
Citation: Strickland, C.; Zakar, M.;

Saha, C.; Soltani Nejad, S.; Tasnim, N.;

Lizotte, D.J.; Haque, A. DRL-GAN: A

Hybrid Approach for Binary and

Multiclass Network Intrusion

Detection. Sensors 2024, 24, 2746.

https://doi.org/10.3390/s24092746

Academic Editor: Amitabh Mishra

Received: 1 April 2024

Revised: 19 April 2024

Accepted: 23 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DRL-GAN: A Hybrid Approach for Binary and Multiclass
Network Intrusion Detection
Caroline Strickland * , Muhammad Zakar , Chandrika Saha, Sareh Soltani Nejad , Noshin Tasnim,
Daniel J. Lizotte and Anwar Haque

Department of Computer Science, The University of Western Ontario, London, ON N6A 3K7, Canada;
mzakar@uwo.ca (M.Z.)
* Correspondence: cstrick4@uwo.ca

Abstract: Our increasingly connected world continues to face an ever-growing number of network-
based attacks. An Intrusion Detection System (IDS) is an essential security technology used for
detecting these attacks. Although numerous Machine Learning-based IDSs have been proposed
for the detection of malicious network traffic, the majority have difficulty properly detecting and
classifying the more uncommon attack types. In this paper, we implement a novel hybrid technique
using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for
training a Deep Reinforcement Learning (DRL) model. Our GAN model is trained on the NSL-KDD
dataset, a publicly available collection of labeled network traffic data specifically designed to support
the evaluation and benchmarking of IDSs. Ultimately, our findings demonstrate that training the
DRL model on synthetic datasets generated by specific GAN models can result in better performance
in correctly classifying minority classes over training on the true imbalanced dataset.

Keywords: network security; Network Intrusion Detection System; Deep Reinforcement Learning;
Generative Adversarial Networks; NSL-KDD; Machine Learning

1. Introduction

The increasing volume and sophistication of network-based attacks motivate the
development of effective techniques and tools to prevent service disruption, unauthorized
access, and the disclosure of sensitive information [1]. An Intrusion Detection System (IDS)
is an important defence tool against sophisticated and increasing network attacks, but these
systems, especially Machine Learning (ML)-based systems, require large, reliable, and valid
network traffic datasets to be effective. Many available datasets span various network
attacks, traffic patterns, and include attacker infrastructure details. Unfortunately, the
ever-growing diversity of modern networks means that these datasets frequently fall short
in providing sufficient information to create effective classification mechanisms. These
datasets often suffer from a lack of traffic diversity and volume, or fail to cover the full scope
of known attack types. To cope with these changes, we require a more dynamic dataset that
will improve the ability of an IDS to detect network intrusions. Using Deep Learning (DL)
techniques such as a Generative Adversarial Network (GAN), we can fabricate additional
data using existing datasets to increase the classification accuracy of an IDS, especially for
rare attack categories.

Two methods of IDSs are the Signature-based Intrusion Detection System (SNIDS) and
the Anomaly-based Intrusion Detection System (ANIDS). The SNIDS approach is effective
for known threats, as it looks for specific patterns (or ‘signatures’) such as byte sequences
in network traffic, or known malicious instructions sequences used by malware [1]. Con-
versely, the ANIDS approach uses ML algorithms to analyze and monitor the network
traffic in order to detect any suspicious activity, thus being an effective method for catching
unknown attacks [2].

Sensors 2024, 24, 2746. https://doi.org/10.3390/s24092746 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2458-3848
https://orcid.org/0000-0002-8272-6328
https://orcid.org/0000-0002-8115-5535
https://orcid.org/0000-0002-9258-8619
https://doi.org/10.3390/s24092746
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092746?type=check_update&version=1


Sensors 2024, 24, 2746 2 of 18

The emergence of DL and its integration with Reinforcement Learning (RL) has created
a class of Deep Reinforcement Learning (DRL) methods that are able to detect the most
recent and sophisticated types of network attacks. DRL combines artificial neural networks
with a framework of RL that helps software agents (or ‘learning entities’) learn how to
reach their goals. DRL combines function approximation and target optimization, mapping
states and actions to the rewards they lead to [3]. This results in a ‘policy’ that our learning
agents can follow to make the best decisions given the current state. To detect network
attacks, DRL is used to train an agent such that, given a ‘state’ represented as a collection
of feature values, will take the best ‘action’ (which, in our case, acts as a classification of
network traffic), in order to recognize an attack. DRL is a powerful and effective tool for
network traffic classification due to its ability to extract and learn from complex features
in high-dimensional data, providing a more nuanced understanding of network behavior
without extensive manual feature engineering [4].

Each network is different in that its behaviours and patterns evolve gradually. Natu-
rally, vulnerabilities also evolve. The performance of IDS classification accuracy suffers as
existing datasets gradually become out of date, invalid, and unreliable. Moreover, reliable
data often cannot be shared due to privacy concerns. Existing publicly available datasets do
not include all of the existing network attack types, let alone the unknown vulnerabilities
and attacks. To resolve this, we need more diverse and up-to-date datasets that properly
reflect the characteristics of network intrusions in order to increase the performance of the
IDS. Knowing this, we propose an SNIDS using DRL techniques. We use a collection of
GAN models to generate varied datasets, then use DRL to implement an IDS and train the
model on the GAN-generated datasets and compare our results.

Our work uses the open-source dataset NSL-KDD [5]. NSL-KDD is imbalanced with
significantly less attack samples than normal traffic (especially for Probe, U2R, and R2L
attacks). Thus, we use a GAN to generate synthetic data so that there is a more even class
balance. We then trained a DRL model on both the untouched NSL-KDD dataset as well as
the GAN-generated data from each of our unique models for both binary and multiclass
classification. Finally, we assess how training the DRL models using synthetic datasets
compares in terms of IDS performance as well as individual class F1-scores.

Overall, the primary contributions of this paper include:

1. Using both conditional and unconditional CTGAN and CopulaGAN models to gener-
ate tabular data. This is useful for increasing the minority class samples in imbalanced
datasets, as well as providing large datasets for training ML models.

2. Combining GAN and DRL techniques for the purpose of network intrusion detection
and increasing the precision and recall for classifying underrepresented class data.
We propose a framework that trains a GAN model to produce synthetic data, and
then uses that data to train a DRL model that acts as an IDS and either alerts the user
to a specific type of attack or classifies the network traffic as benign.

The remainder of this paper is organized as follows: Section 2 surveys related work for
the purpose of network intrusion detection and presents the motivation and novelty behind
this work. Section 3 discusses the methodology and details necessary for implementation
of our models. Section 4 provides a comprehensive evaluation of the obtained results.
Section 5 presents an interpretation of our findings, limitations of our work, as well as
directions for future work.

