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Abstract: In the field of robotic automation, achieving high position accuracy in robotic vision
systems (RVSs) is a pivotal challenge that directly impacts the efficiency and effectiveness of industrial
applications. This study introduces a comprehensive modeling approach that integrates kinematic
and joint compliance factors to significantly enhance the position accuracy of a system. In the
first place, we develop a unified kinematic model that effectively reduces the complexity and error
accumulation associated with the calibration of robotic systems. At the heart of our approach is the
formulation of a joint compliance model that meticulously accounts for the intricacies of the joint
connector, the external load, and the self-weight of robotic links. By employing a novel 3D rotary
laser sensor for precise error measurement and model calibration, our method offers a streamlined
and efficient solution for the accurate integration of vision systems into robotic operations. The
efficacy of our proposed models is validated through experiments conducted on a FANUC LR Mate
200iD robot, showcasing notable improvements in the position accuracy of robotic vision system.
Our findings contribute a framework for the calibration and error compensation of RVS, holding
significant potential for advancements in automated tasks requiring high precision.

Keywords: robotic vision system; position accuracy; unified kinematic model; joint compliance
model; error compensation; 3D laser sensor

1. Introduction

The advent of robotic vision systems (RVSs) has ushered in a new era of robotic
capabilities, fundamentally transforming the scope and efficiency of automated tasks across
various industries [1,2]. The intrinsic value of such systems lies in their ability to perform
complex visual tasks with remarkable accuracy, from intricate assembly operations in
manufacturing to delicate surgical procedures in medicine. High-precision RVSs enable
robots to detect, recognize, and manipulate objects with a level of detail and accuracy
previously unattainable, bridging the gap between robotic automation and tasks requiring
human-like dexterity and visual acuity.

The position accuracy of an RVS is defined by the system’s capability to precisely locate
a target within its field of view [3]. This accuracy is gauged by the system’s effectiveness in
pinpointing an object’s position relative to its true location in the physical world. Enhancing
this position accuracy necessitates robust modeling and calibration processes. These
processes entail the acquisition of part point clouds via the vision system, followed by the
transformation of these data points into a consistent representation of the target features
within the Cartesian coordinate system. Therefore, meticulous modeling is paramount
in improving the position accuracy of an RVS. Current methodologies for RVS modeling
are bifurcated into kinematic and compliance models, each addressing different aspects of
system behavior and contributing to the overall precision of the system [4].
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The kinematic model primarily involves the identification of structural parameters of
basic robotic movements [5] and the “hand eye” parameters [6,7] between the robot and
camera coordinate systems. The D-H model proposed by Denavit and Hartenberg has
become widely applied in kinematic modeling within the industrial robotics field, serving
as a standard for an extended period [8,9]. Subsequent improvements to this model, such
as those introduced by Hayati, incorporate angles between adjacent parallel joints [10]. Du
Guanglong presents a novel approach for online robotic kinematic calibration, which, by
integrating an Unscented Kalman Filter and an Iterative Particle Filter, achieves precise
identification of robotic kinematic parameters without necessitating operational halts [11].
Joubair introduces a kinematic calibration approach utilizing distance and sphere con-
straints, significantly enhancing the position accuracy of a six-axis serial industrial robot
within a specific target workspace [12]. The most common method for hand–eye calibration
is based on estimating transformation matrices. Through reprojection error minimization,
Koide directly utilizes calibration pattern images, without the need for explicit camera
pose estimation [13]. Hua Jiang successfully demonstrates a robot hand–eye calibration
approach utilizing an optimized neural network to accurately model the complex, nonlinear
relationship between camera and robotic coordinates [14].

The robot compliance model focuses on the elasticity of the materials constituting
the robot, addressing deformation errors under applied forces [15,16]. Due to its own
weight and external loads, the robot experiences structural deformation in its links and
joints [17]. Current research on the joint stiffness modeling of six-degree-of-freedom robots
mainly analyzes deformations in joints 2 and 3, establishing simplified linear torsion spring
models [18]. Abele utilized a linear torsion spring model and the Jacobian matrix to create
a static compliance model for robots, enhancing tool path accuracy [19]. Dumas et al.
developed a stiffness model for serial robots based on translational and rotational errors,
experimentally validated on the Kuka KR240 robot, identifying compliance coefficients for
its six joints [20]. P Kozlov used a CAD virtual experimental environment and finite element
numerical analysis to derive the compliance matrices describing robot stiffness, achieving
a comprehensive robot compliance model [21]. However, this model, which includes
many redundant parameters, may not suit calibration involving numerous redundant
parameters. Further, Klimchik et al. investigated the static calibration issue of heavily
loaded industrial robots, employing the Virtual Joint Modeling method to establish a
robot compliance model [22]. Du Liang developed an approach for calibrating compliance
errors in robots by statistically analyzing the effects of gravity and elastostatic forces
on individual joints. Utilizing single joint rotations and laser tracking measurements,
the study identifies significant compliance errors and compensated for them, markedly
improving robot accuracy and operational efficiency [23]. Tepper proposed a cost- and
time-efficient approach for setting up a compliance model for industrial robots, utilizing an
optimal design of experiments for variance-minimal Bayesian inference of gear stiffness
parameters [24].

Overall, kinematic models aim to enhance RVS geometric accuracy with various
solutions already available, while compliance models lack a unified consensus among
researchers. There are four approaches to the compliance analysis of robots, incorporat-
ing Finite Element Analysis [25], the Virtual Joint Model [26], the nonlinear transmission
model (NTM) [27], and the Rigid–Flexible Coupling Model (RFCM) [28]. Firstly, Finite
Element Analysis simulates system parts to estimate deformation errors under different
configurations but struggles with predicting errors from real shapes, material properties,
and manufacturing assembly. Secondly, the Virtual Joint Model introduces excessive redun-
dant parameters through adding 6-DOF springs at the joints, complicating identification.
Thirdly, NTM corrects nonlinear errors of connectors in joint spaces, typically modeling
end-effector spaces with high-order harmonic functions, which cannot solve the issues
of interpretability and model under-fitting. Ultimately, RFCM considers the mechanical
impact of robot self-weight and loads, but cannot indicate the mass and centroid errors of
robot parts effectively.
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As stated above, model calibration is indispensable for a newly installed or worn RVS.
This study introduces a model-based kinematic and joint compliance approach, enhancing
calibration and error compensation for precise positioning upon integrating vision systems
into robots. Our contributions are as follows:

(1) We design a 3D rotary laser sensor mountable on robot grippers to create a representa-
tive RVS, propose an error measurement method based on vision measurement, and
prove the ability to improve the position accuracy of the RVS.

