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Abstract: This paper proposes an innovative approach for detecting and quantifying concrete cracks
using an adaptive threshold method based on Median Absolute Deviation (MAD) in images. The
technique applies limited pre-processing steps and then dynamically determines a threshold adapted
for each sub-image depending on the greyscale distribution of the pixels, resulting in tailored crack
segmentation. The edges of the crack are obtained using the Laplace edge detection method, and the
width of the crack is obtained for each centreline point. The method’s performance is measured using
the Probability of Detection (POD) curves as a function of the actual crack size, revealing remarkable
capabilities. It was found that the proposed method could detect cracks as narrow as 0.1 mm, with a
probability of 94% and 100% for cracks with larger widths. It was also found that the method has
higher accuracy, precision, and F2 score values than the Otsu and Niblack methods.

Keywords: crack detection; probability of detection; median absolute value; thresholding; computer
vision; damage detection

1. Introduction

Bridges are crucial assets connecting regions and enabling transportation, making
them fundamental for a society’s development [1]. Assuring their correct functioning
requires recurring inspections of the structures at regular intervals, in order to detect
possible damage [2]. Damage detection is important in infrastructure management since it
helps the assessment of deterioration over time due to different causes, such as corrosion,
creep, and cyclic loading, among others. These procedures aim to detect damages in
bridges and concrete structures subjected to different adverse conditions that can lead to
their deterioration. These hazards can come from natural processes such as earthquakes,
flooding, landslides, and human construction errors. Another cause for damage is the effect
of loads on the structure (wind load, vehicle load, thermal loads, and others), which can
produce damages. Among the most common types of damage found are cracks, which
serve as early signs of deterioration and are, in many cases, made by flexion or shear
forces as well as temperature-induced stresses. Cracks are therefore important to study to
ensure structural reliability and integrity of structures. Thus, efficient management and
maintenance operations, based on identified damage, can considerably extend a structure’s
life span [3].

For civil infrastructure, the basic and main method used for assessing condition, both
functional and physical, is visual inspection [4]. However, this kind of inspection has
some limitations because it involves the use of heavy machinery, elevated costs, and risky
situations for the personnel performing the work, and the results can fluctuate between
different inspectors due to human error [5–8].

To address these limitations, methods of Structural Health Monitoring (SHM) have
been developed and used in various fields, such as mechanical, aerospace, and civil en-
gineering, to ensure the safety and integrity of assets. SHM involves strategies to detect
damage using various methods (hardware or software) and obtain data that can be analysed
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to properly manage and maintain the assets [9]. Within SHM, there are several methods
and they can be classified as either contact or non-contact techniques. Contact sensing
methods involve sensors attached to a structure to measure accelerations, displacements,
and inclinations. These can pose a constraint from an economic point of view, as well
as generate practical challenges, in terms of the time and labour cost of the installation
process [10].

Non-contact methods have gained popularity due to the economic advantages and
practical benefits they present. Methods using cameras have been developed for image-
based inspections [10]. These methods are becoming an important part of SHM for eval-
uating different types of objects, their location, and understanding their context. The
process of analysing the images and their content is called ‘computer vision’ and can be
used to detect damage [11]. Some processing techniques applied to images are: histogram
transforms, background subtraction, texture recognition, filtering, or edge detection, and
others [4]. Filtering is one of the most common operations used in computer vision and can
be sorted into two different categories: space domain algorithms and frequency domain
algorithms [12]. Space domain filtering focuses on pixels directly from the image. On the
other hand, frequency domain filtering uses transformations on the pixels (using Fourier
transform or Wavelet transforms) and then transforms them back to the space domain.
Commonly used space domain filters include the median filter, mean filter, Gaussian filter,
and bilateral filtering [13].