2. Related Work
2.1. DL-Based IDS Research

The first IDS was proposed by Anderson in 1980 [6]. Since then, many mature IDS
solutions have been implemented. Despite advancements, many IDSs continue to deal
with persistent challenges, particularly in terms of high false alarm rates and the inability
to detect unknown attacks. The prevalence of false alarms not only burdens security
analysts, but also increases the risk of overlooking genuinely harmful attacks. With the
rapid evolution of network environments and the emergence of new attack variants, there



Sensors 2024, 24, 2746 3 of 18

is an urgent need for IDSs capable of identifying unknown threats. In response to these
challenges, researchers have shifted away from traditional ML techniques such as Naive
Bayes, Decision Trees, and Support Vector Machines, and are now exploring DL as a
potential solution. DL offers the potential to automatically learn intricate patterns from
raw network data, enabling IDSs to achieve higher detection rates, reduce false alarm
rates, and effectively identify both known and unknown attacks in dynamic network
environments [7].

DL techniques commonly employed for IDSs include convolutional neural networks
for spatial pattern recognition in network traffic [8], recurrent neural networks such as
LSTMs for analyzing sequential data such as system logs [9], and autoencoders for anomaly
detection by learning compressed representations of normal behavior [10]. While these
techniques offer solutions for detecting various cyberthreats and anomalies in diverse
network environments, they often require fixed training datasets and may lack the ability
to adapt dynamically to new threats.

Recognizing these limitations, recent research has leveraged DRL to dynamically adapt
to evolving threats and enhance detection performance. Hsu and Matsuoka [1] proposed
a DRL model for an ANIDS, where network traffic data constitutes the RL environment
state variables, and the outcomes of intrusion detection form the action space. The model
employs a unique approach by dynamically alternating between ‘detection mode’ and
‘learning mode’. In learning mode, detection performance is evaluated through a reward
system, allowing the model to update itself with new data to improve accuracy. Detection
mode uses a dummy reward to maintain operational status without calculating the true
reward. This model is tested on the NSL-KDD and UNSW-NB15 [11] benchmark datasets,
and achieves impressive metrics with over 90% accuracy, recall, and precision.

Building on similar principles, Alavizadeh et al. [12] and Benaddi et al. [13] developed
a DRL-based IDS model tailored to different network environments. The authors introduced
a continuously updating, self-learning IDS that integrates Deep Q-Learning (DQL) with
a deep feedforward neural network. This system uses a trial-and-error auto-learning
approach to improve detection capabilities across various network intrusions, achieving
a classification accuracy of 78% on the NSL-KDD dataset, outperforming several other
ML techniques. Meanwhile, Benaddi et al. presented a DRL-based IDS designed for
wireless sensor networks and the Internet of Things. Given the increasing adoption of these
technologies in sectors such as healthcare, business, and smart cities, they face significant
challenges from cyberthreats due to inherent security flaws, zero-day vulnerabilities, and
widespread accessibility. The DRL-IDS model not only enhances detection performance
by monitoring real-time network traffic but also surpasses standard RL and K-Nearest
Neighbours approaches in accuracy and detection rates, with fewer false negatives when
assessed using the NSL-KDD dataset. These studies highlights the potential of adaptive
learning capabilities in fortifying network security against sophisticated cyberattacks.

Expanding on these advancements, a novel application of several DRL algorithms
to IDS was detailed by Lopez-Martin et al. [4], where a conceptual modification replaces
the classic DRL paradigm of interacting with a live environment with a sampling function
from recorded training intrusions. This pseudo-environment generates rewards based
on detection errors during training, enabling the adaptation of algorithms such as deep
Q-networks, double deep Q-networks, and actor-critic to intrusion detection tasks. Notably,
the double deep Q-networks algorithm exhibit superior performance, significantly enhanc-
ing detection rates and processing speed compared to traditional models. Evaluated using
the NSL-KDD and AWID [14] datasets, this approach not only proves more effective in
reducing false alarms but also in detecting unknown threats, thereby marking a significant
advancement in the capabilities of IDS to adapt to and counteract the rapidly evolving
landscape of cyberthreats.



Sensors 2024, 24, 2746 4 of 18

2.2. Synthetic Network Traffic Data Generation Utilizing GAN Models

In recent years, GANs have been applied to generate realistic network traffic data for
various purposes, including testing the robustness of IDSs and training anomaly detection
models. By learning the underlying distribution of large amounts of legitimate network
traffic, GANs can produce synthetic data that closely resembles real-world traffic, enabling
researchers to evaluate the effectiveness of security measures and enhance network security
defenses. Additionally, GAN-generated traffic can be used to simulate diverse attack
scenarios, aiding in the development and validation of intrusion detection algorithms and
security solutions [15].

The use of GANs for the generation of synthetic network traffic data began to gain
prominence around the mid to late 2010s. One of the early notable works in this area is
by Lin et al. [16], who proposed a IDSGAN, a framework that uses GANs to generate
adversarial malicious network traffic to deceive IDSs. The primary goal is to leverage
GANs to improve IDSs by exposing them to new, more combative and adversarial attack
methods and types. This system models the black-box analogy of IDSs from the perspective
of an attacker that would generally not know about the internal details of the detection
system. A generator transforms known malicious traffic records into adversarial ones and a
discriminator classifies the records to learn about the originally unknown detection system.
The authors demonstrated the validity of their system by only modifying the nonfunctional
features of the records such that the modified records would still classify as an intrusion
and not junk traffic. They evaluate their system using the standard NSL-KDD dataset on
multiple different detection models including Naive Bayes, Random Forest, and multilayer
perceptron classifiers. IDSGAN achieves good results, with the detection rate of the DoS
attack type dropping from approximately 80% with normal records to less than 1% with
modified, adversarial records.

Further advancing this field, Cheng introduced PAC-GAN [17], a convolutional neural
network GAN designed to create network traffic data at the IP packet layer. Similar to its
predecessors, PAC-GAN focuses on the importance of generating realistic network traffic,
crucial for robust cybersecurity measures. This system goes a step further by proving
its ability to generate and transmit traffic flows such as ICMP Pings, DNS queries, and
HTTP web requests successfully through the Internet, receiving appropriate responses
from network entities. This breakthrough demonstrates the practical applications of GANs
in live network environments, confirming the potential of GANs not just to test but also to
enhance real-time network security frameworks. PAC-GAN’s success lays the groundwork
for future developments in GAN-based traffic generation, potentially transforming how
network security is approached.