(2) Existing RVS modeling methods separate the robot body and the hand–eye system
calibration, leading to internal error accumulation. We proposed a unified kinematic
model by trimming redundant structural parameters.

(3) We introduced a joint compliance model by combining NTM and RFCM, comprehen-
sively considering the joint friction of connectors, external loads, and link self-weight
on joint compliance. The specific optimization is as follows:

(i) We proposed an extended NTM, using second-order Fourier functions to fit
spatial errors of the terminal three joints based on the Pieper Criterion in
robotics. And the under-fitting issue in NTM is addressed.

(ii) To resolve the issue of model hyper-parameters caused by unknown external
load configurations, we approximated the load’s position and direction by
using the hand–eye transformation matrix of the RVS.

(iii) Through mechanical analysis, we simplified the link model for self-weight.

To address these issues and propose kinematic and joint compliance modeling and
calibration methods, this paper focuses on the establishment and parameter identification of
RVS models. The rest of the paper is organized as follows: Section 2 introduces a 3D vision
sensor to build the RVS, and establishes a unified kinematic model. Section 3 establishes
the joint compliance model for the RVS, including an extended nonlinear transmission
model and compliance models for the loads’ and links’ self-weights. Section 4 proposes
a parameter identification process for kinematic and joint compliance models. Section 5
completes two accuracy verification experiments on the FANUC LR Mate 200iD robot.
Section 6 concludes the paper.

2. Method Framework and Unified Kinematic Model
2.1. Overview of Kinematic and Joint Compliance Model

Figure 1 presents an overview of the robotic vision system in our study. A 3D rotary
laser sensor is designed in Figure 1a, which is integrated into the gripper of a robot in
Figure 1b. Moreover, Figure 2 provides a visual exposition of the methodological archi-
tecture underpinning the proposed kinematic and joint compliance model. The flowchart
presents a structured sequence of operations beginning with a unified kinematic model
that integrates both robot body modeling and hand–eye system calibration. This integra-
tion is critical to reducing internal error accumulation and serves as the basis for further
error compensation strategies, ensuring a strong foundation for the precision of robotic
movements and vision system coordination.
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2.2. Geometric Model of a 3D Rotary Laser Sensor

The calibration of industrial robot models requires reliable error observation methods.
One mainstream approach is measuring the error of robot motion in configuration space
(C-space) using 3D stereo vision sensors. Depending on the installation position of the
vision sensor, there are two types: eye-in-hand and eye-to-hand. The choice between
these two depends on the practical application requirements, with little difference in the
underlying mathematical principles.

First, a geometric model of the rotary laser sensor is established. The camera imaging
process includes both a distortion model and a geometric model. The geometric model
of the camera is based on the pinhole imaging principle, mathematically expressed in
Equation (1).

fxXc = (u − u0)Zc
fyYc = (v − v0)Zc

(1)

where fx and fy represent the camera’s focal lengths on the image plane, and u0 and v0
are the pixel coordinates of the intersection point between the camera’s optical axis and
the image plane. (u, v) and (Xc, Yc, Zc), respectively, express the spatial point in the image
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plane coordinate system and the camera coordinate system. The distortion model can be
expressed as Equation (2).

⌢
u = u

(
1 + k1r2 + k2r4 + k3r6 + 2p1v

)
+ p2

(
r2 + 2u2)

⌢
v = v

(
1 + k1r2 + k2r4 + k3r6 + 2p2u

)
+ p1

(
r2 + 2v2)

r =
√
(u − u0)

2 + (v − v0)
2

(2)

where (k1, k2, k3) represents the radial distortion coefficient and the tangential distortion
coefficient is (p1, p2). The radial distortion, influenced by Snell’s Law, addresses deviations
from the optical axis, where light refracts to different positions, causing magnification
discrepancies between actual and ideal imaging. And the tangential distortion coefficient
compensates for errors caused by the nonparallel alignment of the lens and the imaging
plane.

Subsequently, the structure of the 3D rotary laser sensor is designed in Figure 1a, and
its schematic representation is illustrated in Figure 3. A line laser hits the mirror and the
object surface in turn. Next, the light is captured by a fixed camera. Through the rotation of
the mirror, multiple laser stripes can be illustrated in the image. The reflected light planes
can be expressed as Equation (3).

→
n

i(
Xc Yc Zc

)T
+

(
0 0 bi)T

= 0 (3)

where
→
n

i
is the normal plane to the light plane, and bi is the bias. Then, Equations (1) and

(3) are expressed in matrix form, as shown in Equation (4). fx 0 u0 − u
0 fy v0 − v

nx
i ny

i nz
i

Xc
Yc
Zc

+

0
0
bi

 = 0 (4)
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Finally, the point cloud in camera frame {Cam} can be further calculated by 3D recon-
struction Equation (5). Xc

Yc
Zc

 =

 fx 0 u0 − u
0 fy v0 − v

nx
i ny

i nz
i

−1 0
0

−bi

 (5)
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2.3. Unified Kinematic Model

Methods of robot body modeling and hand–eye calibration have already been exten-
sively studied individually. However, this fragmented approach introduces redundant
kinematic parameters, leading to the accumulation of system errors.

This section builds upon the serial robot MDH (Modified Denavit–Hartenberg) model
by introducing camera and user frames at the beginning and end of the robot, respectively.
It further establishes a unified kinematic model for RVS that conforms to a physically
expressive model with low redundancy. Then, a full parameter optimization solution is
performed on the system’s kinematic model.

The initial model of the measurement system is illustrated in Figure 1b. The transfor-
mation from the camera frame {Cam} to the user frame {User} is defined as UTC, which
satisfies Equation (6).

q = UTCp (6)

where p, q are the same targets described in {User} and {Cam}.
In order to separate the robotic model from the system, UTC can be divided into three

parts. In Equation (7), UTB is the transformation matrix from the robot base frame {Base} to
the {User}. BTG is the transformation matrix from the gripper frame {Gripper} to the {Base}.
GTC is the transformation matrix from the {Cam} to the {Gripper}.

