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Abstract: Trace amounts of nitric oxide (NO) have been determined in aqueous phosphate buffer 
solutions (pH=7.4) by using a glassy carbon electrode coated with three charge-different polymer 
films.  The glassy carbon electrode was coated first with negatively charged Nafion film containing 
tetrakis(pentafluorophenylporphyrin) iron(III) chloride (Fe(III)TPFPP) as the NO oxidation catalyst, 
and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride) (PADDA) 
and with neutral poly(dimethylsiloxane) (silicone) at the outermost layer.  This polymer-coated 
electrode showed an excellent selectivity towards NO against possible concomitants in blood such as 
nitrite, ascorbic acid, uric acid, and dopamine.  All current ratios between each concomitant and NO 
at the cyclic voltammogram was in 10-3 ~ 10-4.  This type of electrode showed a detection limit of 
80 nM for NO.  It was speculated from the electrochemical study in methanol that high-valent oxo-
iron(IV) of Fe(TPFPP) participated in the catalytic oxidation of NO. 

Keywords: polymer-coated electrode, nitric oxide detection, tetrakis(pentafluoro-phenylporphyrin) 
iron(III) chloride. 

 

Introduction 

Nitric oxide (NO) plays significant roles in the microbiology, physiology and chemistry of an environment. 
Since NO itself became to be known as an endothelial-derived relaxing factor [1,2], it has been clarified that NO 
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worked as a neurotransmitter in the brain [3], and as an antitumor agent [4].  The determination of NO in 
biological media is of great importance but it is complicated by the short life due to the high reactivity of NO.  
Several methods have been implemented for measuring NO [5].  Among these methods, the electrochemical one 
is the most suitable for in-situ NO detection.  Direct electrochemical reduction or oxidation of NO can be 
achieved on bare metals or carbon materials [6,7].  However, many substances, which disturb the detection of 
NO, are present in vivo.  Coating of the electrodes with a Nafion membrane prevents side reaction of nitrite 
oxidation, but can not prevent the interference by positively charged substance in blood, for example, dopamine.  
In order to improve the selective detection of NO, several polymer films have been coated onto base electrodes, 
and are summarized in Bedioui and Villeneuve’s review [8].  In these polymer films, WPI membrane [9] has 
been shown to be effective for selective NO detection, but the nature of the membrane is not indicated.  Single 
layer membrane on electrodes [10,11] has been claimed to be effective for selective detection of NO, we tried to 
prepare an electrode coated with three charge-different polymer films and checked its performance for the 
selective detection of NO.  Since Malinski and Taha [12] first clarified that electropolymerized Ni(II)porphyrin 
was effective for the high-sensitive detection of nitric oxide, many metalloporphyrins [13-20] had been 
investigated to clarify their functions in the catalysis.  Present authors also studied on various iron porphyrins 
[18] and found that tetrakis(pentafluorophenylporphyrin) iron(III) chloride (Fe(TPFPP)Cl) was an excellent 
catalyst for nitric oxide oxidation.  We utilized this porphyrin as the oxidative detection of nitric oxide in this 
work. 

Experimental  
 
Chemicals 
   

As the polymer for electrode coating, negatively charged Nafion alcoholic solution (Aldrich, 5 wt%), 
positively charged poly(acrylamide-co-diallyldimethylammonium chloride) (PADDA) aqueous solution 
(Aldrich, 10 wt%), and neutral poly(dimethylsiloxane) in xylene (Toray-Dow, KE-9140, 60 wt%) were used.  
The latter two solutions were diluted to 5 wt% and 10 wt% with the original solvent, respectively. 

Nitric oxide (NO) (Nippon Sanso) diluted with Ar (5% NO) was bubbled into the electrochemical cell for 
20 min.  The concentration of NO in solutions was estimated to be 87.5 µM [5].  The NO solutions with lower 
concentrations than 87.5 µM were prepared by adding a constant amount of the above solution into 10 ml 
phosphate buffer in a glove box filled Ar.  Ar gas for purging dissolved oxygen in electrolytic solution and in 
5% KOH for purification line of NO was of ultra-pure (Nippon Sanso, 99.9999 %).  This gas was passed for 
30 min before passing NO.      
 