One of the most common processing techniques used to extract crack information
is the ‘edge detection algorithm’. Crack edge detection algorithms have been developed
by adapting methods used in other disciplines; e.g., for text recognition [14], the Sauvola
method has been used to identify text from images with a noisy background [15]. Re-
searchers have used this knowledge and applied it to civil engineering structures to delimit
the crack boundaries and differentiate pixels from cracks and the background [16–18]. Once
the pixels are delimited, the background and crack pixels are usually transformed into
black and white, with the help of image binarisation using threshold methods, such as the
Niblack, Otsu, or Wolf methods [8,19].

Based on these procedures, researchers have developed algorithms like Crack Width
Transform to determine a crack candidate region and then filter by using a threshold [20].
Kim et al. [19] used a median filter to remove noise and Sauvola’s binarisation method
to transform the image from greyscale to black and white, identifying cracks. Later, Kim
et al. [15] used the Sauvola method with two different sets of parameters to detect cracks
and determine their widths and lengths.

Other methods use histogram-based algorithms to study cracks in concrete or pave-
ments [21]. Kapela et al. [22] used Histograms of Oriented Gradients (HoG) for crack
detection by computing the intersection of Gaussian functions in intensity histograms to
determine a segmentation threshold. Li et al. [23] proposed a threshold algorithm based on
the Neighbouring Difference Histogram Method (NDHM) that uses the standard deviation
of an image to obtain the result. Histogram-based thresholding methods are popular due
to their simplicity and high efficiency, but using a general threshold makes the results
susceptible to noise [24]. Although image thresholding can be used for identifying cracks,
and it is among the most popular methods [25], the results are highly dependent on the
threshold parameters, which cannot be used for every situation [15].

In recent years, the development of Unmanned Aerial Vehicles (UAVs) has led to
cost-efficient data collection when accessing difficult locations to perform image-based
inspections [26]. In [27], Dorafshan et al. compared different processing algorithms for
UAV-assisted crack detection, such as filtering, edge detection, image enhancement, and
segmentation. The edge detection was carried out using six filters: Roberts, Prewitt, Sobel,
and Laplacian of Gaussian (in the spatial domain) and Butterworth and Gaussian (in the
frequency domain). The minimum detectable crack width was found to be 0.2 mm. They
concluded that the Laplacian of Gaussian filter provided the fastest and most accurate
method for studying crack width.
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Machine learning-assisted crack detection is another approach to image-based inspec-
tion that has profited from the development of computational power. This approach is
influenced by image processing methods, which are used as the first step to extract damage
features from the images before the machine learning algorithm is trained [28]. Particularly,
Convolutional Neural Networks (CNNs) are one of the most prominent methods used to
evaluate damages in images. This method falls into the category of supervised learning
since the models are trained for specific tasks such as detecting cracks or corrosion in
structures using datasets from which they learn relevant features for damage classifica-
tion. Although effective, machine learning algorithms have challenges and limitations.
One significant challenge is the reliance on private datasets, i.e., datasets created by the
researchers using the model and not public datasets that can be easily accessed [29]. Models
trained on such datasets often achieve high levels of accuracy but perform poorly when
exposed to datasets with different characteristics, such as varying lighting conditions,
surface textures, and noisy surroundings [30]. Additionally, the creation of these datasets
needs meticulous labelling efforts, particularly for pixel-level segmentation, which is highly
time-consuming. Moreover, these models tend to be more complex structures than com-
puter vision algorithms, with higher inference times and the need for manual input of the
training parameters [2]. Furthermore, the computational demand of these models often
requires significant computational hardware, such as Graphic Processing Units (GPUs),
which may not be available to all researchers [3,12,29].

The inspection strategies presented require understanding the types and characteristics
of the defects they can reliably detect [31]. Nevertheless, a small amount of research has
been conducted to determine the accuracy and reliability of vision-based inspections. For
this, the Probability of Detection (POD) is used to determine a method’s capability metric,
and the probability of detecting a certain type of damage using a specific method [32].

