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Abstract: To enhance aerial image detection in complex environments characterized by multiple
small targets and mutual occlusion, we propose an aerial target detection algorithm based on an
improved version of YOLOv5 in this paper. Firstly, we employ an improved Mosaic algorithm to
address redundant boundaries arising from varying image scales and to augment the training sample
size, thereby enhancing detection accuracy. Secondly, we integrate the constructed hybrid attention
module into the backbone network to enhance the model’s capability in extracting pertinent feature
information. Subsequently, we incorporate feature fusion layer 7 and P2 fusion into the neck network,
leading to a notable enhancement in the model’s capability to detect small targets. Finally, we replace
the original PAN + FPN network structure with the optimized BiFPN (Bidirectional Feature Pyramid
Network) to enable the model to preserve deeper semantic information, thereby enhancing detection
capabilities for dense objects. Experimental results indicate a substantial improvement in both the
detection accuracy and speed of the enhanced algorithm compared to its original version. It is
noteworthy that the enhanced algorithm exhibits a markedly improved detection performance for
aerial images, particularly under real-time conditions.

Keywords: aerial images; YOLOv5; mixed attention module; BiFPN

1. Introduction

Owing to their advantageous characteristics, such as compact size, energy efficiency,
minimal noise, and terrain adaptability, UAVs (unmanned aerial vehicles) are extensively
utilized for image capture across diverse domains [1]. Nevertheless, the varying altitudes
of UAV flight and shooting perspectives result in aerial images containing numerous
small target objects, disordered object arrangements, and complex backgrounds, posing
significant challenges to the task of target detection [2].

In recent years, the rapid advancement of deep learning has led to notable break-
throughs in the field of computer vision [3]. Concurrently, deep-learning-based target
detection methods have emerged as the predominant approaches in the field, owing to
their characteristics of requiring no manual feature extraction, robust adaptability, and high
resilience. Presently, deep-learning-based target detection methods are primarily catego-
rized into two groups: those based on the target detection framework and those focused on
regression problems. Algorithms such as R-CNN [4], Fast RCNN [5], Faster RCNN [6], etc.,
belong to the former category. These algorithms extract feature information from candidate
regions, followed by regression classification based on this information, resulting in a
two-stage process. While this approach yields higher recognition accuracy, it comes at the
cost of slower detection speed. The other category comprises algorithms focused on regres-
sion problems. Representative algorithms in this category include the YOLO [7] series and
SDD [8], among others. These algorithms offer the advantages of faster detection speed and
ease of deployment, attributed to the parallelization of regression and classification tasks.
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Owing to variations in drone flight altitude and shooting angles, objects in aerial im-
ages display significant texture and shape discrepancies compared to objects in horizontally
captured natural images. Zhang et al. [9] introduced a lightweight CNN-based method
for UAV aerial image detection, focusing on real-time processing and detection accuracy.
Nevertheless, the overall detection performance remains subpar, necessitating further opti-
mization of the network structure. Xu et al. [10] proposed a detection method to address
the issue of unpredictable target angles in UAV aerial images, aiming to generate prediction
frames with more accurate information. Nonetheless, this approach entailed additional
computational parameters and time-consuming computations due to the requirement of
obtaining shooting angle information. Avola et al. [11] introduced the MS Faster R-CNN de-
tection model, which effectively mitigated the issue of image quality degradation resulting
from UAV motion shots. However, this model exhibits low detection speed. Zhu et al. [12]
introduced the TPH-YOLOv5 model based on the transformer self-attention mechanism,
utilizing the attention prediction head to replace the original YOLOv5 prediction head.
This modification significantly enhances the target detection accuracy of aerial images,
albeit at the cost of reduced detection speed. Du et al. [13] introduced a novel multi-target
tracker, named GIAOTracker, that employs global information and optimization strate-
gies. This method secured second place in the VisDrone 2021 MOT Challenge. The model
comprises three phases: online tracking, global linking, and post-processing. The initial
stage generates reliable trajectories based on camera motion, object motion, and object
appearance information for each frame’s detection results. These trajectories are then re-
fined using global cues and four post-processing methods. Habib Khan et al. [14] enhanced
object localization and classification accuracy by introducing the decoupled detection head
(DDH) in YOLOv4, enabling separate handling of classification and localization tasks.
Huang et al. [15] introduced the BLUR-YOLO algorithm for target detection in UAV aerial
images, which significantly enhanced both detection efficiency and accuracy.