Tertsegha et al. [18] expanded the scope of synthetic network data generation by
introducing three innovative flow-based network traffic generators that also leverage the
Improved Wasserstein GAN (WGAN-GP) with a two-time scale update rule. These gener-
ators are adept at producing synthetic network traffic that captures the intricate internal
dependencies inherent in flow-based data. The authors develop three specific methods for
data synthesis: N-WGAN-GP treats IP addresses and ports as continuous values, B-WGAN-
GP transforms attributes into binary formats to preserve detailed categorical information,
and E-WGAN-GP employs IP2Vec to create meaningful continuous representations of
categorical attributes. Their evaluation on the CIDDS-001 dataset [19] indicates that E-
WGAN-GP and B-WGAN-GP excel in generating highly realistic data, while N-WGAN-GP
underperforms, suggesting that simpler numeric transformations may not sufficiently
capture complex network behaviors.

2.3. ML-Based IDSs Utilizing GAN Methods

Despite achieving high detection accuracy with ML-based and DL-based IDS tech-
niques, many IDSs still struggle with effective training due to imbalanced datasets. The
challenge is exacerbated by the relatively small size of abnormal or attack data compared
to normal data in most existing datasets, leading to a significant imbalance during training.



Sensors 2024, 24, 2746 5 of 18

Additionally, the distribution of the data space may not be fully discernible to the IDS
because of missing data, even when the data volume is adequate. To address these issues,
GANs have been employed to create new synthetic samples that aim to closely resemble
the original data.

Shahriar et al. [20] implemented a GAN-IDS framework model for the NSL-KDD
dataset, aimed at improving performance in cyber–physical systems with limited data
availability. Recognizing the potent capabilities of GANs within the DL realm and the
critical role of IDS in CPS security, this integration, referred to as G-IDS, specifically
addresses the challenges posed by imbalanced datasets. The model presented in this work
demonstrates superior accuracy in predicting threats compared to traditional standalone
IDS systems, even with minimal initial data. However, the centralized nature of G-IDS,
along with its computational and time-intensive requirements, require further exploration.

Liu et al. [20] addressed the issues of imbalance and high dimensionality in datasets
used for intrusion detection by proposing an oversampling technique based on GAN and
feature selection. The authors used GANs to oversample underrepresented attack classes,
creating a rebalanced, low-dimensional dataset suitable for training ML models, which
enhance the efficiency of intrusion detection. This method was applied to the NSL-KDD,
UNSW-NB15 [11], and CICIDS-2017 [21] datasets, resulting in notable improvements in the
detection capabilities of ML models.

Qui et al. [22] introduced DIGFuPAS, a framework leveraging GANs to enhance
the robustness of ML-based IDSs in smart city applications. This framework generates
mutated cyberattack data flows that can bypass ML-IDSs, providing a method for continu-
ously testing and improving the IDS within software defined networking environments.
DIGFuPAS is evaluated on its ability to improve detection rates and F1-scores, using the
CICIDS-2017 dataset. This framework serves as an automated sustainability test pipeline,
facilitating ongoing assessment and enhancement of IDSs capabilities against sophisticated
cyberattacks.

Kumar and Sinha [23] developed a model for generating synthetic IDS datasets using a
Wasserstein Conditional GAN (WCGAN) coupled with an XGBoost classifier, incorporating
a feature reduction technique via a deep autoencoder. The authors tested this model on the
NSL-KDD, UNSW-NB15, and BoT-IoT datasets, achieving F1-scores of 0.96, 0.81, and 0.99,
respectively. However, the evaluation of the effectiveness of WCGAN on ML classifiers
involve a combination of real and synthetic samples rather than solely using synthetic data
for training. The features are also inconsistent across the datasets, and the observed high
detection performance was primarily restricted to the NSL-KDD dataset.

While the aforementioned studies primarily address enhancements in IDS through
dataset quality and static model accuracy improvements, our work introduces a comprehen-
sive approach by integrating both conditional and unconditional CopulaGAN and CTGAN
models with a DRL-based IDS. This combination targets the pressing issues of insufficient
and imbalanced datasets. Our model leverages the advanced capabilities of DRL to refine
the response strategies of the system, enhancing its ability to detect minority attack types
more accurately than if trained on the original unbalanced dataset. By using synthetic data
generated by CopulaGAN and CTGAN models into the process of training our DRL agent,
our approach markedly advances beyond conventional methods. This strategy provides a
solution that improves the ability of the system to classify underrepresented classes and
react to diverse cyberthreats effectively.

3. Methods
3.1. NSL-KDD Dataset

NSL-KDD is an updated version of the KDD’99 dataset [5]. Basic processing has
been completed, such as the removal of redundant records preventing classifiers from
becoming biased towards more frequent records. The use of the NSL-KDD dataset has been
very popular in studies on IDSs, in a sense, becoming the de facto standard. It contains



Sensors 2024, 24, 2746 6 of 18

information which can help to build a host-based and network-based intrusion detection
model to ensure network security in a variety of systems.

The training and test set contains 125,973 and 22,544 records, respectively. This
includes 42 features; however, we remove ‘Num outbound cmds’ as all records contain
0, so we are left with 41 features: 9 basic features, 12 content features for the connection,
9 temporal features calculated at two-second time windows, 10 statistical network traffic
features, and 1 class label. Table 1 lists the features present in the dataset. The training
set contains 22 attack types and the test set contains 37 attacks types. The 15 attack types
not included in the training set make this dataset excellent for modeling unknown attacks.
We opt to use the common five-class classification of network traffic records: normal, DoS,
Probe, R2L, and U2R. Table 2 describes these five classes in further detail (with the class
ID referring to the numerical mapping used by both the DRL and GAN models). The
distribution of record classes can also be seen in Figure 1.

Table 1. NSL-KDD dataset features.

F# Feature F# Feature

F1 Duration F22 Is guest login
F2 Protocol_type F23 Count
F3 Service F24 Srv count
F4 Flag F25 Serror rate
F5 Src bytes F26 Srv serror rate
F6 Dst bytes F27 Rerror rate
F7 Land F28 Srv rerror rate
F8 Wrong fragment F29 Same srv rate
F9 Urgent F30 Diff srv rate
F10 Hot F31 Srv diff host rate
F11 Num_failed_logins F32 Dst host count
F12 Logged_in F33 Dst host srv count
F13 Num compromised F34 Dst host same srv rate
F14 Root shell F35 Dst host diff srv rate
F15 Su attempted F36 Dst host same src port rate
F16 Num root F37 Dst host srv diff host rate
F17 Num file creations F38 Dst host serror rate
F18 Num shells F39 Dst host srv serror rate
F19 Num access files F40 Dst host rerror rate
F20 * Num outbound cmds F41 Dst host srv rerror rate
F21 Is host login F42 Class label

* Removed during data preprocessing.