Preparation of Electrode 
 

A glassy carbon rod with 3 mm φ embedded in a phenol resin pipe with 6 mm φ was used as the electrode.  
The electrode was cleaned by polishing with 0.06 µm alumina and then washing in an ultrasonic bath.  The 
surface was at first coated with a known volume of Nafion solution (5 wt%) as to be 16 µm after drying, and 
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next with an aqueous solution of PADDA (5 wt%), and finally with a xylene solution of silicone (10 wt%), as 
shown in Fig. 1. This coating order was selected to avoid mixing of each two polymers.  In the estimation of 
film thickness, volume of polymer solution, coating area, and the density of polymer in solid state were taken 
into account.  The density of polymer has been assumed to be 1.0 for Nafion, 1.2 for PADDA, and 1.0 for 
silicone, respectively, on the basis of each technical data. Fe(TPFPP) as the NO oxidation catalyst was 
originally dissolved in the Nafion solution, and the concentration was adjusted to 10 nmol per dried Nafion 
1 mg [18].     
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Figure 1. Structure of a glassy carbon electrode coated with charge-different polymer films. 
 
Electrochemical Measurements 

 
Electrochemical measurements were carried out in a one-compartment cell with three electrodes by 

using an electrochemical analyzer (BAS, model 100B/W).  A glassy carbon disk (0.071 cm2) coated 
with polymer films, an Ag|AgCl in 3M NaCl (all potential values are given against this electrode), and 
Pt plate were used as working, reference, and counter electrode, respectively.  Cyclic voltammograms 
of water-insoluble Fe(TPFPP)Cl was done in 0.1 M methanol solution of tetrabutylammonium 
perchlorate (TBAP).  A Ag|Ag+ was used as the reference electrode in this solution.  The potential was 
0.20 V against the above Ag|AgCl electrode.  Effect of hydroxide on the cyclic voltammograms of 
Fe(TPFPP)Cl was examined by adding small amount of tetrabutylammonium hydroxide aqueous 
solution.    

Results and Discussion 

Effect of the Thickness of Polymer Film 
 

We determined the most suitable film thickness of three charge-different polymers as following.  Suitable 
film thickness of Nafion for NO detection has already been studied in Ref. [18], and is found to be 16 µm.  This 
thickness was utilized in the present study.  Then, we checked the second layer of positively charged PADDA 
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by changing the thickness under the fixed thicknesses of Nafion (16 µm) and silicone (15 µm).  Suitable film 
thickness of PADDA was determined by the electrochemical reaction of dopamine as a possible interfering 
substance in vivo.   
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Figure 2. Cyclic voltammograms of 1 mM dopamine in 50 mM PBS (pH=7.4) at a bare GC (a) and at a GC| 
Nafion (16 µm) |PADDA (b, 3 µm; c, 5 µm) |Silicone (15 µm) electrode. Scan rate, 20 mV s-1. 
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Figure 3. Cyclic voltammograms of 87.5 µM NO in 50 mM PBS (pH=7.4) at a GC | Nafion(16 µm) (a),  and at 
a GC|Nafion (16 µm) | PADDA (5 µm) |silicone (b, 15 µm; c, 23 µm; d, 46 µm) electrode.  Scan rate, 20 mV s-1. 
 



Sensors  2005, 5        165 
 

 

Figure 2 shows the result.  PADDA of 3 µm thickness (Fig. 2a) could not inhibit the penetration of 
dopamine, but 5 µm thickness (Fig. 2b) were able to completely inhibit its penetration.  The thickness more than 
5 µm showed almost the same cyclic voltammogram as that of 5 µm. 
 On the other hand, thin silicone film is necessary for high sensitive detection of NO.  However, the film 
thickness below 15 µm showed many cracks on the film.  So, an effect of the thickness on NO detection was 
studied by preparing following electrode: GC | Nafion (16 µm) | PADDA (5 µm) | silicone with different 
thickness.  The result is shown in Fig. 3.  Increasing in the thickness gave decreased response to the NO 
oxidation.  As the result, we selected 15 µm for the silicone film at the outermost layer. 
 