To improve the aerial image detection ability under a complex environment with
multiple small targets, mutual occlusion between targets, and limited computing resources,
an aerial target detection algorithm based on improved YOLOv5 is proposed in this paper.
Since the YOLOv5 model can reach 140 FPS, the fastest in image recognition, and can
also guarantee better detection accuracy, we choose YOLOv5 as the benchmark model to
improve the structure of this model to meet the detection requirements. Our proposed
algorithm performs well and makes the following significant contributions in the domain.

• We propose an improved Mosaic algorithm to solve the redundant black-and-white
boundary problem due to the different scales of the pictures.

• The hybrid domain attention module is added to the backbone network to improve
the ability of feature extraction

• The feature fusion layer fused with P2 is added to the neck network, and the im-
proved BiFPN network structure is adopted to improve the detection accuracy and
network robustness.

• Finally, the VisDrone [16] dataset is used for detection, and it is experimentally proved
that the improved algorithm improves the mAP by 6.1% compared with the original
algorithm while meeting the real-time requirements.

2. The Principle of YOLOv5 Algorithm

The YOLOv5 [17,18] algorithm is a target detection algorithm that was open-sourced
by Ultralytics in May 2020. Its network structure primarily comprises three components:
the backbone network, the neck network, and the head network [19,20], as illustrated in
Figure 1.
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Figure 1. The network structure of YOLOv5.

YOLOv5 [21]’s backbone network is built upon the CSPDarknet53 architecture. This
incorporates a Focus network structure at the input end and an SPP network structure at the
output end. The Focus network employs a slice operation with interval sampling to halve
the size of the input image while quadrupling the number of channels, thus reducing the
computational complexity of the model. Meanwhile, the SPP network effectively extracts
rich feature information by utilizing four different-scale max-pooling layers in parallel to
process the feature map. Activation functions employed in the model comprise the Mish
function and the ReLU function, contributing to enhanced accuracy and stability.

YOLOv5’s neck network adopts the PANet + FPN network structure, facilitating the
swift fusion of semantic information from the top layers with positional information from
the bottom layers. This enhancement improves the localization information of deep features
and enhances the detection accuracy of multi-scale targets in the model.

YOLOv5’s head network utilizes three different-scale detection heads: 19 × 19,
38 × 38, and 76 × 76, enabling the detection of small, medium, and large objects in the image.
The CIoU [22] loss function is employed to mitigate issues related to non-overlapping
bounding boxes. Finally, the optimal prediction boxes are selected using the non-maximum
suppression (NMS) [23] technique.

3. Improvements to the YOLOv5 Algorithm

In response to the characteristics of small, densely packed, and occluded objects in
aerial images, this paper proposes several enhancements to the YOLOv5 algorithm:

1. Data Preprocessing: The Mosaic algorithm is enhanced by aggregating nine images
instead of four, thereby enhancing the model’s generalization and robustness.
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2. Efficient Feature Extraction: The final CSP module of the backbone network is substi-
tuted with a hybrid-domain attention module to enable a more efficient extraction of
meaningful feature information from the images.

3. Small Object Detection: To address the challenge of accurately detecting numerous
small objects in aerial images, a prediction branch with a feature fusion layer incorpo-
rating P2 features is specifically added for small object detection.

4. Robustness Enhancement: To mitigate the loss of deep semantic information resulting
from the incorporation of the small object detection layer, the FPN + PANet structure
of the feature fusion network is eliminated. Instead, a simplified BiFPN [24] network
structure is introduced to enhance the robustness of the network.

The revised YOLOv5 algorithm’s network architecture is illustrated in Figure 2.

Figure 2. Improved YOLOv5 model.

3.1. Improvements to Mosaic Algorithm

With the advancement of deep learning, standard data augmentation methods have
become prevalent. However, researchers persist in exploring and refining data augmen-
tation strategies. Based on the point of insertion of the augmentation step, these novel
methods can be broadly classified into three categories: image transformation, image
clipping, and image blending. Methods in the image transformation class typically in-
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volve random clipping after decoding the image, along with additional transformation
operations. Notably, AutoAugment [25] and RandAugment [26] exemplify this category
of methods, enhancing model performance through the automatic learning of optimal
augmentation and generalization strategies. Conversely, methods in the image clipping
category concentrate on clipping operations performed on rearranged images, often setting
pixel values within the clipped region to 0 to achieve an expansion effect. CutOut [27]
and RandErasing [28] stand out as representative algorithms in this category, enhancing
the model’s generalization ability by randomly masking portions of the image. However,
the first two categories of methods are constrained to transforming individual images,
thereby limiting the extent of data diversity enhancement. In contrast, methods in the im-
age blending category achieve a higher degree of data augmentation by blending multiple
images to produce a new composite image. Notable algorithms in this category encompass
CutMix [29], MixUp [30], and Mosaic, which hold greater promise for enhancing model
accuracy owing to their capability to generate more diverse datasets. Given the efficacy of
mix-and-match algorithms in data augmentation and generalization, this paper will center
its attention on the Mosaic algorithm.