Normal DoS Probe R2L U2R
Record Class

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Nu
m

be
r o

f R
ec

or
ds

67,343

45,927

11,656

995 52

9711
7460

2885 2421
67

Train
Test

Figure 1. Distribution of NSL-KDD dataset by record classes.



Sensors 2024, 24, 2746 7 of 18

Table 2. NSL-KDD dataset record classes.

ID Class Symbol # of Records Definition

0 Normal N 77,054 Normal network traffic record

1 DoS D 53,387 Denial of Service attack to prevent requests from
intended users from being fulfilled

2 Probe P 14,077 Probing attack to gather information such as
vulnerabilities about the target machine or network

3 R2L R 3880 An attacker tries to gain local access by sending
packets to a remote machine

4 U2R U 119 An attacker with normal access tries to gain access to
the root by exploiting system vulnerabilities

3.2. Machine Learning Performance Evaluation

We used the accuracy and F1-score (which combines precision and recall) metrics to
evaluate the performance our DRL model and other ML algorithms. While the accuracy
score only measures the percentage of correctly classified samples, this selection of per-
formance metrics allows us to evaluate the percentage of samples that were incorrectly
classified. This is especially important for IDSs as the accuracy performance metric is not
enough to evaluate imbalanced datasets, such as network traffic data, which generally
include significantly more normal traffic. These performance metrics are derived from the
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values.

3.2.1. Accuracy

Accuracy measures the number of correct predictions out of the total predictions made
by the model. In this case, accuracy measures the model’s ability to correctly identify
normal and attack traffic records. Equation (1) formalizes the accuracy performance metric:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

3.2.2. Precision

Precision measures the number of correct positive predictions out of the total number
of positive predictions. In this case, precision measures the model’s degree of correctness in
predicting attack records over the total number of attacks predicted [1,24,25]. Equation (2)
formalizes the precision performance metric:

Precision =
TP

TP + FP
(2)

3.2.3. Recall

Recall measures the number of correct positive predictions out of the total number of
positive instances in the dataset. In this case, recall measures the model’s ability to correctly
identify attack traffic records. From this definition, recall is also referred to as the true
positive rate, detection rate, or sensitivity. Equation (3) formalizes the recall performance
metric:

Recall =
TP

TP + FN
(3)

3.2.4. F1-Score

F1-score is the harmonic mean of the precision and recall values, essentially a com-
bined measure of the two performance metrics. F1-score quantifies how discriminative
the model is [26] and acts as a good indicator of performance since a decrease in either
precision or recall results in a significant decrease in the F1-score. In addition, for multiclass
classification, we present both the unweighted and weighted F1-scores. The weighted



Sensors 2024, 24, 2746 8 of 18

F1-score accounts for label imbalance by considering the number of instances of each label
when calculating the average F1-score. Equation (4) shows how the F1-score is calculated:

F1 Score = 2 · Precision · Recall
Precision + Recall

=
TP

TP + 1
2 (FP + FN)

(4)

3.3. Statistical Evaluation of Synthetic Data

To evaluate the synthetic data generated by the GAN models against the real data
they were trained on, we used statistical metrics that compare the columns of the synthetic
tables against those in the real tables. These statistical metrics are as follows.

3.3.1. CSTest

The CSTest compares columns with discrete values using the Chi-squared test to
compare their distributions. The output of the test is an average of the CSTest p-values
for each of the columns, which ultimately quantifies the probability that the compared
columns were sampled from the same distribution.

3.3.2. KSTest

The KSTest compares columns with continuous values using the two-sample Kol-
mogorov–Smirnov test and empirical Cumulative Distributed Function (CDF) to compare
their distributions. The output of the test is an average of 1 minus the KSTest D statistic
for each of the columns. This result quantifies the maximum distance between the CDF
expected and observed values.

3.3.3. KSTestExtended

The KSTestExtended is an extension of the KSTest that converts all columns to numeri-
cal values using a hypertransformer and then applies the regular KSTest.

3.4. Detection-Based Evaluation of Synthetic Data

Detection metrics use ML models to determine how distinguishable the synthetic data
are from the real data. To achieve this, both the synthetic and real tables are shuffled and a
flag indicating whether the record is synthetic or not is added. Next, cross-validation is
used with a selected ML model that predicts the flag, outputting 1 minus the average ROC
AUC of all the cross-validation splits. Because the ROC AUC measures the separability of
the classes from the model, a high detection metric score means that the model is unable to
easily distinguish the synthetic records from the real ones.

3.5. Generative Adversarial Network Models

Goodfellow et al. [27] first proposed the idea of a GAN in 2014 as an unsupervised
learning method that generates synthetic data using an input of real data. GANs are
used to generate realistic synthetic data using real data, usually because obtaining more
data can be difficult, time consuming, and costly. GANs use two independent models, a
generator and a discriminator. By detecting patterns or similarity from given input data,
the generator processes input data and produces more data. The discriminator is a classifier
which determines the difference between the real data and the generated data. It produces
a probability between 0 and 1 to define whether an instance belongs to the real data (closer
to 1) or to the generated data (closer to 0). Figure 2 highlights the general workflow
of GANs.



Sensors 2024, 24, 2746 9 of 18

Figure 2. Architecture of GANs.

This work concentrates on CTGAN [28] and CopulaGAN, which are specialized GAN
models designed for generating synthetic tabular data. These GAN models closely mimic
the statistical properties of real datasets; however, they cater to slightly different needs and
technical challenges, which we describe below.

Our work generates these models using implementations provided by the SDV open-
source library [29], following work by Bourou et al. [30], which showed promising results
for generating network traffic data using models from this library. These models were
trained on the NSL-KDD training data for 100 epochs with a batch size of 500. Both models
used discriminator steps of 5, matching WGAN [31], an extended version of vanilla GAN.
The full list of hyperparameters and their values are given in Table 3.

Table 3. Hyperparameters for the trained GAN models.

Hyperparameter Value

epochs 100
batch_size 500

embedding_dim 128
generator_dim (256, 256)

discriminator_dim (256, 256)
generator_lr 0.0002

generator_decay 0.000001
discriminator_lr 0.0002

discriminator_decay 0.000001
discriminator_steps 5

The trained CTGAN and CopulaGAN models were each used to generate two syn-
thetic datasets:

1. A dataset containing 200,000 records generated through regular sampling without
conditions.

2. A dataset containing 20,000 records for each class generated using conditional sam-
pling through rejection. These datasets were used to explore the efficacy of using
GANs to generate a balanced distribution from an highly imbalanced training distri-
bution.