As previously discussed, several different algorithms exist for detecting and analysing
cracks in images, each involving different pre-processing filters, such as mean filter, median
filter, or Gaussian filter. Similarly, various thresholding techniques, such as the Otsu
method, Sauvola method, and histogram-based methods, are available. Additionally, for
edge detection, we have filters, such as Roberts, Prewitt, Sobel, and more, to delimit the
boundaries of a crack. Different combinations of these methods may lead to different
outcomes; some filters, such as the Gaussian filter for example, might blur the edges,
reducing the reliability of the edge detection. Determining the appropriate combination of
methods for pre-processing, segmentation, and quantification is not a straightforward task.

In this paper, we propose a novel approach to histogram-based thresholding using
the Median Absolute Deviation (MAD) within subsections of images. This approach offers
advantages over other methods, including eliminating labelling datasets as in the machine
learning approach, reducing the amount of pre-processing techniques, and simplifying
the overall procedure compared to algorithms combining multiple methods. The use of
MAD enables the establishment of an adaptable threshold for each subsection, eliminating
the general threshold. By doing so, we eliminate the possibility of a single threshold
value being suitable for some images but not for others. Additionally, the paper presents
POD curves to assess the method’s capability to detect cracks of varying sizes. The image
processing focuses on the pixel intensities to calculate the MAD and determines a threshold
that can separate crack pixels from the background. Subsequently, we employ the Laplacian
edge detector to delimit the crack. The widths of the cracks are obtained, and the results
are used to determine the method’s accuracy.

2. Methodology

The algorithm employed in this paper consists of three different main stages: crack
detection within the image, pixel extraction, and crack width measurement.

The images obtained were pre-processed by dividing them into sub-images and
converting them to greyscale, in order to simplify the study of the pixel intensities. To
differentiate background and crack pixels, a specific threshold value was determined for
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each sub-image, using the Median Absolute Deviation (MAD). Subsequently, a thresholding
procedure was applied to isolate the potential crack region. Edge detection was employed
in the crack regions, to delimitate the boundaries of the detected crack. This was performed
using the Laplacian function. After this step, the centreline of the crack was obtained
through the ‘skeletonize’ function. For each pixel that is part of the skeleton centreline, the
distances to the nearest edges were calculated. The distance measured corresponded to the
width of the crack at the specific point.

2.1. Data Acquisition

The data acquisition employed in this study aimed to gather images containing con-
crete cracks that included widths between 0.1 and 1.5 mm. The imaging was performed
with a Nikon D810 digital camera, coupled with an AF-s Nikon 24–70 mm f/2.8 G ED lens.
The sensor in the digital camera had a resolution of 36 megapixels. The images were taken
with the highest available resolution provided by the camera, obtaining a resolution of
7380 × 4928 pixels per image. For optimal contrast, the ISO used was 125. The camera was
mounted on a tripod at a distance of approximately 1 m from the sensor to the concrete
surface, in order to obtain a pixel size of 0.1 mm and avoid blurring caused by hand-held
motion. The distance from the sensor to the surface was measured with a Bosch GLM 50c
laser with a range from 0.05 to 50.00 m and an accuracy of ±1.5 mm. To avoid camera vibra-
tion and image blurring, a tripod was used during the data acquisition process. The images
obtained correspond to cracks located in a bridge column, multiple bridge abutments, and
an arch of a bridge. These structures present different levels of smoothness in the concrete
and different tones, some being darker than others. This gave a significant variability in
the type of concrete surface that was studied. Examples of the different types of concrete
surfaces are presented in Figure 1.
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Arch.

In order to validate the results determined using the suggested method, it was neces-
sary to determine the crack widths along different sections of the cracks. For this purpose,
a crack magnifier with a scale of 20 mm and divisions of 1/10 mm was employed for
direct measurements on the concrete surfaces. For each crack, measurements were per-
formed at multiple sections along the crack, allowing for the collection of multiple width
measurements. The positions of these measurement were marked to identify where each
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measurement has been performed and facilitate their identification it in the images. The
images captured correspond to cracks where measurements using the crack magnifier
had been performed. In total, 29 cracks were captured using the camera: four images
correspond to cracks located in the column of a road bridge, nine images correspond to
a concrete wall, two images correspond to cracks in the abutment of a road bridge and
fourteen to cracks located in the arch of a road bridge. Within these cracks, a total of
409 sections showcasing different widths were measured using the crack magnifier. These
measurements serve as ground truth against which the results of the proposed method
are compared.