Selective Detection of NO 
 

By using the above polymer film-coated GC electrode, it was checked the selectivity of NO for nitrite, 
dopamine, ascorbic acid, and uric acid as possible concomitants in vivo.  The cyclic voltammograms of 1 mM 
each concomitant on bare GC, on GC|Nafion (16 µm), and on GC|Nafion (16 µm) |PADDA (5 µm) |silicone 
(15 µm) electrode were measured.  In this experiment, negatively charged nitrite, ascorbic acid, and uric acid 
were completely deactivated on (b) Nafion-coated GC electrode.  On the other hand, positively charged 
dopamine was not deactivated at a GC|Nafion electrode, in which the oxidation peak potential in the cyclic 
voltammogram was shifted from 0.2 V to 0.5 V (vs. Ag|AgCl) by the Nafion coating, but the peak current and 
the shape of wave were almost the same as those at a bare GC.  However, dopamine was almost deactivated on 
the triply polymer film-coated GC electrode, as has already been shown in Fig. 2c.   

Performance of the GC|Nafion|PADDA|silicone electrode was summarized in Table 1.  Each oxidation peak 
current has been evaluated by subtracting the base current without the substance. An effect of four possible 
concomitants on NO detection was found to be almost negligible at the present triply polymer-coated electrode. 
 
                 Table 1. Oxidation peak currents of NO and interfering compounds observed at a bare and  
                              at a triply polymer film-coated GC electrode and their ratio. 

Oxidation Peak Current at
Different Electrodes 

/ µA 

 
 

Compound 
 (a) Bare   

GC 
(b)Polymer 

Film-   

coated GC 

 
Peak Current 

Ratio between 
(a) and (b) 

NO (87.5 µM) 
Nitrite (1 mM) 

Ascorbic Acid (1 mM) 
Uric Acid (1 mM) 
Dopamine (1 mM) 

     2.49 ∗ 

32.41 
12.12 
16.52 
14.71 

2.32 
2.60x10-3 
2.70x10-3 
2.70x10-3 
1.03x10 -2 

0.9 
~10-4 
~10-4 
~10-4 
~10-3 

∗Nafion (16 µm) was coated. 
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Amperometric Detection of Nitric Oxide 
 

By using the triply polymer-coated GC electrode, amperometric detection of nitric oxide in deoxygenated 
phosphate buffer with pH=7.4 was carried out.  Aliquots of phosphate buffer saturated with 5% NO (87.5 µM) 
was successively injected into the cell containing 10 ml phosphate buffer to attain 87.5 nM ~ 878 nM.  The 
potential of the working electrode was maintained at 0.9 V (vs. Ag|AgCl).  Figure 4 shows typical amperograms 
measured at triply polymer film-coated GC electrode with successive addition of NO. 

                                               T ime

250 s
NO injection

 
Figure 4. Typical amperograms measured at a GC|Nafion (16 µm) |PADDA (5 µm) |silicone (15 µm) electrode 
with successive injection of NO. 

・ C  / nM  
Figure 5. Detection curve of NO obtained by amperometry at a GC|Nafion (16 µm)|PADDA (5 µm)|silicone 
(15 µm) electrode. 
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These amperograms clearly show an increase in oxidation currents with NO injections.  The relation 
between the increment of current after injection and that of NO concentration was roughly linear in the 
range of concentrations investigated, as shown in Figure 5. The limit of NO detection at a GC 
electrode coated only with 16 µm Nafion (Fe-TPFPP) film was 18 nM [18]. Although the limit became 
high by the triple layer polymer coating, NO of 80 nM was detected by the present electrode.  Time 
elapsed before peak current after NO injection in Fig. 4, so-called response time, was roughly 15 s.  
This time also became longer, compared with 1 ~ 2 s at a GC | Nafion (16 µm) electrode [18]. A higher 
detection limit of NO at the present electrode seems to result from longer response time through 
increased film thickness. It took about 30 min for the measurement of amperograms in Fig. 4. In the 
second and third cycles after exchanging the electrolytic solution, we observed almost the same 
amperograms as those in the first one.  Stability and reproducibility of NO detection by this electrode 
were fairly good, but we did not check long-term stability. 
 