The Mosaic algorithm is the default data augmentation method used in YOLOv5. This
algorithm concatenates four images and feeds them into the model for training, which
helps to increase the number of small objects, expands the diversity of objects in the
dataset, and improves the model’s generalization ability. However, the original Mosaic
algorithm randomly crops and resizes samples, which may result in cropping out all
original objects, leaving only the background in the input sample. Additionally, due to the
different scales of input images, many redundant black-and-white boundaries may appear
in the concatenated image, extending the model’s training time. This situation is illustrated
in Figure 3a.

To address these issues, this paper proposes improvements to the original Mosaic
algorithm. First, the number of images concatenated is increased from four to nine. Then,
the concatenated image is cropped based on the minimum area bounding box, followed
by resizing. Compared to the random cropping of the original four images, this improve-
ment minimizes the boundary area as much as possible, ensuring the integrity of objects.
The processed images using the improved Mosaic algorithm are shown in Figure 3b.

The improved Mosaic algorithm significantly reduces the black-and-white boundaries,
decreasing the proportion of irrelevant features in the images. Moreover, it dramatically in-
creases the number of small objects in the dataset, leading to a better detection performance
on small objects by the model.

(a) Mosaic processing results (b) Improved Mosaic processing results

Figure 3. Example of Mosaic algorithm improvement.
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The Mosaic algorithm enhances the quantity of small targets by merging four images,
thereby augmenting the target count in the dataset and enhancing the model’s generaliza-
tion ability. However, the original Mosaic algorithm randomly clips and scales samples,
often resulting in the inadvertent clipping of all original targets, rendering the samples
input to the model to consist solely of the background. Moreover, inconsistencies in the
sizes of original images in the dataset, such as those in the VisDrone 2021 dataset, which
mainly comprise images sized 960× 540, 1920× 1080, and 1500× 2000, lead to the presence
of numerous redundant black-and-white borders in images processed by the Mosaic algo-
rithm. This results in the model obtaining a significant amount of redundant background
information during the feature extraction process, thereby prolonging the model’s training
time. Therefore, in this paper, we enhance the original Mosaic algorithm to address this
issue. Initially, the number of splices is increased from four to nine, and the images are
subsequently clipped based on the smallest area encompassed by the spliced images, as de-
picted in Figure 4, before finally being scaled. This improvement, compared to the original
random cropping of four images, minimizes boundary areas and ensures target integrity.
On one hand, the enhanced Mosaic algorithm significantly diminishes black-and-white
boundaries, thereby reducing the proportion of irrelevant feature information in the image.
On the other hand, it substantially augments the overall training data, concurrently enhanc-
ing the ratio of small targets in the dataset, leading to an improved detection performance
on small targets by the model.

Figure 4. Minimum rectangular area

Increasing the number of spliced images from four to nine may affect the model’s
ability to generalize across different aerial imagery scenarios, particularly the following:

1. Increased diversity: By splicing more images together, the model can expose itself
to a wider range of background and contextual information during a single training
session. This aids the model in acquiring a greater diversity of features, thereby
enhancing its ability to generalize across various aerial image scenarios.

2. Enriching the target distribution: More spliced images result in more target instances
and a more comprehensive target distribution. This assists the model in better under-
standing the characteristics of the target, such as shape, size, orientation, and occlusion,
thereby enhancing detection performance.
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3. Possible increase in noise: However, increasing the number of stitched images may
also introduce more noise and interference. If there are significant disparities between
the spliced images or if they are not spliced in a rational manner, it may cause
the model to incorporate some extraneous noise features, potentially impeding its
generalization ability.

This enhancement may influence the necessary training duration or computational re-
sources, yet the impact can be mitigated through various measures, particularly the following:

1. Increased computation: Stitching together more images results in larger input sizes
and more complex computational graphs. This results in a greater computational
demand for each iteration, consequently prolonging the training duration.