2.2. Pre-Processing

In the initial pre-processing step, the images were divided into sub-images of 224 ×
224 pixels. The sub-image approach was used to generate threshold values for each specific
section. By doing this, the determined thresholds were specific to each sub-image, avoiding
a single threshold for the entire image.

Subsequently, the sub-images were transformed into greyscale, following the standard
practice of combining the intensities of the RGB components with NTSC coefficients [33].
The conversion simplifies the analysis of pixel intensity distribution, since each pixel has
only one value between 0 and 255. The transformation from RGB to greyscale was carried
out using Equation (1) [34]:

Y = 0.299R + 0.587G + 0.114B (1)

where R, G, and B correspond to red, green, and blue channel intensities, respectively.

2.3. Crack Segmentation Based on the Median Absolute Deviation

This stage of the methodology focused on the greyscale distribution of the pixels.
Figure 2 illustrates two regions within an image, one where a sub-image does not contain a
crack (window A) and another when it does (window B).
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Figure 3 shows the pixel intensity distributions for both sub-image A and B. Figure 3a
shows the typical intensity distribution for a sub-image devoid of cracking. The intensi-
ties vary but without extreme values that can be considered as intensity discontinuities.
However, Figure 3b corresponds to the pixel intensity distribution for sub-image B, where
cracking is present. While some intensity variation is evident in certain areas, a clear dis-
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continuity corresponding to the crack becomes apparent. The crack is distinctly identifiable
as the region with the lowest values of pixel intensity.
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Figures 4 and 5 present both sub-images, as well as their corresponding intensity
histogram distributions. The distribution for sub-image A resembles a normal distribution
while, for sub-image B, the curve has a tail of lower values in the greyscale, corresponding
to pixels belonging to the crack. Since these dark pixels in the tail represent the crack, those
are the pixels of interest and are considered as outliers in the algorithm. Outlier detection
is typically achieved by determining a threshold, taking the mean, and adding/subtracting
the standard deviation a certain number of times. However, this method may cause errors
when the distribution is not normal. Furthermore, the mean and the standard deviation are
heavily impacted by outliers, making it improper in some cases [35].
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To address this issue, this paper used the median as an indicator of the tendency for
the greyscale intensity which is less sensitive to outliers [35], and calculated the Median
Absolute Deviation (MAD).

The MAD is a scale estimator that measures the variability of a dataset and it can be
used for outlier detection. The MAD is calculated as:

MAD = median
(∣∣∣Xi − X̃

∣∣∣) (2)

where Xi is each element of the series, and X̃ is the median of the series. With this, a
threshold T can be calculated, as in [35]:

T = X̃ − k × MAD (3)

where k corresponds to a scale factor. Once the threshold is obtained, the image is filtered;
if the value of the pixel in the source image is higher than T, the pixel in the resulting image
is equal to T, otherwise, the value of the pixel remains the same.

result(x, y) =
{

T input(x, y) ≥ T
input(x, y) input(x, y) < T

(4)

For a normally distributed series, where k = 3.5, the values within an interval of
µ ± k × σ, being µ the mean and σ the standard deviation, correspond to 99.7% of the
values of the series and, thus, 0.3% of the values will be outliers. A sensitivity analysis is
presented for k = [2, 2.2, 2.5, 3, 3.5].

The threshold obtained using the MAD depends on the distribution of intensities in
each sub-image. Therefore, the threshold value is not the same for the different regions
containing a crack but, instead, it is updated for each region. Filtering the sub-images using
the threshold T provides a crack region from where the edges and centreline of the crack
are obtained, and the width is calculated.