UTC = UTB
BTG

GTC = UT1

Joints

∏
i=1

iTi+1
Joints+1TC (7)

where Joints is the number of robotic joints.
To reduce degrees of freedom, UTB and GTC are modeled based on the Euler angle,

and BTG is constructed by the MDH model of the robot. The rotation and translation
relationship is shown in Equations (8)–(10). In addition, parameters of the end joint are
deleted because the 3D laser scanner is rigidly connected with the robot. Similarly, two
redundant parameters near the robotic base are deleted, including θ1, d1.

UTB = Trans
(
x0, y0, z0

)
Rotz(r0)Roty(w0)Rotx

(
p0

)
(8)

GTC = Trans
(
xe, ye, ze

)
Rotz(re)Roty(we)Rotx

(
pe

)
(9)

BTG = Trans(a1, 0, 0)Rotx(α1)
Joints−1

∏
i=2

Rotz(θi)Trans(ai, 0, di)Rotx(αi) (10)

where θ, d, a,α represent the joint angle, link offset, link distance, and twist angle, respec-
tively. x, y, z, r, w, p denote three translations and three rotations of different directions. In
summary, the established unified kinematic model includes 30 parameters (θ1 = d1 = 0):
ηKi= (x 0, y0, z0, r0, w0, p0 · · · θi, di, ai,αi, · · · xe, ye, ze, re, we, pe

)T, (i = 1, 2, . . . , 5).
Based on ηKi, the kinematic coordinates of the robot’s position (defined as the origin

of the frame {Cam}) can be obtained. Then, the unified kinematic model can be expressed
as qKi = q(ηKi) =

UTC.

3. Joint Compliance Model

The unified kinematic model merely describes the geometric error of RVS, but is unable
to cope with the elastic deformation. In general, global compliance models for various parts
of the robot are established, based on elasticity theory used for nonrigid models. However,
numerous redundant parameters will be introduced, causing under-fitting in calibration.
According to [28], 90% of the elastic deformation in serial robotic arms concentrates at
the joint connections. Thereby, a simplified form based on Hooke’s law of joint torsional
elasticity is proposed in Equation (11).

δθ = λθτ (11)
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where λθ is the compliant matrix of joint torsion, θ is a vector concatenated joint angle θ,
and τ is a vector concatenated joint torque τ.

Analyzing the impact of each component from the perspective of joint compliance is
of great significance. In quasi-static conditions, joint deformation is primarily influenced by
three types of forces: frictional forces, externally applied loads, and the self-weight of the
robot links. Based on the principle of superposition in mechanics, the effects originating
from the torque output by each of the robot’s drive motors can be decomposed into joint
frictional forces caused by connectors τC, end-effector load forces τF, and link gravitational
forces τLink, as indicated in Equation (12).

τ = ∑
i∈Joints

τi
C + τF + ∑

i∈Joints
τi

Link (12)

By combining (10) and (11), the joint compliance error can be derived as Equation (13).

δθ = ∑
i∈Joints

δθi
C + δθF + ∑

i∈Joints
δθi

Link (13)

The joint frictional forces, originating from the relative rotation at joint connections,
are influenced by several factors including motor encoders, gear reducers, and couplings.
These forces are complex and challenging to explain through linear models. Consequently,
this paper introduces a nonlinear transmission model to address the angle errors caused by
frictional forces. Moreover, joint angle errors resulting from end-effector load forces and
the gravitational forces of the robot links can be predicted using the theory of robot statics.
Based on these predictions, a linear compliance model is established.

3.1. Extended Nonlinear Transmission Model

An integrated joint module encompasses a motor, a magnetic encoder, and a harmonic
reducer, where the encoder, attached to the motor’s shaft end, gauges the motor angle, and
the motor shaft’s linkage to the harmonic reducer’s waveform generator facilitates output
with reduced rotational speed through its flexible wheel. This setup introduces an error
chain from the encoder through the harmonic reducer (as shown in Figure 4), affecting the
joint module’s angular measurement precision due to both components. Manufacturing
considerations for magnetic encoders include addressing the positioning inaccuracies in
the magnetic plate’s pole distribution and the relative positioning of the Hall sensor and
the magnetic plate, which are critical for the encoder’s signal accuracy. Imperfections such
as tilt and eccentricity introduce periodic, low-frequency errors, necessitating harmonic
analysis for error correction.
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In addition, the harmonic reducer operates on elastic deformation principles, with a
setup comprising rigid and flexible gears and a wave generator [27]. The wave generator, by
driving the flexible gear and inducing deformation waves, achieves dynamic transmission
through periodic elastic deformation, engaging with the fixed rigid gear. Transmission
errors, including radial and run-out errors from the wave generator, geometric and motion
eccentricity from gear machining and installation, and backlash between gears, manifest
as periodic errors with distinct low- and high-frequency components. These characteris-
tics justify employing a second-order Fourier analysis for detailed error assessment and
mitigation in the manufacturing process [29].

Since the angular error of a joint module is caused by the elastic deformation of its
components and has continuous and integrable characteristics over a cycle, the angular
error of the joint module can be represented as a signal with a 2π period, approximated by
the Fourier series φ(θ). As shown in Equation (14), the angular error of the connector δθC,
caused by the periodic change in angle, is transmitted to the robot’s tool center point (TCP)
through the robot’s motion Jacobian matrix J(θ), and can ultimately be approximated as
the positioning error δqC induced by frictional forces.

δqC = J(θ)δθC = J(θ)φ(θ) (14)

In the equation, θ refers to the angle value measured by the robot’s magnetic encoder.
Next, following the decomposition into a Fourier series, φ(θ) conforms to Equation (15).

φ
(
θ̂
)
=

(
φ
(
θ̂1
)
φ
(
θ̂2
)
· · · φ

(
θ̂Joints

))T (15)

where

φ
(
θ̂j
)
= k(j)

0 +
N

∑
i=1

k(j)
ai cos

(
iwθ̂j

)
+

N

∑
i=1

k(j)
bi sin

(
iwθ̂j

)
(16)

In the equation, N represents the order of the Fourier series, k is the amplitude of the
i-th order component signal, and j denotes the joint index. For simplicity, w will be forced
to 1.