2. Elevated memory demands: Larger input sizes and more complex computational
graphs correspondingly escalate the memory requirements of the model. In the case of
limited hardware resources, certain optimization measures may prove necessary, such
as reducing the batch size or implementing more efficient computational strategies.

3. Requirement for hardware acceleration: To address this heightened demand for
computation and memory, it may be necessary to utilize more potent GPUs or other
hardware accelerators to expedite the training process.

3.2. Improvements to the Backbone Network

Considering the different focuses on the channel and spatial dimensions, where the
channel dimension emphasizes what kind of feature information is meaningful while the
spatial dimension focuses on where in the feature map the information is meaningful,
considering only one dimension will inevitably lead to the loss of information in the other
dimension. Therefore, this paper constructs an attention module based on the combination
of channel and spatial dimensions. This module processes feature information in both
dimensions in parallel. The specific network structure is illustrated in Figure 5. It is assumed
that the feature map has dimensions W × H in spatial dimensions and C in channels. In the
channel attention module, first, the feature passes through a global average pooling layer
with dimensions W × H, resulting in a 1 × 1 × C feature map. Then, this feature map is
input into two multi-layer perceptrons (MLPs) for processing. In the first MLP, there are
a total of c/r neurons, resulting in an output feature map with r channels. In the second
MLP, there are a total of C neurons. Both use ReLU as the activation function. Finally,
the resulting feature map is input into an activation function for processing. The entire
process can be represented by Equation (1):

Sc = σ(W1δ(W0(Fc
avg))) (1)

where Fc
avg represents the feature map after the output of the global pooling layer and

W0 represents the weight matrix of the first multi-layer perceptron, with dimensions of
c × c/r, which is used to reduce the feature map from c dimensions to c/r dimensions.
W1 represents the weight matrix of the second multi-layer perceptron, with dimensions of
(c/r)× c, which is utilized to restore the feature map from c/r dimensions back to c dimen-
sions (the hyperparameter r denotes the dimensionality reduction factor), and c denotes
the number of channels of the feature map. Finally, the obtained Sc is multiplied with the
input feature vector to obtain the output feature map of the channel attention mechanism.
The channel attention mechanism is useful for obtaining information about what kind of
features are useful from the global information but does not focus on the variation in spatial
dimensions. Therefore, the feature maps are processed on the channel while adding an
attention mechanism based on spatial dimension processing in parallel, which is performed
as follows: firstly, the average pooling layer is used to transform the input features on the
channel to obtain feature maps with dimensions H × W × 1, which are then processed
using the excitation function after passing through a single convolution operation, Then,
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after a convolution operation followed by activation function processing, the output feature
map S′

C is obtained. The entire process can be represented by Equation (2):

S
′
C = σ( f (Fs

aνg)) (2)

where f denotes feature extraction using a 3 × 3 convolutional kernel, Fc
avg denotes average

pooling over the channel dimension, and the other parameters are the same as above. The re-
sulting S′

C is then multiplied with the input features to obtain the spatially dimensioned
feature maps (Ms). Finally, the input feature map after processing in both dimensions is
summed to obtain the output map Iout of the module, as shown in Equation (3).

Iout = Mc + Ms (3)

Figure 5. Mixed-domain attention mechanism module.

The hybrid attention module [31] consists of two components: the channel attention
module and the spatial attention module. The former is tasked with learning the impor-
tance weights of each channel. Global statistical information for each channel is acquired
by performing global average pooling or global maximum pooling operations on the input
feature maps. Subsequently, this information is fed into either a fully connected layer or a
convolutional layer to generate weight coefficients for each channel. These weight coeffi-
cients adjust the weights of the input feature maps in the channel dimensions. The spatial
attention module is tasked with learning the importance weights of the feature maps in
the spatial dimension. A spatial attention map is generated by performing a convolution
operation on the input feature map. This attention map represents the importance weights
of different spatial locations and is utilized to adjust the weights of the input feature maps
in the spatial dimension.

The rationale behind the hybrid nature is that [32] channel attention and spatial
attention can complement each other to improve the representation of the model. Chan-
nel attention focuses on identifying meaningful channels—those containing important
information—while spatial attention focuses on identifying meaningful spatial locations.
By integrating these two attention mechanisms, the hybrid attention module comprehen-
sively captures key information in the image, thereby enhancing target detection accuracy.
In this study, the hybrid attention module is incorporated into the final part of the backbone
to enhance the model’s feature extraction capability. By adaptively learning the importance
weights for each channel and spatial location, the model prioritizes important features
during target detection, consequently enhancing detection accuracy and robustness.