3.5.1. CTGAN

CTGAN introduces significant advancements to address the specific challenges of
applying GANs to tabular data. Notably, it handles non-Gaussian and multimodal dis-
tributions through a mode-specific normalization technique. This approach transforms
continuous values from any distribution into a bounded vector, making them more suitable
for neural network processing. In contrast, earlier models normalized continuous values to
the range of [−1, 1] using min–max normalization. CTGAN employs a variational Gaussian
mixture model to process each continuous column independently.

The CTGAN model incorporates a conditional generator and a training-by-sampling
strategy to address the potential issue of data imbalance. During training, data are sampled



Sensors 2024, 24, 2746 10 of 18

so that all categories of discrete columns are equally represented. A conditional vector,
created through one-hot encoding, specifies the value of a particular column. This con-
ditional vector, along with random noise, serves as input to the conditional generator, G,
designed to produce outputs that replicate the specified conditions. The training process
utilizes WGAN loss with a gradient penalty to optimize the generator. The effectiveness of
the conditional generator is assessed by a critic that measures the discrepancy between the
model’s learned conditional distribution and the actual data distribution [30].

3.5.2. CopulaGAN

The CopulaGAN model, a derivative of CTGAN, utilizes a CDF-based transformation.
This modification facilitates easier learning of data by leveraging copulas [32] to model the
interdependence among random variables. During training, CopulaGAN processes various
data types and formats, converting nonnumerical and null data into a fully numerical
format through a reversible data transformation. This enables the model to learn the
probability distributions for each table column effectively. CopulaGAN also focuses on
understanding the correlations between different table columns [30].

3.6. Deep Reinforcement Learning Model

DRL is a subfield of ML that merges RL with DL techniques. RL focuses on learning
optimal policies through interaction with an environment, aiming to maximize cumulative
rewards. DRL enhances this by using DL to process unstructured input data, allowing
agents to make decisions without manually crafted state spaces.

In RL, problems with small, discrete state–action spaces can manage state–action
mappings using a simple table, which approximates the mappings with a reasonable degree
of error. However, when faced with large state–action spaces, traditional RL struggles
with memory and performance due to the impracticality of storing extensive data. DRL
addresses these challenges by integrating deep neural networks, which approximate value
or policy functions more efficiently. Unlike traditional tables, neural networks in DRL learn
to map states to values directly, enabling them to independently learn and optimize for
long-term rewards in environments with large and complex state and action spaces.

The DRL models in our work were implemented using OpenAI Gym [33], stable-
baselines3 [34], and Tensorflow [35]. Training of the model was done in two distinct
stages to investigate the variation in performance—binary classification and multiclass
classification.

3.6.1. Binary Classification

For binary classification, we used an action space of size two (‘alert’ or ‘no alert’).
While binary classification offers the user less knowledge on attack type specifications, it
performs the basic task of an IDS—alerting the user to an attack.

For binary classification, we have defined our action space, also seen in Figure 3, as
follows:

• 0 : No Alert (benign);
• 1 : Alert (attack).

Moreover, the rewards for this model are defined by:

• +1 if agent correctly alerts to an attack;
• 0 if agent does not raise an alert when it is not needed;
• −1 if agent does not raise an alert when there is an attack;
• −1 if agent raises alert when there is not one needed.



Sensors 2024, 24, 2746 11 of 18

Agent
(binary classification)

Agent
(multiclass classification)

No Alert Alert No Alert DoS Probe U2R R2L

Environment

protocol_type service flag logged_in ...

Action
Space

State
Representation

Figure 3. The action space and state representation of both the proposed DRL binary classification
and multiclass classification model.

In addition, we have assigned two distinct conditions for terminating an episode. An
episode will be terminated if (1) it reaches a set timestep threshold or (2) if an attack is
issued and no alert has been made.

The reward function for a binary IDS effectively reinforces accurate detection while
penalizing both false alarms and missed attacks. By offering +1 for correct alerts and −1
for inappropriate or missed alerts, it encourages the system to maintain a critical balance
between sensitivity (detecting attacks) and specificity (avoiding false alarms).

The state space is a collection of 40 features, both numerical and nominal, existing
within the NSL-KDD dataset. These features can be seen in Table 1. It is important to note
that features F20 and F42 are removed from the state representation, as F20 is dismissed
during preprocessing, and F42 is the class label.

Initially, we trained the DRL model on the original NSL-KDD training set, described
in detail above. We did this to create a baseline to determine how well our synthetic
GAN-generated data performed in comparison. Prior to training our model, we converted
all class labels using a binary mapping. If the class was originally ‘normal’, we assigned it
a value of ‘0’; otherwise, it was assigned a value of ‘1’, implying that the data point was an
attack of some sort.

For our DL models, Proximal Policy Pptimization (PPO), a policy-gradient algorithm
that directly optimizes the expected reward by estimating the gradient of the policy from
the trajectories taken by the agent, is employed. We applied a custom multi-layer per-
ceptron, a class of feedforward neural network [36], of three layers with size 128, 64, and
32. In addition, each model used a rectified linear unit (ReLU) activation function. The
hyperparameters used for this model can be seen in Table 4.

Table 4. Hyperparameters for PPO models in binary and multiclass classification.

Hyperparameter Value

gamma 0.9
n_steps 512
ent_coef 0.00001

learning_rate Adjusts dynamically from 0.0021 to 0
vf_coef 0.6

max_grad_norm 0.8
lam 0.8

nminibatches 16
noptepochs 55
cliprange 0.2



Sensors 2024, 24, 2746 12 of 18

3.6.2. Multiclass Classification

We also trained DRL models to perform multiclass classification. Similar to binary
classification, we are still detecting whether there is an attack or not; however, we now
attempt to classify which type of attack is taking place. Instead of ‘0’ or ‘1’, our action space
consists of 0, 1, 2, 3, and 4. As stated previously, 0 maps to ‘benign’, whereas 1, 2, 3, and
4 map to DoS, Probe, R2L, and U2R, respectively. As our action space has increased in
comparison to binary classification, our problem becomes significantly moire complex.

For multiclass classification, we have defined our action space, also seen in Figure 3,
as follows:

• 0 : No Alert (benign);
• 1 : DoS;
• 2 : Probe;
• 3 : R2L;
• 4 : U2R.

Moreover, the rewards for this model are defined by:

• +1 if agent correctly alerts to the correct type of attack;
• 0 if agent does not raise an alert when it is not needed;
• −1 if agent does not raise an alert when there is an attack;
• −1 if agent raises alert when there is not one needed;
• −1 if agent raises an alert to the incorrect type of attack.