To solve for k in Equation (16), taking a six-degree-of-freedom industrial robot as
an example, it is necessary to calculate the error φ

(
θ̂j
)

for each joint of the robot through
inverse kinematics. Since inverse kinematics involves mapping from Cartesian space to
joint space, to ensure the inverse kinematics solving process adheres to R3 → R3 , this
paper restricts the three degrees of freedom in the joint space based on the Pieper Criterion
(the axes of the last three joints of a six-degree-of-freedom robot always intersect at a single
point, which has a minor impact on positional errors.), denoted as φ

(
θ̂4
)
= φ

(
θ̂5
)
=

φ
(
θ̂6
)
= 0, N = 2.

After simplification, φ(θ) can be expressed as Equation (17). And the parameters of
the extended NTM are expressed as ηC =

(
k(1:3)

0 , k(1:3)
a1 , k(1:3)

b1 , k(1:3)
a2 , k(1:3)

b2

)
.

φ
(
θ̂1:3

)
= k(1:3)

0 + k(1:3)
a1 cos

(
θ̂
)
+ k(1:3)

b1 sin
(
θ̂
)

+k(1:3)
a2 cos

(
2θ̂

)
+ k(1:3)

b2 sin
(
2θ̂

) (17)

3.2. Compliance Error Caused by the External Load

After modeling the nonlinearities of the transmission system, this section focuses
on modeling the linear part of joint deformation. Based on the theory of linear torsional
springs, a fixed stiffness coefficient is assigned to each joint of the robot. To establish the
mathematical relationship between the forces and deformations experienced by the robot’s
end effector in various configurations of the robot and the external load, it is first necessary
to understand the forces and deformations at each of the robot’s joints. Figure 5 shows the
mechanical relationship.
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In the robot’s base frame {Base}, assume that the force applied at the origin of the
camera frame {Cam} is

(BFC
BMC

)T, and the force applied at the origin of the end actu-

ated joint frame {Gripper} is
(BFG

BMG
)T. For the six-degree-of-freedom (6-DOF) serial

industrial robot in this paper, we set G = 6. The relationship between them can be solved
by force-and-torque transformation 6

CHB, as shown in Equation (18).( BF6
BM6

)
= 6

CHB

( BFC
BMC

)
(18)

The transformation of forces under frame conversion 6
CHB is seen in Equation (19).

6
CHB =

(
E3 0[6tC

]6RC + 6∆C E3

)
(19)

where 6tC and 6RC are the translation and rotation matrices of GTC in Equation (9); specif-
ically, 6tC = (xe, ye, ze)

T and 6RC = Rotz(re)Roty(we)Rotx(pe).
6∆C is the error matrix

from the load center of gravity to the origin of {Cam}. We assume that 6∆C is equal to zero,
because it mainly affects the torque of the sixth joint with a relatively short lever arm, and
has minimal impact on the other joints.

The notation [t] in Equation (19) represents the antisymmetric matrix of the three-
dimensional vector t, and when t =

(
tx ty tz

)T, [t] can be expressed using Equation (20).

[t] =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (20)

For the high-precision positioning requirements of RVS in noncontact scenarios, the
gravity of the externally applied load acts in a vertically downward direction. The force
acting on the center of gravity of the externally applied load can be described in the frame
{Cam} as

(BFC
BMC

)T
=

(
0 0 −mLg 0 0 0

)T.
Based on the definition of the robot kinematics Jacobian matrix J(θ), and the relation-

ship between it and the static-force Jacobian matrix JF(θ), the errors caused by the load δqF
and the load torque τF can be derived, as shown in Equation (21).

δqF = J(θ)δθF

τF = JT(θ)

( BF6
BM6

)
= JF(θ)

( BF6
BM6

)
(21)
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Based on the linear torsion spring theory, the compliance coefficient corresponding
to each joint is denoted as λθ. According to the linear torque–torsion relationship, the
relationship between the torsional torque of each joint and its elastic deformation can be
obtained as shown in Equation (22).

δθ = λθτ =

λ1
. . .

λJoints

τ (22)

where δθ =
(
δθ1 δθ2 · · · δθJoints

)T represents the elastic deformation of each joint
under torsional torque, λθ denotes the compliance coefficient of each joint, and τ =(
τ1 τ2 · · · τJoint

)T is the torsional torque corresponding to each joint.
By combining Equations (16), (19), and (21), the pose error under the base frame {Base}

of the 6-DOF industrial robot studied in this paper can be expressed as Equation (23).

δqF = J(θ)λθJT(θ)6
CHB

( BFC
0

)
(23)

For an RVS without external forces, the direction of the load aligns with the direction of

gravity; that is,
BFC

∥BFC∥
=

(
0 0 −1

)T
= −e3. By integrating the load weight

∥∥BFC
∥∥ with

the compliance matrix λθ to form λ∗θ =
∥∥BFC

∥∥λθ, Equation (24) can be derived. The param-
eters of the external load compliance model are expressed as ηF = (λ∗1 , λ∗2 , λ∗3 , λ∗4 , λ∗5 , λ∗6).

δqF = J(θ)
(∥∥BFC

∥∥λθ)JT(θ)6
CHB

 BFC
∥BFC∥

0


= J(θ)λ∗θJT(θ)6

CHB

(
−e3

0

) (24)

3.3. Compliance Error Caused by Weight of Robot Link

Furthermore, the effect of the self-weight of the links on joint deformation is crucial.
As the robot is in any position or posture, the joint torque generated by the self-weight of
the links always exists, and the compliance error caused by this factor is always coupled
with geometric parameter errors. The body structure of most industrial serial robots is
similar to that of the FANUC LR Mate 200iD robot, allowing for a generalized analysis
method. The centroid of the link relative to the origin of the robot’s base frame {Base}
forms a cantilever structure, generating torque. For a particular joint, its compliance error
accumulates unidirectionally, for example, joint 3 is affected by the self-weight of links 3,
4, 5, and 6. The torque that does not change with the robot’s posture can be represented
by the kinematic model. Therefore, two scenarios can be disregarded: (1) the lever arm
between the link and gravity is zero; (2) the rate of change in the lever arm between the
link and gravity is zero.