Incorporating hybrid attention modules into the backbone network typically offers
advantages in computational efficiency and effectiveness over traditional attention mecha-
nisms. The following provides specific comparisons:
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1. Computational efficiency:

• Parallelized processing: Hybrid attention modules are typically designed to be
lightweight in order to enhance model performance while imposing minimal
computational overhead. Certain efficient implementations enable parallel com-
putation of channel attention and spatial attention, thereby fully leveraging
hardware resources and reducing computation time.

• Optimization strategies: The integration of hybrid attention modules can further
enhance computational efficiency through various optimization techniques, in-
cluding depth-separable convolution, group convolution, or low-rank decomposi-
tion, aimed at reducing the number of parameters and computational complexity.

• Dynamic adjustment: The hybrid attention module can also be dynamically
adjusted based on the input feature map’s dynamic characteristics to avoid
unnecessary computation. For instance, for simpler inputs, the model may
require less attention computation to achieve optimal performance.

2. Validity:

• Feature selection: The hybrid attention module effectively focuses on crucial fea-
tures in both channel and spatial dimensions, enhancing the model’s ability to cap-
ture key information in complex scenes and improving target recognition accuracy.

• Robustness Improvement: Through adaptive adjustment in feature map weights,
the hybrid attention module enhances the model’s robustness to various noises
and interferences, which is particularly crucial for target detection tasks in real-
world applications [33].

• Performance improvement: Experiments conducted on multiple benchmark
datasets demonstrate that integrating the hybrid attention module into the back-
bone network typically leads to significant improvements in the performance of
the target detection model, including metrics such as accuracy, recall, and mAP.

3.3. Neck Network with Fusion of P2 Features

The neck network of the YOLOv5 algorithm primarily merges the last three feature
layers from the backbone network. These three feature layers belong to the deep feature
layers of the network. However, in deep convolutional neural networks, deep feature
layers mainly contain semantic information of the input features. The semantic information
extracted by the feature extraction network needs to go through downsampling from
the previous layer. Each downsampling step leads to the loss of feature information.
Therefore, deep feature layers are more suitable for detecting large objects. Since most
objects in aerial images are small, and they occupy a small proportion of pixels, they
inherently contain less feature information. Additionally, deep feature layers undergo
multiple downsampling steps, leading to the loss of effective feature information for small
objects multiple times, ultimately resulting in lower detection accuracy for small objects.
Therefore, merely merging the features of layers P3, P4, and P5 cannot achieve the desired
effect in small object detection. To further improve the detection accuracy of small objects, it
is necessary to utilize the P2 feature layer, which has almost no loss of feature information.
This enables it to fully participate in the fusion process with other feature layers. Hence,
this paper adds a feature fusion layer and detection head to the neck network of YOLOv5,
specifically designed for detecting small objects. The improved network model structure is
illustrated in Figure 6.

Compared to the original network structure of YOLOv5, this model introduces an
up-sampling process to the original neck network to incorporate feature information from
the P2 layer [34], which enhances the representation of small targets. The entire fusion
network comprises three up-sampling processes, with the P2 feature layer concatenated
with the output of the third corresponding up-sampling to create a prediction branch with
a size of 160 × 160. With an input image size of 640 × 640, this prediction branch can detect
targets of 4× 4, which is significantly more efficient and effective than the original YOLOv5
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network, which can only detect targets of 8 × 8 or larger. By detecting targets as small as
4 × 4, it enhances the model’s ability to effectively detect very small targets and improve
detection accuracy for small targets.

Figure 6. The addition of P2 feature fusion layer.

The benefits of this approach over other potential features or layers are specifically
as follows:

1. Better small target detection: By fusing high-resolution features from the P2 layer,
the model can better capture and detect small-sized objects in the image.

2. Multi-scale information fusion: Combining feature information from different scales
can help the model to better deal with scale variations, thus improving
detection performance.

3. Information richness: Fusing features from different layers can provide the model
with richer semantic information and spatial details, which helps to improve detection
accuracy and robustness.

3.4. BiFPN and Its Simplifications

While adding a feature fusion layer incorporating the P2 feature can acquire more
shallow features and enhance the detection accuracy of small objects in the neck network
of YOLOv5, the PAN + FPN network structure of YOLOv5 introduces two additional
branches, one from top to bottom and one from bottom to top, resulting in an excessive
retention of shallow semantic information in the model and significant loss of deep feature
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information. Consequently, this paper removes the original feature fusion network and
substitutes it with a bidirectional feature pyramid network (BiFPN) [35,36] to address
this concern. The structure of the BiFPN network is illustrated in Figure 7 and it has the
following three characteristics:

1. Elimination of unilateral inputs to reduce computational complexity.
2. Incorporation of residual connections for feature layers at the same scale to enhance

feature representation capability.
3. Allocation of a weight to each feature layer involved in fusion, indicating their respec-

tive contributions to the fusion process.

