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Abstract: The recent availability of low cost and miniaturized hardware has allowed 
wireless sensor networks (WSNs) to retrieve audio and video data in real world 
applications, which has fostered the development of wireless multimedia sensor networks 
(WMSNs). Resource constraints and challenging multimedia data volume make 
development of efficient algorithms to perform in-network processing of multimedia 
contents imperative. This paper proposes solving problems in the domain of WMSNs from 
the perspective of multi-agent systems. The multi-agent framework enables flexible network 
configuration and efficient collaborative in-network processing. The focus is placed on 
target classification in WMSNs where audio information is retrieved by microphones. To 
deal with the uncertainties related to audio information retrieval, the statistical approaches 
of power spectral density estimates, principal component analysis and Gaussian process 
classification are employed. A multi-agent negotiation mechanism is specially developed to 
efficiently utilize limited resources and simultaneously enhance classification accuracy and 
reliability. The negotiation is composed of two phases, where an auction based approach is 
first exploited to allocate the classification task among the agents and then individual agent 
decisions are combined by the committee decision mechanism. Simulation experiments with 
real world data are conducted and the results show that the proposed statistical approaches 
and negotiation mechanism not only reduce memory and computation requirements in 
WMSNs but also significantly enhance classification accuracy and reliability. 

Keywords: Wireless multimedia sensor networks, multi-agent negotiation, committee 
decision, Gaussian process classification, principal component analysis. 

 



Sensors 2007, 7                            
 

 

2202

1. Introduction  
 

Recent advances in micro-electro-mechanical systems and wireless communications have enabled 
the development of tiny, low-cost and low-power sensor nodes [1]. Wireless sensor networks (WSNs) 
are composed of large number of such sensor nodes that autonomously form wireless networks and can 
collaboratively monitor the environment [2]. Over the last few years, WSNs have drawn much 
attention in the research community and have been extensively investigated [2, 3]. Application fields 
of WSNs are highly diversified and include military counterterrorist operations [4], target tracking and 
classification [5], agriculture and food industry [6], underwater surveillance [7], structure health 
monitoring [8], industrial maintenance [9] and medical care [10].  

More recently, the availability of inexpensive hardware such as CMOS cameras and microphones 
able to capture multimedia information from the environment has lead to the development of wireless 
multimedia sensor networks (WMSNs) [11]. WMSNs are a newly emerging type of WSNs that 
comprise sensor nodes equipped with cameras, microphones, and other sensors retrieving audio, video 
and other scalar data. This new type of WSNs, apart from boosting existent WSN applications as stated 
above, will enable a whole new range of applications, which include multimedia surveillance sensor 
networks, traffic congestion avoidance and control system, and industrial process control [11], and so 
forth. 

The mainstream concerns of traditional WSN research have been focused on decreasing energy 
consumption to extend network longevity under resource constraints such as battery, memory and 
processing capability. In contrast, WMSNs have another objective that is as important as (if not more 
than) reduction of resource consumption. That objective is efficient delivery of application level 
quality of service (QoS) and the mapping of these requirements to network layer metrics such as 
latency and jitter [11]. This goal is a challenging and largely unexplored task due to issues like 
resource constraints, variable channel capacity and multimedia in-network processing.  

As identified in [11], flexible architecture, multimedia source coding techniques and multimedia in-
network processing are among the key elements of WMSN designs. WMSN architectures have to 
support heterogeneous and independent applications with diversified requirements. Subsequently it is 
imperative to develop flexible and hierarchical architectures that can accommodate various 
applications in the same infrastructure. Uncompressed raw audio and video data require excessive 
memory and bandwidth which are scarce resources in WMSNs. For this reason, it is apparent that 
efficient processing techniques for raw data compression are indispensable. WMSNs allow performing 
multimedia in-network processing algorithms on the raw data acquired from the environment. New 
architectures are required for collaborative, distributed, and resource-constrained processing, which 
may enhance system scalability by reducing the transmission of redundant information and merging 
data from various sources. 