2.4. Edge Detection

Edges are regions where the intensity changes abruptly and edge detection algorithms
use this fact to delimit features present in the images. Gradient-based edge detectors, such
as Sobel or Prewitt edge detectors, use derivative filters to detect this change in intensity.
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Laplacian detectors, on the other hand, use second-order derivative filters. The Laplacian
L(x, y) of an image with pixel intensities I(x, y) is defined as [27]:

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (5)

The Laplacian method constitutes the convolution mask used to traverse the image
and set the edge pixels as having negative intensity values.

2.5. Width Calculation

The method proceeded to calculate the width of the crack at each pixel, as part of
the centreline. First, the centreline (skeleton) of the crack region was determined with the
skeletonize python function from the scikit-image library. At each point of the skeleton,
the perpendicular line to the direction of the skeleton was obtained and the nearest edge
pixels along the perpendicular line selected (see Figure 6) [28]. The distance between the
selected edge pixels provided the width measurement for the corresponding skeleton pixel.
The measurements were obtained in terms of pixels and transformed into the actual width
using the pinhole camera model to calculate the pixel size pw and following the formula
defined as [36]:

pw =
tan α

2 × (u)× 2
nw

(6)

where pw is the pixel size, u is the distance from the camera to the surface, α is the lens
angle of view, and nw is the resolution of the camera sensor.
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With the measurements in terms of millimetres as the predicted value, the error in the
width calculation was obtained using the values measured with the crack magnifier as the
true values and applying the formula:

Error(%) =
Predicted value − True value

True value
× 100 (7)

2.6. Method Performance

The performance evaluation involved different criteria: the Probability of Detec-
tion (POD), accuracy, recall, precision, F2 score metrics, and the accuracy of crack width
estimation.

The POD is intended to determine the ability of a method to detect a crack of a given
size, defining the largest crack width that the method can overlook. Crack width accuracy
is determined by comparing the manually measured widths using the crack magnifier with
the method’s estimation for each of the points gathered. To further validate the results
of the method, the accuracy, recall, F2 scores, and precision metrics were calculated. The
number of true positives/negatives and false positives/negatives were recorded manually
for each crack and compared with the results obtained. A True Positive (TP) corresponds
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to a pixel belonging to a crack that has been correctly identified by the method. A False
Positive (FP) is a pixel from the background that has been marked as part of a crack by
the method. A True Negative (TN) is a pixel belonging to the background that has been
correctly identified as such and not marked in the final image. The False Negative (FN)
corresponds to a pixel that is part of a crack but that has not been detected as such and, thus,
is not marked in the final image. The calculations of the metrics are performed according
to Equations (8) to (11), according to [37,38].

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
(8)

Recall(Re) =
TP

TP + FN
(9)

Precision(Pr) =
TP

TP + FP
(10)

F2 score =
5 × Pr × Re
4 × Pr + Re

(11)

By carrying out these steps, we evaluated the capability of the method to detect cracks
of different widths and determine the accuracy of the width estimations.

Accuracy corresponds to the number of correct predictions made as a ratio of all
predictions made. Recall is the measure of how often the method correctly identified
positive observations from all the actual positive cases (the true positives + the false
negatives). Precision is the measure which determines how often the positive predictions
of the method are correct by considering the positive observations (true positives) and all
the observations it labelled as positive (the true positives + the false positives). The F2 score
is a measure to balance precision and recall; it corresponds to the weighted harmonic mean
of the precision and recall. The F2 score gives more weight to recall than to precision since
minimizing false negatives is the main concern.

3. Results

We applied the MAD method for the different cracked images gathered using the
different values of k.