Figure 7. BiFPN network structure.

Since YOLOv5 originally consists of only five feature layers and the original network
merges three feature layers (P3–P5), the addition of the P2 feature layer results in only four
feature layers available for fusion. Consequently, corresponding improvements need to be
made to the BiFPN. In this paper, one feature layer is removed from the BiFPN network,
and the fusion is conducted on the P2–P5 feature layers. The improved network structure
is illustrated in Figure 8. While this improvement may introduce a slight increase in com-
putational complexity, the enhanced network model exhibits better detection performance
for small and dense objects.

This paper adopts the optimized BiFPN to replace the PAN + FPN network structure,
removing one feature layer of the BiFPN and opting to fuse the P2–P5 feature layers.
Additionally, specific optimizations of the BiFPN include the following:

1. Cross-scale connectivity optimization: The BiFPN facilitates more comprehensive fea-
ture integration between different layers through top-down and bottom-up pathways,
in contrast to traditional FPNs and PANs, which primarily employ top-down feature
propagation. The optimized BiFPN enhances these cross-scale connections, thereby
improving feature fusion efficiency.
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2. Weighted feature fusion: BiFPN introduces learnable weights for each connected edge,
enabling the model to dynamically adjust fusion based on different features. This
weighted approach optimizes the fusion effect of multi-scale features, enhancing the
accuracy of feature representation. In an optimized BiFPN, these weights may be
fine-tuned using more refined training strategies or regularization methods.

3. Removal of redundant feature layers: Reducing the complexity and computational
burden of the model can be achieved by eliminating one feature layer in the BiFPN
and concentrating on fusing the P2–P5 feature layers. This decision preserves the most
critical feature layers while eliminating those that may have less impact on performance.

4. Fusion strategy adjustment: When integrating the P2–P5 feature layers, various
fusion strategies can be employed, including element-wise summation, element-wise
product, or channel cascading. The optimized BiFPN may select the fusion strategy
most suitable for the task to maximize the impact of feature fusion.

Figure 8. Improved BiFPN structure.

The impact of this method on retaining semantic information is that, with enhanced
cross-scale connectivity and weighted feature fusion, the optimized BiFPN effectively
conveys and preserves deep semantic information [37]. This facilitates a more accurate
identification and localization of targets in detection tasks by the model. Focusing on
fusing the P2–P5 feature layers ensures that the model possesses an adequate feature
representation capability for addressing targets at varying scales while mitigating the
interference of redundant information.

The impact on model size and inference speed is that the removal of redundant
feature layers can decrease the number of parameters and computational complexity of the
model, thereby reducing both model size and inference time. This is particularly crucial
for resource-constrained application scenarios. Nonetheless, weighted feature fusion and
enhanced cross-scale connectivity may impose some additional computational burden.

4. Experiments and Results Analysis
4.1. UAV Aerial Dataset

To assess the effectiveness of the improved model, this paper utilizes the VisDrone
aerial dataset for training and testing purposes. The images in this dataset are primarily
captured from various cities, covering diverse and complex environments, thereby offering
a stringent evaluation of model performance. Moreover, to further challenge the perfor-
mance of network models, this dataset includes a challenge set comprising 1580 images.
Small objects comprise three-quarters of the entire dataset, with each category exhibiting a
certain degree of occlusion.

4.2. Experimental Environment and Training Methods

The experimental environment in this paper is configured on a server station, featuring
an Intel(R) E5-2687W V4 CPU @3.0 GHz (Intel; Mountain View, CA, USA), and an NVIDIA
GeForce RTX 3090 GPU (with 24 GB of VRAM) (NVIDIA; Santa Clara, CA, USA), supported
by 24 GB of RAM and a 1TB hard drive. The operating system employed is Ubuntu 18.04
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LTS (Canonical Ltd.; London, UK), equipped with CUDA version 11.0. The deep learning
framework utilized is PyTorch, with Python version 3.8.