Both episode termination and state representation remain consistent with the descrip-
tion provided in Section 3.6.1.

As in binary classification, we used a ReLU activation function for multiclass clas-
sification; however, for the conditional versions of both CTGAN and CopulaGAN, we
used a Sigmoid activation function, as we found that this results in a significant increase in
performance on test data. For each model, we again used a custom multi-layer perceptron
of three layers with size 128, 64, and 32. The hyperparameters used for this model can be
seen in Table 4.

An overview of the way in which each of the aforementioned components of our
proposed system interact within our study can be seen in Figure 4.

NSL-KDD
Original
Dataset

Data
Preprocessing
(Feature Selection, 

Normalization, Encoding)

Generative Adversarial
Network

(CTGAN or CopulaGAN)

Training Phase

Synthetic Dataset

Deep Reinforcement
Learning Algorithm

(Proximal Policy
Optimization)

Testing Phase

Subset of NSL-
KDD Original

Dataset

Trained Deep
Reinforcement
Learning Model

Predictions
Normal DoS Probe R2L U2R

Figure 4. Overview of system components and interactions for multiclass classification.

4. Results

The following subsections describe the experimental results from our proposed GAN
and DRL models, followed by a comparative analysis of our proposed model with other
state-of-the-art ML methods.

4.1. GAN Models

The statistical metric results showcased in Table 5 indicate that both CTGAN and
CopulaGAN model the discrete and continuous features of the NSL-KDD dataset effec-
tively. As dictated by the KSTest and KSTestExtended, CopulaGAN models continuous



Sensors 2024, 24, 2746 13 of 18

features better than CTGAN and maintains parity for discrete features as indicated by
the CSTest. Table 6 highlights the results for a linear regression classifier used to evaluate
detection performance of the synthetic data. Altogether, the classifier found it challenging
to distinguish the synthetic records from the real ones, which indicates that the GANs are
able to capture aspects of the true dataset. Tables 7 and 8 showcase the performance of ML
models when trained to distinguish between various real and synthetic datasets. Across the
board, there is comparable performance between the original real NSL-KDD dataset and
the CTGAN and CopulaGAN synthetic datasets. Thus, there is promise in using synthetic
data in place of real data.

Table 5. Statistical metrics for synthetic data.

Synthetic Data CSTest KSTest KSTest
Extended

CTGAN 0.9971 0.9156 0.9181
CTGAN (Conditional) 0.7468 0.8655 0.8571

CopulaGAN 0.9988 0.9550 0.9574
CopulaGAN (Conditional) 0.6982 0.9000 0.8864

Table 6. Results for synthetic data using logistic regression.

Synthetic Data Discernment Metric

CTGAN 0.7579
CTGAN (Conditional) 0.4139

CopulaGAN 0.6862
CopulaGAN (Conditional) 0.3948

Table 7. Machine Learning performance for binary classification.

Training Data
Decision Tree AdaBoost Classifier Logistic Regression Classifier MLP Classifier Proposed DRL

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

NSL-KDD 0.8407 0.8414 0.8221 0.8270 0.8700 0.8802 0.8054 0.8080 0.8951 0.9064
CTGAN 0.8074 0.8112 0.8404 0.8486 0.8610 0.8710 0.8461 0.8545 0.8572 0.8687
CTGAN

(Conditional) 0.8801 0.8927 0.9086 0.9226 0.8740 0.8853 0.9077 0.9220 0.4662 0.1172

CopulaGAN 0.7735 0.7607 0.8259 0.8246 0.8163 0.8201 0.7918 0.7831 0.8294 0.8375
CopulaGAN
(Conditional) 0.8287 0.8333 0.8743 0.8881 0.8256 0.8311 0.8947 0.9074 0.4901 0.1893

Table 8. Machine Learning performance for multiclass classification.

Training Data
Decision Tree MLP Classifier Proposed DRL

Accuracy F1 F1 (Weighted) Accuracy F1 F1 (Weighted) Accuracy F1 F1 (Weighted)

NSL-KDD 0.7685 0.5585 0.7338 0.7856 0.6302 0.7556 0.7300 0.4880 0.6891
CTGAN 0.7475 0.5297 0.7336 0.7765 0.6467 0.7572 0.4247 0.3033 0.4503

CTGAN (Conditional) 0.6200 0.4475 0.6525 0.7442 0.5643 0.7791 0.5520 0.3938 0.4533
CopulaGAN 0.7031 0.4165 0.6618 0.7374 0.4606 0.6863 0.7023 0.3967 0.6345
CopulaGAN
(Conditional) 0.6116 0.3810 0.6215 0.7088 0.4401 0.6883 0.4839 0.2716 0.4049

4.2. DRL Models
4.2.1. Binary Classification

Training on the NSL-KDD training dataset for 100,000 timesteps resulted in an average
accuracy of 89.5% and an F1-score of 0.906 on the test dataset, as shown in Table 7. We then
trained the DRL model on each of the GAN-generated datasets one-by-one and evaluated
them individually on the NSL-KDD test dataset. The detailed results of these experiments
can be seen in Table 7, and viewed in terms of progressive performance for average accuracy
in Figure 5.



Sensors 2024, 24, 2746 14 of 18

Figure 5. Results measuring the accuracy of binary classification after training the DRL model on
both the original NSL-KDD dataset and each of the synthetic GAN datasets.

Training on CTGAN synthetic data performs the best after the NSL-KDD trained
model, with 85.7% accuracy and an F1-score of 0.869. Training using CopulaGAN synthetic
data trails close behind with 82.9% accuracy and an F1-score of 0.838. The conditional
variations of both CopulaGAN and CTGAN perform significantly worse than the three
other datasets, reaching their peak of 70% and 66%, respectively, almost immediately, and
then dropping to just below 50%.

4.2.2. Multiclass Classification

Training on the NSL-KDD training dataset for 2,000,000 timesteps resulted in an
accuracy of 73% and a weighted F1-score of 68.9% on the test dataset, as shown in Table 8.

We then trained the DRL model on the four GAN-generated synthetic datasets pre-
viously discussed. The most promising results were seen in training the model on Copu-
laGAN. The model reaches an accuracy of 70.2% and a weighted F1-score of 63%. This is
just a 2.7% drop in accuracy from training on the true NSL-KDD data. Training the DRL
model on the remaining three synthetic datasets underperforms when compared to both
the decision tree and MLP classifier.

As discussed previously, an F1-score refers to both precision and recall being high.
When we train on imbalanced datasets, the F1-scores in minority classes are typically quite
low, as the ML model does a poor job of recognizing and properly classifying that test
data. Looking at Table 9, we can see the F1-scores for each individual class for each of our
training sets. Since NSL-KDD had extremely low records for both R2L and U2R, we can see
that the F1-scores for these classes are also quite low at 0.1490 and 0.0, respectively.