As shown in Figure 5, the rotation center axis (z1) of link 1 is parallel to the gravity
vector, so the self-weight’s torque effect on the joint can be ignored. The rotation center
axes (z3, z4) of links 2 and 3 are approximately perpendicular to the gravity vector, and
their self-weight effects cannot be ignored. When link 4 rotates around its rotation center
axis (z4), the lever arm does not change, so its effect on joint 4 can be ignored. The frame
origins of links 5 and 6 coincide (L5 = 0 mm), and link 6 is rigidly connected to the load,
so the self-weight effects of links 5 and 6 are already included in Equation (22). Therefore,
only the deformations produced by the self-weight of links 2, 3, and 4 on joints 2 and 3
need to be considered.

Define the distance from the centroid G2 of link 2 to its rotation center axis (z2) as A2,
and the distance from the centroid to the rotation center axis (z3) of link 3 as A3. Consider
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links 3 and 4 as a whole, with their corresponding centroid as G3. The lever arms exerted
by each link on the joint are shown in Table 1.

Table 1. Torque applied by the link.

Torque Link1 Link2 Link3~Link4 Link5~Link6

τ1 0 0 0

—

τ2 — G2A2sin(θ2) G3L2sin(θ2) + G3A3sin(θ2 − θ3)
τ3 — — G3A3sin(θ2 − θ3)
τ4 — — 0
τ5 — — —
τ6 — — —

By summing the torque components experienced by each joint as listed in Table 1,
Equation (25) can be derived in matrix form.

τLink23 =

(
sin(θ2) sin(θ2 − θ3) 0
0 0 sin(θ2 − θ3)

) G2A2 + G3L2
G3A3
G3A3


= N23(θ)

 s1
s2
s2

 (25)

By substituting Equation (21) into Equation (25), the end-effector position error caused
by the self-weight of the links can be obtained as Equation (26).

δqLink23 = J23(θ)

(
λ2 0
0 λ3

)
N23(θ)

 s1
s2
s2


= J23(θ)λ

∗
23N23(θ)

 s1
∗

s2
∗

s2
∗

 (26)

where s∗1 = s1
∥∥BFC

∥∥−1, s2
∗ = s2

∥∥BFC
∥∥−1, and λ∗23 =

∥∥BFC
∥∥diag(λ2, λ3). And the parame-

ters of the robot link self-weight compliance model are expressed as ηLink =
(
s∗1 , s∗2

)
.

In summary, combining Equations (7), (17), (24), and (26), the kinematic and joint
compliance model can be expressed as Equation (27) in differential form.

δq = δqKi + δqC + δqF + δqLink23 (27)

4. Parameter Identification

The models proposed in Sections 2 and 3 establish the mathematical relationship
between the parameters to be identified and the RVS across different poses. However, it is
difficult to identify all parameters simultaneously, especially since the extended NTM in
Section 3.1 has high nonlinearity. Therefore, parameter identification is required in multiple
stages in Figure 6.
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The process begins with a measurement dataset to calibrate the unified kinematic
model as the foundation for identifying the parameters of the joint compliance model.
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This step is crucial as it establishes the kinematic parameters that are the bedrock for
subsequent procedures. Next, the process splits into two branches. In the first branch,
the inverse kinematics are computed, which leads to the determination of the residual
error of joint angles. This error is then addressed through Fourier fitting, which helps
to fine-tune the extended nonlinear transmission model (NTM). In parallel, the second
branch is focused on calibrating the whole kinematic and joint compliance model, which
integrates the kinematics of the robot with the mechanical effects of transmission, load, and
the robot’s own links. Finally, an accurate model is obtained, which represents a synergy of
all the calibrated parameters and models.

The parameter Jacobian matrix J(η) is necessary for identification, based on the differ-
ential kinematics model. For a single measurement point, it includes three scalar equations,
which can be represented as Equation (28).


∆q1
∆q2

...
∆qn

 =


∂q1
∂η1

∂q1
∂η2

· · · ∂q1
∂ηm

∂q2
∂η1

∂q2
∂η2

· · · ∂q2
∂ηm

...
...

...
...

∂qn
∂η1

∂qn
∂η2

· · · ∂qn
∂ηm




∆η1
∆η2

...
∆ηm

= J(η)∆η (28)

where ∆q is the position error that can be physically measured in the frame {User}, and
it can be substituted by the measurement error ∆p in the frame {Cam}. ∆η is the errors
associated with the model parameters.

The identification of η is a nonlinear estimation problem, which can be calculated by
the Levenberg–Marquardt (L-M) algorithm. An iterative gradient descent algorithm is
summarized as follows:

(1) Calculate the parameter Jacobian matrix J(η).
(2) Calculate the update vector ∆ηk of parameter:

∆ηk =
(

JT(ηk)J(ηk)
)−1

JT(ηk)∆q

(3) Update: ∆ηk+1 = ηk + ζ∆ηk, k = k + 1

where ζ is the descent rate of each iteration and equals 0.005.
According to the steps in Figure 6, combined with Equation (28) and the L-M algorithm,

the parameter identification is performed in three stages:
Stage 1: Calibrate the unified kinematic model and identify 30 unified kinematic

parameters ηK. After the calibration, the residual errors of each measurement point are
recorded as

(
∆rx, ∆ry, ∆rz

)
.

Stage 2: Calibrate the extended NTM. First, the residual errors of the unified kinematic
model are projected into the joint space, based on the numerical inverse kinematics in
Equation (29). Furthermore, the parameters of the extended NTM ηC are identified by
discrete Fourier transform.

∆rx
∆ry
∆rz

 =


∂qx
∂θ1

∂qx
∂θ2

∂qx
∂θ3

∂qy
∂θ1

∂qy
∂θ2

∂qy
∂θ3

∂qz
∂θ1

∂qz
∂θ2

∂qz
∂θ3


∆θ1

∆θ2
∆θ3

 = J†(θ)∆θ (29)

where (∆θ1, ∆θ2, ∆θ3) are the angular residual errors of the point in the joint space (J1–J3).
J†(θ) is the numerical Jacobian matrix of the joint angles.

Stage 3: All 53 parameters of the kinematic and joint compliance model η =(ηKi, ηC, ηF, ηLink)
T

are identified to obtain the optimal position accuracy.
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5. Calibration Experiment of Kinematic and Joint Compliance Model

To assess the improvement in system position accuracy provided by our proposed
method, we first calculated the geometric parameters of the 3D rotary laser sensor based on
Zhang’s calibration method, and completed the local accuracy measurement verification
of the four ceramic sphere calibrators. Then, we set up two experiments to validate the
position accuracy of our model, as shown in Figure 7.
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Figure 7. Experiment setups: (a) calibration platform based on the 3D rotary laser sensor; (b) calibra-
tion platform based on a laser tracker.