To fully leverage the effectiveness of pre-trained weights in the improved YOLOv5
algorithm, this paper adopts a technique involving freezing and unfreezing to enhance
training efficiency. During the freezing phase, the feature extraction network is frozen,
and the weights in this part remain unchanged, resulting in minimal resource consumption.
In the unfreezing training phase, the weights in the backbone network are adjusted, neces-
sitating more computational resources. Therefore, the batch size is set to 8, the learning rate
to 0.0004, the momentum factor to 0.937, and the input image resolution to 1152 × 1152.

4.3. Ablation Experiments

To validate the effectiveness of multiple improvements, this paper conducted ablation
experiments on the VisDrone aerial test set. YOLOv5l release V6.0 was used as the baseline
model for comparison, with mAP(0.5), GFLOPs, FPS, and model parameter count as
evaluation metrics. The results of the ablation experiments are presented in Table 1, and the
various mAP values for YOLOv5l and the improved model are illustrated in Figure 9.

Table 1. Ablation experiment table.

Model mAP (0.5) GFLOPs FPS (Frame/s) Quantity of
Participants (M)

YOLOv5l 46.4% 109.3 89.65 46.56
Mosaic

improvements 47.4% 109.3 89.34 46.56

Backbone
network

improvements
48.5% 109.5 88.12 46.69

Addition of P2
layer 50.9% 140.5 82.33 52.76

Fusion BiFPN 52.5% 152.1 80.12 54.77

Table 1 shows that the YOLOv5l model has 46.56 M parameters and 109.3 GFLOPs,
with an average detection accuracy of only 46.4%, suggesting low detection accuracy.
As shown in Figure 9c, post improvement with the Mosaic algorithm, the model size and
floating-point operations remain unchanged, while the accuracy increases by 1%. This
validates that the improvement enhances detection quantity, thereby improving the model’s
detection accuracy.

As shown in Figure 9d, replacing the backbone network with a mixed attention module
and SPPF module results in a 1.1% increase in accuracy, albeit with a minor sacrifice in
floating-point operations and model size. As shown in Figure 9e, by incorporating the
strategy of adding the P2 feature layer in the neck network, despite a certain degree
of decrease in the model’s detection speed, the average detection accuracy increases by
2.4% to 50.9%, representing the largest improvement among all enhancements. This
demonstrates that the addition of the P2 feature fusion layer effectively enhances the
detection of small targets.

Lastly, with the introduction of the optimized BiFPN structure, the model achieves
an mAP of 52.5% and a detection speed of 80.12 frames/s, satisfying real-time detection
requirements. Figure 9a,b illustrate that the improved model demonstrates significant
enhancements in various metrics compared to the baseline model. In particular, the bicycle
and tricycle dense small targets exhibit the most substantial improvements, with increases
of 14.4% and 10.6%, respectively, highlighting the improved model’s efficacy in detecting
dense small targets in aerial images.
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(a) (b)

(c) (d) (e)

Figure 9. mAP values of various types before and after improvement. (a) Varying detection accuracies
observed in YOLOv5l. (b) Varying detection accuracies of the improved model. (c) Detection accura-
cies of various categories for the improved model of Mosaic’s algorithm. (d) Detection accuracies
for various categories of the improved model of the backbone network. (e) Detection accuracies of
various types of enhanced and refined models operating within the designated P2 layer.

4.4. Comparative Experiments

To assess the superiority of the improved YOLOv5 over other aerial detection algo-
rithms, this study conducted comparative experiments between the improved YOLOv5
algorithm and several mainstream aerial algorithms using the test set of the VisDrone
dataset. The comparison results are presented in Table 2.

As indicated in the table, at an IoU of 0.5, the improved YOLOv5 algorithm surpasses
DMNet, YOLOv3, Cascade-RCNN, and YOLOv5l by 4.9%, 15.9%, 6.6%, and 6.1%, respectively.

Considering Table 2, the ClusDet and PRNet models attain higher mAP values at
a 0.5 IoU threshold. This primarily stems from the adoption of a three-stage overall
structure by the ClusDet model, which affords a broader receptive field during feature
extraction compared to the network structure employed in this study. Moreover, ClusDet
employs higher-resolution input images compared to the 1152 resolution utilized in this
paper. Consequently, for very small objects, the ClusDet network extracts more feature
information, resulting in a higher mAP when the IoU threshold is set to 0.5.

However, at higher IoU thresholds, precision requirements for detection increase,
and the significance of detecting very small objects diminishes. Therefore, in terms of
mAP(0.5:0.95), the model proposed in this paper achieves higher detection accuracy.