Figure 7 presents the different outcomes obtained by applying the method to one of
the studied cracks. In each case, the method determined the MAD value for each sub-image
and with the corresponding k value the threshold T was obtained to generate the threshold
image with the crack marked in yellow pixels. The width was determined for each crack
at each point of the skeleton using the procedure presented in Section 2.5. In each case,
the dark pixels treated as outliers by the method have been marked, creating a continuous
slender line that forms the crack. This means the method identifies the pixels of interest.
For each value of k, cracks are highlighted however, the amount of noise presented and
the width of the crack change. For a low value of k (such as two in Figure 7a), the crack
is highlighted in the image and, in the upper part of the image, different elements can be
seen around the crack. These elements do not have an elongated shape as cracks usually
do. Instead, they appear as dots or rounded elements, constituting noise in the image. As
k increases, as in Figure 7b–e, the components considered as noise decrease in size and
number. This same process is noticeable along the crack. For k = 2.5, the noise in the image’s
upper and lower parts has decreased considerably concerning Figure 7a with a value of
k = 2.0. This trend is even more noticeable for k = 3.5, where many dot elements have
disappeared.

Furthermore, the width of the crack is also affected, particularly at the tip of the
two cracks present in the sample. The reduction in width can also be seen as a reduction in
the crack area leading to parts of the crack being missed (gaps).
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3.1. Probability of Detection

The images were annotated manually at the crack locations measured with the optical
crack magnifier, to generate the POD curves. In this context, a hit refers to the case where a
manual marker in the image coincides with the method marking. Whenever the point is
not marked by the method, it is considered a miss. Based on the hit/miss results for each
size of crack, the percentage of detected cracks for a given size was calculated. This allows
the generation of the Probability of Detection (POD) curves, which illustrate the method’s
performance in terms of crack size detection. Following these results, we define the POD as:

POD =
hit

hit + miss
(12)

The hit results for the different crack sizes and different values of k are presented in
Table 1, where a corresponds to the actual crack width, and n is the number of measurements
performed for the corresponding crack width. For instance, out of the 409 values obtained,
49 correspond to crack sections that are 0.5 mm wide.

Table 1. Number of hits for the different crack sizes using different k values.

Crack Width Number of
Measurements Number of Hits for Different k Values

a (mm) n k = 2.0 k = 2.2 k = 2.5 k = 3.0 k = 3.5

0.1 36 34 35 35 29 23
0.2 50 50 50 50 49 47
0.3 31 31 31 31 31 31
0.4 27 27 27 27 27 27
0.5 49 49 49 49 49 49
0.6 25 25 25 25 25 25
0.7 32 32 32 32 32 32
0.8 38 38 38 38 38 38
0.9 20 20 20 20 20 20
1.0 43 43 43 43 43 43
1.1 13 13 13 13 13 13
1.5 9 9 9 9 9 9
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Given that different values of k are used for the MAD calculation, POD versus crack
width curves are generated for each value of k. By doing this, we determined the probability
of detecting cracks of different sizes for each value of k. Figure 8 presents the POD curves
for the study. The dashed vertical line represents the 90% confidence rate which, in this
case, indicates the point at which all values of k have at least a POD = 90%. Similarly, the
95% confidence value is represented for a POD = 95% with a dashed-dotted line. The 90%
and 95% detection rates for each value of k are given in Table 2. The 50% detection rate is
not displayed, since the lowest POD for the different cases is 64%. The lowest a90 and a95
were obtained for the case in which k was 3.5, with values of 0.19 and 0.21 mm, respectively.
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Table 2. Detection rates a90 and a95 for different values of k.

k Value a90 (mm) a95 (mm)

2.0 0.10 0.10
2.2 0.10 0.10
2.5 0.10 0.10
3.0 0.15 0.18
3.5 0.19 0.21

From the POD results, it can be seen that, by using the MAD segmentation approach
presented in this paper, the largest crack width that is possible to miss is 0.19 mm, when
using a k value of 3.5. By using a k value of 2.5, the probability of detecting cracks that have
a width of 0.1 mm is 97%. Among the different values used for k, 2.0, 2.2, and 2.5 have
the lowest values for a90 and a95, showing that the method is efficient for detecting crack
widths of 0.1 mm and greater. This can be a useful tool for inspectors, since they can obtain
the small crack regions that can sometimes be overlooked when visually reviewing images.