Table 9. Class-based F1-scores for multiclass classification.

Dataset Normal DoS Probe R2L U2R

NSL-KDD 0.7785 0.8072 0.4752 0.1490 0.0
CTGAN 0.5670 0.4618 0.3858 0.0831 0.0192

CTGAN (Conditional) 0.7662 0.0 0.4589 0.5725 0.1716
CopulaGAN 0.8139 0.7101 0.4593 0.0 0.0
CopulaGAN
(Conditional) 0.8039 0.0 0.2201 0.2097 0.0512



Sensors 2024, 24, 2746 15 of 18

One of the major goals of our work was to determine if, by generating synthetic GAN
data, we could inflate the F1-scores (more specifically, precision and recall) of the minority
classes from our imbalanced dataset. In Table 9, we can see that training our DRL model
with data generated from conditional CTGAN and conditional CopulaGAN improved
upon the F1-scores for both R2L and U2R in the same way that we would expect to see if
the true dataset naturally contained more records of these two class types. Training the
DRL model on synthetic data from conditional CTGAN increased the F1-scores for R2L
and U2R by 0.573 and 0.172, respectively. Training on synthetic data from conditional
CopulaGAN improved the F1-scores for R2L and U2R by 0.210 and 0.051, respectively.
This demonstrates that the concept of using GAN models to generate synthetic data for a
minority class and artificially inflating the training set in order to have better performance
in classifying underrepresented classes is a viable option.

5. Conclusions

In this paper, we have proposed an SNIDS which is able to perform binary and
multiclass classification on network traffic data using a DRL-based system. The model was
trained using the publicly available NSL-KDD dataset, allowing it to detect a range of attack
types on a network. To enhance the learning capabilities of our proposed model, GANs
were used to fabricate training data for our DRL-based IDS. Our results demonstrate that
this system is able to interact with the network and identify attack classes with competitive
accuracy. In addition, we show that generating synthetic data for underrepresented classes
can improve the precision and recall within these classes, thus acting as a potential solution
for imbalanced datasets.

For binary classification, we obtained an 89.5% accuracy after training on the original
NLS-KDD dataset. We consider this our baseline model. When trained on the four synthetic
datasets, data generated from unconditional CTGAN produced an accuracy of 85.7%, the
closest competition to the baseline model.

In multiclass classification tasks, our model achieved an accuracy of 73.0% when
trained on the original NSL-KDD dataset. When utilizing the four synthetic datasets,
CopulaGAN-generated data yielded an accuracy of 70.2%, proving to be the closest com-
petitor to the baseline model. Therefore, our GAN-based approach successfully generates
realistic data suitable for training competitive IDSs.

Furthermore, both Table 9 and Figure 6 demonstrate an increase in F1-scores for minor-
ity classes on the IDS trained using GAN-generated data. Thus, while our overall accuracy
decreased, we are getting better precision and recall performance for the classes without
sufficient data in the NSL-KDD dataset. A decrease in overall accuracy accompanied by an
increase in F1-scores for underrepresented attack types is a promising outcome, particularly
highlighting the enhanced capability of our model to identify less frequent, critical events.
This indicates a shift towards a more balanced approach in handling class imbalances,
where the improved precision and recall for minority classes are crucial. Thus, the trade-
off in overall accuracy is justified by the substantial gains in effectively identifying these
critical events.

Despite its widespread use, the NSL-KDD dataset presents several limitations when
used for training DL models. First, the static nature of the dataset means it may not
capture the dynamic and evolving patterns of new network threats, potentially leading to
models that perform well on historical data, but are less effective against contemporary or
future attacks. Furthermore, inherent biases and incomplete representations of attack types
within the dataset can result in synthetic data that does not adequately reflect real-world
complexities, thus limiting the generalizability of the trained model.



Sensors 2024, 24, 2746 16 of 18

(a) NSL-KDD (b) CTGAN (c) CTGAN (Conditional)

(d) CopulaGAN (e) CopulaGAN (Conditional) (f) Average Accuracy

Figure 6. Results measuring the F1-scores of multiclass classification (a–e) as well as the averages
(f) after training the DRL model for 2 million timesteps on both NSL-KDD as well as each synthetic
dataset.

To mitigate the discussed limitations, our future work aims to expand the scope
of our research by testing our proposed approach on datasets beyond NSL-KDD. We
plan to explore other benchmark datasets, such as CICIDS2017, UNSW-NB15, and the
DARPA Intrusion Detection Evaluation Dataset, to evaluate the robustness of our approach
across diverse network environments. By testing on multiple unique datasets, we can
gain insights into the adaptability of our method to different network architectures, traffic
patterns, and attack scenarios, thus providing a more comprehensive understanding of its
efficacy in enhancing IDSs. Additionally, conducting experiments on a variety of different
datasets enables us to identify potential challenges and fine-tune our model to achieve
better performance across various domains, ultimately advancing the applicability of our
proposed approach in real-world cybersecurity applications.

Author Contributions: Conceptualization, C.S. (Caroline Strickland) and C.S. (Chandrika Saha);
methodology, C.S. (Caroline Strickland), M.Z. and C.S. (Chandrika Saha); software, C.S.
(Caroline Strickland), M.Z. and C.S. (Chandrika Saha); validation, C.S. (Caroline Strickland), M.Z.,
and C.S. (Chandrika Saha); writing—original draft preparation, C.S. (Caroline Strickland), M.Z., C.S.
(Chandrika Saha), S.S.N., and N.T.; writing—review and editing, D.J.L. and A.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: NSL-KDD dataset: https://www.unb.ca/cic/datasets/nsl.html
(accessed on 19 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.unb.ca/cic/datasets/nsl.html


Sensors 2024, 24, 2746 17 of 18

Abbreviations

Acronym Definition
ANIDS Anomaly Network Intrusion Detection System
CDF Cumulative Distribution Function
DL Deep Learning
DQL Deep Q-Learning
DRL Deep Reinforcement Learning
GAN Generative Adversarial Network
IDS Intrusion Detection System
ML Machine Learning
PPO Proximal Policy Pptimization
RL Reinforcement Learning
SNIDS Signature-based Network Intrusion Detection System
WCGAN Wasserstein Conditional Generative Adversarial Network
WGAN-GP Improved Wasserstein Generative Adversarial Network

References
1. Hsu, Y.F.; Morito, M. A deep reinforcement learning approach for anomaly network intrusion detection system. In Proceedings

of the 2020 IEEE 9th International Conference on Cloud Networking (CloudNet), Piscataway, NJ, USA , 9–11 November 2020;
IEEE: Piscataway, NJ, USA, 2020.

2. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network anomaly detection: Methods, systems and tools. IEEE Commun. Surv.
Tutor. 2013, 16, 303–336. [CrossRef]

3. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

4. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for
supervised problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]

5. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada 8–10 July 2009;
pp. 1–6. [CrossRef]

6. Anderson, J.P. Computer Security Threat Monitoring and Surveillance; Technical Report; James P. Anderson Company: Easton, PA,
USA, 1980.

7. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

8. Vinayakumar, R.; Soman, K.; Poornachandran, P. Applying convolutional neural network for network intrusion detection. In
Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1222–1228.

9. Lv, D.; Luktarhan, N.; Chen, Y. ConAnomaly: Content-based anomaly detection for system logs. Sensors 2021, 21, 6125. [CrossRef]
[PubMed]

10. Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, Gold Coast, QLD, Australia, 2 December 2014;
pp. 4–11.

11. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; IEEE: Piscataway, NJ, USA, 2015, pp. 1–6.

12. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-Learning based Reinforcement Learning Approach for Network Intrusion
Detection. Computers 2022, 11, 41. [CrossRef]

13. Benaddi, H.; Ibrahimi, K.; Benslimane, A.; Qadir, J. A deep reinforcement learning based intrusion detection system (DRL-IDS)
for securing wireless sensor networks and internet of things. In Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2020; pp. 73–87.

14. Thanthrige, U.S.K.P.M.; Samarabandu, J.; Wang, X. Machine learning techniques for intrusion detection on public dataset. In
Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada,
15–18 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

15. Shahid, M.R.; Blanc, G.; Jmila, H.; Zhang, Z.; Debar, H. Generative deep learning for Internet of Things network traffic generation.
In Proceedings of the 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, Australia,
1–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 70–79.

16. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion detection. In Proceed-
ings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Chengdu, China, 16–19 May 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 79–91.

http://doi.org/10.1109/SURV.2013.052213.00046
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1016/j.eswa.2019.112963
http://dx.doi.org/10.1109/CISDA.2009.5356528
http://dx.doi.org/10.3390/app9204396
http://dx.doi.org/10.3390/s21186125
http://www.ncbi.nlm.nih.gov/pubmed/34577332
http://dx.doi.org/10.3390/computers11030041


Sensors 2024, 24, 2746 18 of 18

17. Cheng, A. Pac-gan: Packet generation of network traffic using generative adversarial networks. In Proceedings of the 2019 IEEE
10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada,
17–19 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 728–734.

18. Anande, T.J.; Al-Saadi, S.; Leeson, M.S. Generative adversarial networks for network traffic feature generation. Int. J. Comput.
Appl. 2023, 45, 297–305. [CrossRef]

19. Verma, A.; Ranga, V. Statistical analysis of CIDDS-001 dataset for network intrusion detection systems using distance-based
machine learning. Procedia Comput. Sci. 2018, 125, 709–716. [CrossRef]

20. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-IDS: Generative adversarial networks assisted intrusion detection
system. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid,
Spain, 13–17 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 376–385.

21. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018),
Madeira, Portugal, 22–24 January 2018; Volume 1, pp. 108–116.

22. Qui, C.P.X.; Quang, D.H.; Duy, P.T.; Pham, V.-H. Strengthening IDS against evasion attacks with GAN-based adversarial samples
in SDN-enabled network. In Proceedings of the 2021 RIVF International Conference on Computing and Communication
Technologies (RIVF), Hanoi, Vietnam, 19–21 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

23. Kumar, V.; Sinha, D. Synthetic attack data generation model applying generative adversarial network for intrusion detection.
Comput. Secur. 2023, 125, 103054. [CrossRef]

24. Alghayadh, F.; Debnath, D. A hybrid intrusion detection system for smart home security. In Proceedings of the 2020 IEEE
International Conference on Electro Information Technology (EIT), Rome, Italy, 19–22 October 2020; IEEE: Piscataway, NJ, USA, 2020.

25. Alghayadh, F.; Debnath, D. Performance evaluation of machine learning for prediction of network traffic in a smart home. In
Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
New York, NY, USA, 28–31 October 2020; IEEE: Piscataway, NJ, USA, 2020.

26. Alghayadh, F.; Debnath, D. A hybrid intrusion detection system for smart home security based on machine learning and user
behavior. Adv. Internet Things 2021, 11, 10–25. [CrossRef]

27. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
28. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling tabular data using conditional GAN. Adv. Neural Inf.

Process. Syst. 2019, 32, 7335–7345.
29. Montanez, A. SDV: An Open Source Library for Synthetic Data Generation. Ph.D. Thesis, Massachusetts Institute of Technology,

Cambridge, MA, USA, 2018.
30. Bourou, S.; El Saer, A.; Velivassaki, T.H.; Voulkidis, A.; Zahariadis, T. A Review of Tabular Data Synthesis Using GANs on an IDS

Dataset. Information 2021, 12, 375. [CrossRef]
31. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International

Conference on Machine Learning (PMLR), Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; Proceedings of
Machine Learning Research; Volume 70, pp. 214–223.

32. Durante, F.; Sempi, C. Principles of Copula Theory; CRC Press: Boca Raton, FL, USA, 2016; Volume 474.
33. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.
34. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning

Implementations. J. Mach. Learn. Res. 2021, 22, 1–8.
35. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467.
36. Noriega, L. Multilayer Perceptron Tutorial; School of Computing, Staffordshire University: Stoke-on-Trent, UK, 2005.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/1206212X.2023.2191072
http://dx.doi.org/10.1016/j.procs.2017.12.091
http://dx.doi.org/10.1016/j.cose.2022.103054
http://dx.doi.org/10.4236/ait.2021.111002
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/info12090375

	Introduction
	Related Work
	DL-Based IDS Research
	Synthetic Network Traffic Data Generation Utilizing GAN Models
	ML-Based IDSs Utilizing GAN Methods

	Methods
	NSL-KDD Dataset
	Machine Learning Performance Evaluation
	Accuracy
	Precision
	Recall
	F1-Score

	Statistical Evaluation of Synthetic Data
	CSTest
	KSTest
	KSTestExtended

	Detection-Based Evaluation of Synthetic Data
	Generative Adversarial Network Models
	CTGAN
	CopulaGAN

	Deep Reinforcement Learning Model
	Binary Classification
	Multiclass Classification


	Results
	GAN Models
	DRL Models
	Binary Classification
	Multiclass Classification


	Conclusions
	References