The first experiment was conducted with a calibrator composed of four ceramic balls,
in order to assess the overall performance of the RVS. These four balls were measured by a
Coordinate Measuring Machine (Hexagon Leitz PMM-Xi) with a precision of 0.5 µm, as
shown in Table 2. The robot, carrying the rotating laser sensor, scanned the point cloud of
the standard ceramic balls from different poses and calculated the center of the spheres.
And a set of data points under the camera frame {Cam} were produced, which correspond
to the four data points under the ceramic ball frame {Ceramic}.

Table 2. Ceramic balls measured by CMM (mm).

Ceramic Ball x y z r

1 185.328 408.400 2303.870 14.999
2 240.396 377.943 2640.910 15.002
3 −196.154 289.749 2727.350 15.001
4 −246.181 344.340 2379.780 14.998

The second experiment was conducted with a laser tracker to eliminate the influence
of the 3D rotary laser sensor. We mounted the reflector of the laser tracker on the side panel
of the sensor. Then, the robot was controlled to move to 7000 array positions. The array
points under the laser tracker’s frame {LT} ere obtained, which correspond to the origin
under the reflector’s frame {Reflector}.

5.1. Calibration of 3D Rotary Laser Sensor

In our previous work [30], the principle and feasibility of geometric feature measure-
ment using the 3D rotary laser sensor were already validated and will not be elaborated
upon here. Therefore, this section will focus on verifying the accuracy of the sensor in
measuring ceramic spheres.

In the experimental setup, the 3D rotary laser sensor employed comprised an industrial
camera with model number MV-CA013-20GM, offering a resolution of 1280 × 1024 pixels.
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The camera was capable of capturing images at a frame rate of 90 Hz, with a 16mm focal
length providing a horizontal field of view (HFOV) of 21.7◦ and a vertical field of view
(VFOV) of 17.5◦. The sensor’s laser component had an output power of 50 mW at a
wavelength of 405 nm. A rotating mirror, integral to the sensor, rotated at an angle of
20◦, facilitating the sensor’s ability to create 120 distinct flight planes for data acquisition.
The sensor’s optimal working distance was set between 115 and 135 mm, with a baseline
distance of 69 mm. The system offered high resolutions, with a horizontal resolution of 0.5
mm and an even finer vertical resolution of 0.045 mm, ensuring detailed and precise data
collection for the study.

As shown in Figure 8, a backlight chessboard was used to calibrate the 3D rotary sensor
based on Zhang’s algorithm. The intrinsic parameters of the camera utilized in the 3D
rotary laser sensor were meticulously calibrated to ensure the accuracy of the experimental
data. The focal lengths in the x and y axes were determined to be fx = 3423.018 and fy =
3420.949, respectively. The principal point of the camera, which is the point on the sensor
where the optical axis intersects, was located at coordinates (u0, v0) = 605.260, 580.506.
The radial distortion coefficients (k1, k2, k3), critical for correcting lens distortions, were
found to be −0.163, 0.951, and −0.874. Additionally, the tangential distortion coefficients
(p1, p2) were measured as 0.000107 and −0.00119, which are imperative for correcting the
decentering distortion in the camera lens system. According to the calibration result of 3D
rotary sensor, the re-projection error of the camera is 0.06 pixels, and the average fitting
error of 120 light planes is 0.004 mm.
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Then, the robot moved the 3D rotary sensor to measure 200 positions around the upper
part of the four ceramic balls from different directions, following the layout method in [12].
Additionally, all positions were simulated in WeldPro and distributed as evenly as possible
in Figure 9. According to 372 rounds of cycle measurements of the surface, the position
of the balls’ center can be optimized using the Spherical Regression Algorithm. Next, the
radius error distribution is concluded in Figure 10. The RMS (Root Mean Square) of the
shape accuracy is 0.0114 mm and the Std. (standard deviation) can reach 0.0049 mm.
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5.2. Accuracy Verification Based on 3D Rotary Laser Sensor

From the first experiment shown in Figure 7a, we validated the position accuracy
of the RVS by measuring the four ceramic spheres with the 3D rotary laser sensor in
Figure 8. According to the 200 measured points of ceramic spheres from different direc-
tions, 100 random positions were used for system calibration, and the remaining 100 for
evaluation.

After the parameter identification process in Section 4, the kinematic and joint compli-
ant model calibration results of RVS were calculated, including two frame transformations
listed in Table 3, and the MDH parameters and joint compliance parameters in Table 4.

Table 3. Calibration results of UTB and GTC based on the 3D rotary laser sensor.

Transformation Trans (x, y, z)/mm Rot (r, w, p)/deg

UTB
{Ceramic}→{Base}

(User1) 500.580, 298.611, 2638.660 −1.815, −170.153, 98.596
GTC {Gripper}→{Cam} 7.096, 0.355, −348.800 0.825, −24.750, 179.425

Table 4. Calibration results based on 3D rotary laser sensor.

MDH Parameters Joint Compliance Parameters (×10−3)

Joint θ/deg d/mm a/mm α/deg k(1:3)
0

0.0690, 0.250, −0.164
1 — — 49.780 −89.973 k(1:3)

a1
−0.245, −0.261, −0.695

2 −90.066 −0.0206 330.341 179.937 k(1:3)
a2

−0.177, −0.272, −0.0487
3 0.0372 0.0106 34.969 −90.001 k(1:3)

b1
−0.333, −0.196, −0.610

4 0.167 −335.305 −0.0286 90.037 k(1:3)
b2

−0.0437, −0.199, −0.00706

5 179.720 −0.601 −0.0766 90.103 λ∗
θ [mm] diag(−1.159, 0.0640, 0.0582,

0.183, 0.852, −0.158)
6 — — — — s∗1 , s∗2 [mm] 319.836, 1833.495



Sensors 2024, 24, 2559 16 of 22

The results depicted in Figure 11, alongside the data presented in Table 5, provide a
quantitative and visual assessment of our calibration method’s performance. Figure 11a
shows a scatter plot of position errors before and after calibration at different points, with
a noticeable reduction in error after calibration, signifying an improvement in accuracy
post calibration. Figure 11b illustrates a histogram of the frequency of position errors,
comparing our method with three others: MDH [31], NTM [27], and RFCM [17]. Our
method demonstrates fewer occurrences of higher errors, with the majority of errors con-
gregating towards the lower end of the scale. Figure 11c is a 3D bar chart, offering a visual
comparison of error frequencies for various calibration methods at different directions. Our
method consistently shows lower frequency counts for larger errors, further emphasizing
its precision. Figure 11d is a violin plot providing a visual summary of error distribution
for each method. It reveals that our method has a tighter distribution of errors, suggesting
a higher level of precision and reliability. The majority of the data points are clustered near
the lower end of the error scale, and the spread of data points is narrower, indicating fewer
outliers and less variation in measurement error.
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Table 5. Statistical comparison based on the first experiment.