Conversely, the PRNet model primarily utilizes a detection approach that integrates
difficult and overall regions. Likewise, because of the relatively limited extractable features
for very small target objects, as the IoU threshold increases, the PRNet network may
struggle to accurately detect extremely small targets, leading to a comparatively lower
mAP (0.5:0.95) value.

Ultimately, considering the comprehensive results from Table 2, even though the mAP
may not attain its peak value when the IoU threshold range is set to 0.5, it remains compara-
ble to that of ClusNet and PRNet. Nevertheless, with the threshold set to 0.5:0.95, the mAP
value of the improved YOLOv5 algorithm achieves 34.0%, surpassing all other models.
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Table 2. Comparison of different algorithms on the VisDrone dataset.

Arithmetic mAP (0.5) mAP (0.5:0.95)

DMNet [38] 47.6% 28.2%
YOLOv3 [39] 36.6% 17.5%

Cascade-RCNN [40] 45.9% 24.3%
YOLOv5l 46.4% 28.1%

QueryDet [41] 48.2% 28.3%
ClusDet [42] 53.2% 30.4%
PRNet [43] 53.9% 32.0%

Model of this paper 52.5% 34.0%

4.5. Demonstration of Experimental Results

To validate the detection performance of the improved YOLOv5 algorithm in real-
world scenarios, we conducted tests on the challenging set of the VisDrone aerial dataset,
which comprises the most complex scenes with the highest detection difficulty. Partial
detection results in various scenarios are depicted in Figure 10. Observing the images, it
becomes evident that, in scenarios with small targets, severe occlusion, or dense scenes,
the improved algorithm demonstrates higher detection accuracy, stronger robustness,
and lower false detection rates, thereby showcasing superior detection performance.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Detection effects in various scenarios. (a) Small target scene detection before improvement.
(b) Small target scene detection after improvement. (c) Occlusion scene detection before improvement.
(d) Occlusion scene detection after improvement. (e) Dense scene detection before improvement.
(f) Dense scene detection after improvement.
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5. Conclusions and Future Work
5.1. Conclusions

This paper proposes an improved YOLOv5 algorithm for aerial image object detection,
targeting the complex backgrounds, dense distribution of small objects, and overlapping
instances present in aerial datasets. In the data preprocessing stage, the Mosaic algorithm is
enhanced to increase the number of training targets, thereby improving the model’s detec-
tion accuracy. To effectively extract useful feature information from input images, a hybrid
attention module is added to the backbone network. To enhance the detection accuracy of
small objects, a strategy of adding a fused P2 feature layer to the model’s neck network
is employed. Additionally, to better integrate shallow and deep features, the PAN + FPN
network is replaced with the optimized BiFPN network. Experimental results demonstrate
that the improved model achieves a 6.1% increase in detection accuracy compared to the
baseline model and meets real-time detection requirements. Furthermore, when compared
with advanced aerial image object detection algorithms, the proposed model achieves the
best overall detection performance in terms of average detection accuracy.

5.2. Future Work

Comparing the improved YOLOv5 with state-of-the-art aerial image detection algo-
rithms, such as the recent research from Zhejiang University—combining the real-time de-
tection and recognition (RT-DETR-X) model with the SAHI (slice-assisted hyper-inference)
method [44] for detection using the VisDrone-DET dataset—the improved YOLOv5 slightly
lags behind the RT-DETR-X model, but YOLOv5 has superior processing speed and a
higher FPS rate, which is crucial for real-time surveillance applications.

In this paper, YOLOv5 has been improved and optimized in many aspects to improve
the detection effect of the model in the task of aerial image target detection, but there
are still many problems to be improved. Regarding the improvement of the Mosaic data
augmentation algorithm, although the overall data are expanded, the original data have
fewer categories, where, after the improvement, there is still not much change in the
proportion of the overall number of occupants; only their total number increases. How
to perform data augmentation for the lower number of categories without increasing
the number of other categories in order to reduce the training time is the focus of the
next research.

With the continuous evolution of UAV technology, it is expected that more researchers
will be attracted to the construction of aerial photography datasets in the future in order to
gradually fill the gaps in existing UAV datasets. However, there are significant differences
among UAV datasets due to the diversity of UAV models, collection regions, and shooting
targets. Therefore, how to effectively utilize different datasets for pre-training to obtain the
relevant pre-training weights and then improve the detection accuracy of the model for
certain categories on specific datasets will become the core issue of the subsequent research.
In short, future research will focus on pre-training methods across datasets with a view to
optimizing the detection performance of the model.
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