3.2. Width Calculation

The width calculations were performed for the different values of k at each pixel of
the corresponding skeleton, creating width calculations along the crack. The points where
the crack magnifier was used to determine the actual values of width were compared to
the estimations made by the method. The error was calculated for each case and the mean
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values were determined for each crack size and each k value; these are presented in Table 3.
The method detects the regions that correspond to the crack where the width is 0.1 mm but,
in general, it overestimates the width by more than double (>100%). The error is similar for
the different values of k, although decreasing. Indeed, the mean error tends to decrease
with higher values of k and higher values of crack width. Although in the majority of
cases there is an overestimation of the crack width, using k = 3.5 generates negative values
corresponding to an underestimation of the width.

Table 3. Crack width results.

Crack Width
(mm)

Crack Width
(Pixels)

Mean Error (%)
k = 2.0 k = 2.2 k = 2.5 k = 3.0 k = 3.5

0.1 1 165 161 193 140 120
0.2 2 151 101 67 27 81
0.3 3 85 71 36 32 19
0.4 4 87 78 35 41 16
0.5 5 66 50 35 23 13
0.6 6 52 48 34 32 17
0.7 7 47 34 53 53 1
0.8 8 36 29 37 15 −1
0.9 9 74 17 35 14 0
1.0 10 44 35 91 2 15
1.1 11 21 17 41 63 54
1.5 15 7 9 27 −11 −19

Errors are more pronounced for smaller crack widths. One of the contributing factors
is that, in order to identify regions corresponding to crack widths of 0.1 mm, the k value
for the MAD is set to lower values. This implies that the threshold value is closer to the
median, resulting in a larger number of intensities which can be categorised as outliers. As
a result, pixels in the neighbourhood of a crack, which have close intensity values to the
pixels within the crack, end up being marked as part of the crack, effectively enlarging the
crack area. The selection of the k influences the width estimation as well as the probability
of detection, as presented previously. For lower values of k, the POD is higher since there
are no gaps in the continuity of the crack, but the noise and the overestimation of the width
increase. For higher values of k, gaps might appear, but the width estimation is closer to
reality. Considering these two scenarios, the selection of k becomes a trade-off between the
amount of noise accepted, the need to detect the full extension of the crack, and the width
of the crack.

Additionally, it is important to consider that the real size of the pixels corresponds to
the minimum value for the target crack size. This means that an error of one pixel for a
crack measuring 0.1 mm corresponds to an error of 100%. In order to mitigate this, it would
be necessary to have a pixel size smaller than 0.1 mm, either by using a camera with higher
resolution or by setting the camera closer to the concrete surface.

3.3. Comparison of Methods

This section compares two established methods: the Otsu method and the Niblack
method. These methods correspond to some of the most common methods used for
image thresholding and are found in guide textbooks [39]. Furthermore, these meth-
ods are used by other researchers to detect cracks, making them relevant methods for
comparison [8,24,40,41]. Figure 9 presents two examples of the results obtained for the
different methods.

In Figure 9a,e, we present two unprocessed images for different types of concrete
containing cracks. Figure 9b,f present the results obtained using the suggested method
with a k value of 2.5. Subsequently, Figure 9c,g show the results of applying the Otsu
method to both images. Finally, Figure 9d,h show the results obtained after applying the
Niblack method.
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In the case of the Otsu method, the crack cannot be seen in a clear way, while the
MAD and Niblack methods clearly highlight the cracks. However, in these two cases, some
noise is represented by areas incorrectly highlighted as cracks. Despite the crack being
distinguishable, the noise limits the possibility of an inspector or responsible person being
able to focus solely on the damage. Indeed, when using the Otsu method, the noise makes
it difficult to clearly delineate the crack and determine the extent of the damage.

On the other hand, for the Niblack method, the crack is delineated when the back-
ground surface is homogeneous, to some extent. In the case of the second image, variations
in the concrete colour and different sizes of aggregate make the surface more heterogeneous;
this situation generates noise that can make the crack more difficult to distinguish in some
regions. This case would require a higher level of attention for an inspector to be able to
notice the limits of the crack effectively.