Method Model Size RMS (mm) Std. (mm) Avg (mm) Max (mm)

MDH 30 0.0773 0.0485 0.0602 0.1947
NTM 45 0.0702 0.0428 0.0557 0.1752
RFCM 39 0.0692 0.0438 0.0537 0.1755
Ours 53 0.0574 0.0350 0.0455 0.1699

Table 5 shows that our method has achieved a reduction in the Root Mean Square
(RMS) error, outperforming other methods. Specifically, our method exhibits a 25.7% RMS
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improvement over the MDH method and surpasses the NTM and RFCM methods by 18.2%
and 17.1%, respectively. When measuring with the 3D rotary laser sensor, the reductions
in standard deviation and the average and maximum errors corroborate the superior
calibration performance of our method, suggesting that it is not only more accurate on
average but also more consistent and reliable across a range of measurements.

5.3. Accuracy Verification Based on a Laser Tracker

To eliminate the influence of measurement errors from the 3D rotary laser sensor,
we used a laser tracker as the accuracy verification device, for which we designed the
measurement scheme shown in Figure 7b. We affixed the ball seat of the laser tracker onto
the 3D rotary laser sensor to measure positions but not attitude data. Subsequently, the
joint angles from the FANUC robot register and the positions of the reflector were collected.

The automated measurement process is illustrated in Figure 12. We utilized an In-
dustrial PC (IPC) to control and collect path data from the FANUC robot and the laser
tracker (API T3). Communication with the robot’s string registers via the IPC allows for
the control of the robot to execute pre-defined simulation paths and read the six angles
from the robot joint encoders. When the robot moves to position Pt., it sends a signal to the
IPC. A 6.0 s data-reading pause is reserved to ensure the robot stabilizes. The laser tracker
is set to Stable Point Mode, automatically locating the reflector mounted on the 3D rotary
laser sensor when the robot stops steadily. The advantage of this scheme is that it allows
for direct evaluation of the kinematic and joint compliance model without introducing
measurement errors from the 3D rotary laser sensor. Meanwhile, due to the single-point
tracking lacking the reflector’s attitude, it is necessary to modify the kinematic model: the
re, we, pe of GTC in Equation (9) is set to 0.
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Figure 12. Process of automated measurement.

Then, the laser tracker is used to measure 7000 points in a spatial array as reference
data, as shown in Figure 13. Following the layout design in references [32,33], these
7000 points are arranged in seven robot orientations, with each pose set up in a 10³ configu-
ration. The final distribution of the measurement points across the six joint spaces of the
robot is depicted in Figure 14, with the least active joint reaching an approximate range of
50◦.
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As a result, 6998 effective position points were measured, of which 100 random points
were selected for calibrating our model. Following the calibration procedure described in
Section 4, UTB and GTC in the unified kinematic model are identified in Table 6. Meanwhile,
the identification results of the MDH and joint compliant parameters are presented in
Table 7.

Table 6. Calibration results of UTB and GTC based on laser tracker.

Transformation Trans (x, y, z)/mm Rot (r, w, p)/deg

UTB
{LT}→{Base}

(User2)
−1105.029, −955.794,

−116.344 21.846, −0.521, 0.166
GTC {Gripper}→{Reflector} 44.200, −60.458, 104.009 —

Table 7. Calibration results based on laser tracker.

MDH Parameters Joint Compliance Parameters (×10−3)

Joint θ/deg d/mm a/mm α/deg k(1:3)
0

0.158, 0.403, −0.0281
1 — — 50.202 −89.979 k(1:3)

a1
−0.120, −0.0430, −0.503

2 −89.876 −0.0121 330.049 179.950 k(1:3)
a2

−0.0512, −0.0553, 0.144
3 −0.0293 0.2361 35.343 −89.973 k(1:3)

b1
−0.206, 0.0217, −0.418

4 0.720 −335.152 −0.232 90.016 k(1:3)
b2

0.0819, 0.0188, 0.183

5 −179.415 −0.0786 0.125 90.012 λ∗
θ [mm] diag(−1.289, 0.0668, 0.0522,

0.138, 0.732, −0.117)
6 — — — — s∗1 , s∗2 [mm] 307.383, 1841.103
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Comparing the results of the two experiments in Tables 4 and 7, it can be observed
that there is a significant difference in the 15 parameters k(1:3) related to the extended NTM,
while the differences in λ∗θ, s∗1 , s∗2 are smaller. It is speculated that the reason for this is
the smaller data volume in the second experiment, leading to larger errors in k(1:3) due to
Fourier analysis, and part of the transmission model error being transmitted to λ∗θ, s∗1 , s∗2 .