Catalysis by Fe(TPFPP) for NO Oxidation 
 
Various iron porphyrins have been clarified to show catalytic activity for nitric oxide oxidation [18].  Especially, 
water-soluble iron porphyrin, iron(III) meso-tetrakis(N-methylpyridinium-4-yl) (Fe(TMPyP)), showed a 
selective oxidation of NO against nitrite.  This selectivity has been ascribed to different catalyses by different 
high-valent iron complexes, namely oxo-iron(IV) for NO oxidation to nitrite and oxo-iron(IV) π-cation radical 
for nitrite oxidation to nitrate [21].   

 
Figure 6. Cyclic voltammograms of 4x10-4 M Fe(TPFPP)Cl at a GC electrode in 0.1 M TBAP methanol 
solution (a) without and (b) with 4x10-4 M tetrabutylammonium hydroxide.  Scan rate, 100 mV s-1. 
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It is not so easy to clarify the catalysis of water-insoluble Fe(TPFPP) in Nafion film being insulator.  So, it was 
examined to estimate the catalysis by dissolving Fe(TPFPP) into methanol. Figure 6 shows the cyclic 
voltammograms of Fe(TPFPP) in methanol with and without tetrabutylammonium hydroxide (Bu4NOH).  In 
pure methanol (Fig. 6a), the cyclic voltammogram was simple.  It showed one Fe3+/Fe2+ redox at –0.05 V (vs. 
Ag|Ag+) and the porphyrin ring oxidation above 1.05 V (vs. Ag|Ag+).  On the other hand, the cyclic 
voltammogram in the presence of hydroxide (Fig. 6b) was complicated.  It showed Fe3+/Fe2+ redox at more 
negative potential, compared with that in pure methanol.  This suggested that electron-donating species 
(hydroxide) ligated to the iron site.  In addition to this negative shift of the redox potential, the cyclic 
voltammogram showed a new distorted redox at 0.9 V before the ring oxidation.  This characteristic was very 
close to that observed at water-soluble Fe(TMPyP) [22].  Formation of oxo-iron(IV) (TPFPP) was estimated 
before the ring oxidation. 

When NO was introduced into the solution of Fe(TPFPP) containing Bu4NOH, the Fe3+/Fe2+ redox was 
disappeared and two oxidation peaks appeared as can be seen in Fig. 7.  In analogy with Fe(TMPyP), the 
disappearance of the redox can be explained by the reductive nitrosylation, namely the formation of Fe(II)(NO) 
complex.  The first oxidation peak corresponding to 1-electron oxidation at 0.55 V [23] can be ascribed to the 
oxidation of Fe(II)(NO) to Fe(III) + NO.  The second large oxidation peak is due to oxidation of free NO.  
Agreement of the onset potentials of NO oxidation (Fig. 7a) and oxo-iron(IV) formation (Fig. 7b), and also an 
increase in the NO oxidation current by the presence of Fe(TPFPP) (Fig. 7a and Fig. 7c) suggest EC catalytic 
cycle as in the case of Fe(TMPyP) in aqueous solution [22]. 

 

 
Figure 7. Cyclic voltammograms of 4x10-4 M Fe(TPFPP)Cl at a GC electrode in 0.1 M TBAP methanol 
solution (a) saturated with 5% NO and (b) without NO.  Curves (c) and (d) are obtained in 0.1 M TBAP 
methanol solution saturated with 5% NO and without NO, respectively.  Scan rate, 100 mV s-1. 
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        (HO-)Fe(III) – e-  → O=Fe(IV) + H+ 
        O=Fe(IV) + NO + OH-  →  (HO-)Fe(III) + NO2

- 

 
The distribution of Fe(TPFPP) in Nafion film, which was doped by dissolving into Nafion solution, is not so 

simple. A 2/3 of water-insoluble H2TPP has been found to distribute in hydrophilic ion channels and the other 
1/3 in hydrophobic region of Nafion film [24]. If Fe(TPFPP) was distributed in hydrophilic region, it is 
surrounded by water molecules and may form hydroxo-complex, (HO-)Fe(III).  
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