold value. For the trust threshold value of 0.5, the
MTV calculated in the proposed scheme is 0.78 for all originating task requests. However,
the MTV calculated in SJF, LJF, and Random is less than 0.4 for all varying amounts of
offloaded tasks. This is because, SJF, LJF, and Random execute tasks without considering
their trust values. However, in the proposed scheme, preference is given to tasks with
higher trust values than others by applying the TOPSIS-based algorithm.

5.4. Execution Time

The task execution time is calculated as the accumulated time required to execute
all the legitimate tasks. The fog node executes only those offloaded tasks that are within
their processing limit. All those legitimate tasks that are not executed by the fog nodes are
forwarded to the cloud server with a larger propagation time. Suppose there are a total of
legitimate tasks that need to be completed at any given time, which is denoted by Ttot. Out
of these tasks, a certain number of tasks, denoted by X, are executed by fog nodes, while
the remaining tasks, denoted by Y, are executed by cloud servers. If both node i with data
Di and node j with data Dj are executed by both fog nodes and cloud servers, then the total
time taken to execute all these legitimate tasks can be calculated.

Ttot =
X

∑
i=1

Di
PRF

+
Y

∑
j=1

Dj

PRC
(11)

Here, PRF and PRC represent the data processing rate calculated by the fog node and
cloud servers including their propagation delay, respectively.

The results shown in Figures 13 and 14 represent the accumulated time calculated in
executing all the legitimate tasks offloaded by nodes for varying processing capacity of fog
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nodes and for varying numbers of offloaded tasks, respectively. The results in each figure
are calculated for trust threshold values of 0.4 and 0.5.
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Figure 13. Time against fog processing capacity.
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Figure 14. Time against varying number of task requests.

The results in Figure 13 show that the accumulated time in task execution in the pro-
posed scheme is less than the other three schemes for both the trust threshold values. This
is because the proposed scheme scrutinizes trusted tasks by applying a trust management
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system. It has also been observed that the task execution time reduces with the increase
in processing capacity of the fog node as it can execute more offloaded tasks itself, and
lower numbers of tasks are forwarded to the remotely placed cloud server. It has also been
observed that for higher trust threshold values, the execution time is reduced as compared
to lower threshold values for the same number of offloaded tasks. This is due to the fact
that an increased threshold value means there are less legitimate tasks in the total offloaded
tasks, and most of these tasks are executed by the fog node with a reduced execution time.

The results shown in Figure 14 verify that the task execution time of the proposed
scheme is less than the other three schemes for varying numbers of offloaded task requests.
The results show that with the increase in several offloaded tasks with limited fog execution
capacity, the task execution time increases for both the trust threshold values. This is due to
the reason that only a limited number of offloaded tasks are executed by the fog node and
the rest are forwarded to the remotely placed cloud server. The results further show that
the task execution time of legitimate tasks is higher for smaller threshold values because in
such cases, the number of legitimate tasks increases and the accumulated time in executing
these tasks increases.

6. Conclusions

The quality of service of the IIoT network is compromised due to malicious node
attacks in the network. Malicious nodes create anomalies by compromising the computing
capability of the fog machine. In this work, the offloaded tasks are scrutinized by con-
sidering their legitimacy. In addition, if the number of offloaded tasks is more than the
processing capacity of the fog node, then they are scrutinized by applying the TOPSIS
algorithm by considering their trust value, task sizes, and task numbers. The performance
of the proposed EEOIT algorithm is compared with Random, SJF, and LJF for different
computing capabilities of fog machines and all different numbers of task requests for the
trust threshold values of 0.4 and 0.5. It has been observed from the results that EEOIT
executes up to 20% more legitimate tasks as compared to SJF, 66% more tasks from Random,
and 150% more legitimated tasks as compared to LJF for different computing capabilities
of fog machines for both the trust threshold values. The results further show that the
EEOIT executes 38%, 65%, and 153% more tasks from SJF, Random, and LJF, respectively,
for all varying numbers of task requests. The results clearly show that the executed data
of legitimate tasks in EEOIT is up to 32%, 55%, and 164% more than SJF, Random, and
LJF, respectively, for both the trust threshold values. It is evident from the results that the
execution time of all the offloaded legitimate tasks in the proposed scheme is up to 18%
less for varying processing capacity of fog node and 21% less than the other schemes for
varying number of offloaded tasks. Similarly, the mean trust value calculated in EEOIT
against executed tasks is 68%, 70%, and 73% higher than SJF, Random, and LJF, respectively,
when the trust threshold values are 0.3 and 0.5. In future, we will work on improving
the trust evaluation metric for different network attacks and efficient load balancing of
fog nodes.
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