When using the MAD method, the cracks are clearly delimited, simplifying their
assessment for an inspector. While the method generates noise similar to the previous cases,
the quantity of noisy regions is considerably less than for the Otsu or Niblack methods.

From the considered images, the manually marked regions were used to determine
the number of True/False Positive/Negative detections for comparison of the methods.
The results of these metrics are presented in Table 4.

Table 4. Comparison of validation results.

Method Accuracy Recall Precision F2 Score

k = 2.0 97% 93% 20% 32%
k = 2.2 98% 90% 24% 38%

MAD k = 2.5 98% 86% 31% 44%
k = 3.0 99% 75% 41% 52%
k = 3.5 99% 63% 51% 54%

Otsu 86% 99% 5% 10%
Niblack 91% 88% 7% 12%

The accuracy of the MAD method demonstrates superior results when compared with
the Otsu and Niblack methods, with the lowest value being 97%. Recall represents the
number of observations the method correctly identified as cracks from all the possible
positive cases. For this metric, the Otsu method performed best but with a precision of
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only 5%. Precision corresponds to the rate of observations the method correctly identified
as cracks, relative to all the observations classified as cracks. Although Otsu has the best
results of recall, the MAD performed better for that metric than Niblack, while achieving
the best results for precision.

In this context, a high level of recall is important as it indicates how effectively the
method detects relevant information (cracks in this case). Precision gives a measure of
false alerts, which can be considered less critical than correctly identifying damage, making
recall more significant. Taking this into account, the MAD method achieves the best results
for the F2 score, which relates recall and precision and puts more emphasis on recall.

4. Conclusions

The method applies the MAD to determine a threshold value for different sub-images
of an image where there is a crack. The calculation of the MAD for each sub-image allows
us to obtain an adaptable threshold value, adjusted to the characteristics of each particular
sub-image, rather than using a general threshold for the entire image. This approach has
proved to be efficient for determining cracks in the images; detecting cracks with widths
of 0.1 mm at a probability of 97%, when using low values of k, and 64% with the highest
value of k. The method delivers results with minimum pre-processing requirements, other
than converting the image into greyscale.

The results indicate that lower k values (2.5 and below) give superior results in terms of
crack detection, but higher errors in their quantification. On the contrary, the highest value
of k gives suboptimal detection results, but the best in terms of quantification. To enhance
the method’s performance, a combination of two k values can be explored, one prioritising
the crack detection and another prioritising the quantification, creating a balance between
the two aspects.

It is important to acknowledge a limitation for the method, since it tends to over-
estimate the crack width in most cases. The overestimation is attributed to the k values
selected, which have a tendency to prioritise the detection of crack areas by applying a
larger threshold value. Additionally, the error is influenced by the size of the pixel, since
an error of one pixel can represent a 100% error, in terms of the real value. Despite this
limitation, the overestimation can be perceived as a conservative measure, assuring that
the method is overestimating damage and, thus, a harmful situation for the structure.

Likewise, the presence of noise in the results should be considered. However, when
considering the practical application of this method and the evaluation of the results by an
inspector, the human perspective plays a crucial role in distinguishing the noise from vital
information. As presented in the comparison of the methods, the MAD method outputs
the lowest values for noise in comparison to the Otsu and Niblack methods, showing the
highest values of precision and F2 score. The method highlights regions containing cracks,
allowing an inspector to focus on those specific areas without having to examine the entire
picture. This reduces the possibility of the inspector missing a crack due to fatigue, lack
of concentration, or having cracks blending in with the background. Although part of the
noise could be wrongly identified as a crack, this conservative approach is preferred over
missing regions with cracks, thus making the results more reliable.

In future studies, hybrid processing will be implemented, integrating various values
of k to balance between prioritizing crack detection and width estimation. Additionally, a
post-processing step will be introduced after applying the MAD procedure to eliminate
noise based on the shape of detected elements. This involves analysing the relationship
between length and width to identify and remove round elements that correspond to noise,
thereby enhancing the precision of crack identification.
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