The accuracy of the kinematic and joint compliance modeling method is evaluated
based on the 6998 points. The experimental results are depicted in Figure 15, demonstrating
effectiveness in enhancing position accuracy. In Figure 15a, the scatter plot contrasts
position errors at various points before and after calibration. It is clear that the position
error decreases significantly, demonstrating the effectiveness of the calibration process.
Figure 15b is a histogram that compares the frequency of position errors between different
calibration methods. The method labeled as our method appears to achieve a higher
concentration of lower magnitude errors, indicating superior performance in reducing
the position error when compared to MDH, NTM, and RFCM. Figure 15c presents a 3D
histogram, further emphasizing the distribution of position errors in different directions,
and our method exhibits a distribution skewed towards lower errors, reinforcing its efficacy.
Lastly, Figure 15d showcases a violin plot for the error distribution of each method, giving
insight into the density distribution of the errors. The narrow and peaked distribution
of our method suggests a tighter clustering of data points around a lower median error,
while other methods display broader distributions, indicative of a wider range of error
magnitudes. Overall, the data across these visuals collectively suggest that our model
consistently outperforms the alternative methods in minimizing position errors.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 24 
 

 

position errors at various points before and after calibration. It is clear that the position 
error decreases significantly, demonstrating the effectiveness of the calibration process. 
Figure 15b is a histogram that compares the frequency of position errors between different 
calibration methods. The method labeled as our method appears to achieve a higher con-
centration of lower magnitude errors, indicating superior performance in reducing the 
position error when compared to MDH, NTM, and RFCM. Figure 15c presents a 3D his-
togram, further emphasizing the distribution of position errors in different directions, and 
our method exhibits a distribution skewed towards lower errors, reinforcing its efficacy. 
Lastly, Figure 15d showcases a violin plot for the error distribution of each method, giving 
insight into the density distribution of the errors. The narrow and peaked distribution of 
our method suggests a tighter clustering of data points around a lower median error, 
while other methods display broader distributions, indicative of a wider range of error 
magnitudes. Overall, the data across these visuals collectively suggest that our model con-
sistently outperforms the alternative methods in minimizing position errors. 

(a) (b) 

  
(c) (d) 

Figure 15. Results of second experiment: (a) position errors before and after calibration; (b) count of 
position errors; (c) count of errors in different directions; (d) error distribution. 

According to Table 8, our proposed method achieved a reduction in RMS of 19.5% 
compared to the MDH method, and reductions of 13.8% and 9.1% compared to the NTM 
and RFCM, respectively. Furthermore, it exhibits optimal performance in terms of the dis-
tribution of errors and extreme values. 

Table 8. Statistical comparison based on the second experiment. 

Method RMS (mm) Std. (mm) Avg (mm) Max (mm) 
MDH 0.0473 0.0282 0.0380 0.1319 
NTM 0.0446 0.0266 0.0358 0.1132 
RFCM 0.0424 0.0255 0.0339 0.1099 
Ours 0.0381 0.0255 0.0308 0.0955 

Figure 15. Results of second experiment: (a) position errors before and after calibration; (b) count of
position errors; (c) count of errors in different directions; (d) error distribution.

According to Table 8, our proposed method achieved a reduction in RMS of 19.5%
compared to the MDH method, and reductions of 13.8% and 9.1% compared to the NTM



Sensors 2024, 24, 2559 20 of 22

and RFCM, respectively. Furthermore, it exhibits optimal performance in terms of the
distribution of errors and extreme values.

Table 8. Statistical comparison based on the second experiment.

Method RMS (mm) Std. (mm) Avg (mm) Max (mm)

MDH 0.0473 0.0282 0.0380 0.1319
NTM 0.0446 0.0266 0.0358 0.1132
RFCM 0.0424 0.0255 0.0339 0.1099
Ours 0.0381 0.0255 0.0308 0.0955

6. Discussion and Conclusions

In this paper, it is evident that the kinematic and joint compliance modeling method
effectively enhances the position accuracy of robotic vision systems. Through an innovative
integration of a 3D rotary laser sensor, unified kinematic modeling, joint compliance model-
ing, and a three-stage parameter identification process, this research offers a comprehensive
solution to the challenges of system position accuracy. The two validation experiments—
employing both a laser tracker and a 3D vision measurement system to assess the accuracy
of the proposed models—robustly demonstrate the method’s superiority over existing
models. Compared to the Modified Denavit–Hartenberg (MDH), nonlinear transmission
model (NTM), and Rigid–Flexible Coupling Model (RFCM) methods, our approach proves
its efficacy in enhancing the position accuracy of robotic vision system. The following
discussion reviews the key aspects of the proposed model, evaluates its complexity related
to previous methods, and emphasizes its potential benefits for industrial manufacturing
cycles that require the highest precision.

The integration of kinematic and joint compliance factors introduces an increase
in model complexity. This complexity is a direct consequence of our comprehensive
approach to modeling, which accounts for factors often overlooked in simpler models,
such as the elasticity of robotic joints, and the impact of external loads and links. While
the proposed model demands more significant computational resources and a complex
calibration process, it delivers substantial improvements in position accuracy by at least
9.1% according to the experiment results. These improvements are critical in applications
where precision is paramount, outweighing the drawbacks associated with increased model
complexity.

The practical implications of our model are particularly significant in high-precision
industrial manufacturing cycles. The advanced accuracy offered by our modeling approach
can lead to remarkable enhancements in product quality and a notable reduction in waste
and rework. In industries such as industrial manufacturing, automotive assembly, and
aerospace engineering, where the cost of inaccuracies can be exceptionally high, the po-
tential savings and efficiency gains are substantial. Furthermore, the adaptability of our
model to various robotic systems and its scalability across different manufacturing tasks
underscore its versatility and broad applicability.

Future research will focus on streamlining the model’s complexity and enhancing its
usability, striving to simplify the calibration process and reduce computational require-
ments without compromising the accuracy benefits. Furthermore, exploring the model’s
application across a broader range of industrial scenarios will be crucial in fully realizing
its potential to revolutionize precision in robotic automation.
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Nomenclature

Joints ∈ R Number of robot joints
q ∈ R Position of end-effector
θ ∈ R Joints angle
d ∈ R Link offset
a ∈ R Link distance
α ∈ R Twist angle
δi ∈ R Error of Parameter i
τ ∈ R Joint torque
Ai ∈ R Distance from the gravity center of link i to rotation axis i
Li ∈ R Distance from the rotation axis i + 1 to rotation axis i
θ ∈ RJoints Concatenated θ over Joints samples
τ ∈ RJoints Concatenated τ over Joints samples
λ ∈ RJoints×Joints Compliant matrix
c
bHa ∈ R6×6 Force and torque expressed from frame b to c in frame a
Roti ∈ SO(3) Rotation homogeneous transformation around axis i
Trans ∈ SO(3) Translation homogeneous transformation
bTa ∈ SE(3) Frame a expressed in frame b
J Jacobian matrix
η∗ Parameter vector
φ Fourier series
{·} Reference frame
[·] Antisymmetric matrix of vector
∥·∥ Magnitude of vector
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