Based upon our previous work [12], in this paper we propose hierarchical multi-agent architectures 
for WMSNs and enable collaborative multimedia in-network processing by multi-agent cooperation. 
Multi-agent systems (MAS) are computational systems where two or more agents interact and work 
together to satisfy some set of goals [12, 13]. In MAS, an agent is considered as a computational 
mechanism that exhibits a high degree of autonomy, performing actions in its environment based on 
information extracted from the environment (e.g. by sensors) [13]. The autonomous and social natures 
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of MAS make it extremely easy to satisfy these WMSN requirements such as flexible architecture and 
collaborative in-network processing [12].  

In this paper, we focus on target classification problems in WMSNs where audio information is 
retrieved from the environment by microphone sensors. To deal with the statistical nature of audio 
information retrieval, a set of statistical methods are employed. As memory and bandwidth are critical 
limitations for WMSNs, features are first extracted from raw audio data by power spectrum analysis 
and then further compressed through principal component analysis. The highly compressed features 
are used by the statistical Gaussian process classifier, which determines the class information of the 
observed target. Energy preservation is a persistent and essential issue for both WSNs and WMSNs, as 
a consequence, multi-agent negotiation mechanisms are specially designed to allocate classification 
tasks among agents by means of auction and combine individual decisions in a committee manner, 
with the aim to extend network longevity and accomplish efficient collaborative multimedia in-
network processing. Simulated experiments with real world audio data are performed to evaluate the 
proposed multi-agent negotiation mechanisms and statistical methods.  

The rest of this paper is organized as follows. In Section 2, related work is surveyed on multi-agent 
WSN architectures and agent negotiation mechanisms. Statistical classification and dimension 
reduction techniques are also overviewed in this section. Section 3 presents the proposed negotiation 
mechanism for target classification in WMSNs. In the section that follows, relevant statistical 
approaches are introduced, including power spectral density estimatation, principal component 
analysis and Gaussian process classification. Section 5 presents the simulation experiments with real 
world data. In the final section, conclusions and future work are provided. 
 
2. Related Work 

 
Solving problems in WSN domains from the perspective of multi-agent systems has recently drawn 

much attention within the research community. Multi-agent frameworks offer scalability and efficient 
collaborative processing capability to WSNs, which is desirable for WMSNs as well. Negotiation is 
one of the frequently employed mechanisms to achieve efficient collaborative processing. Dimension 
reduction has special significance, because multimedia data volume is usually prohibitively huge for 
limited memory and bandwidth in WMSNs. Gaussian process classification is a promising practical 
Bayesian approach, and an attempt is made in this paper to explore its application in WMSNs. Work 
related to these issues is overviewed as follows.  

 
2.1. Multi-agent architecture of WSNs 
 

One of the desirable characteristics for WSNs is autonomous operation, which essentially means the 
network demonstrates some kind of artificial intelligence. Among various approaches in the domain of 
artificial intelligence, multi-agent systems (MAS) have been recognized as a promising one to imbue 
WSNs with intelligence [14], due to its distributed nature.  

Strong correspondence between autonomous WSNs and MAS has been identified in [14], [15] and 
[16]. In [14] it was shown that MAS can empower the sensor nodes with autonomous self management. 
MAS are applied to WSNs for lighting control in [15], to accomplish the required self configuration 
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and address the uncertainty in making decisions. Power management is critical for WSNs and agent 
deliberation is proposed in [16] to achieve adaptive WSN control.  

The work above focuses on the justification of deploying MAS in WSNs, and consequently few 
details on MAS architecture designs are provided. By contrast, [17], [18] and [19] propose several 
deployment architectures in detail. Generic agent architectures for WSNs with built-in security 
components are proposed in [17], but this work focuses on the architecture of a single agent instead of 
MAS. A multi-agent architecture is reported in [18], which divides agents in the WSNs into four 
categories according to the tasks they perform. In [19], peer to peer MAS architectures for WSNs are 
developed. MAS are also deployed for visual sensor networks [20], but the application scenario is 
wired networks other than wireless networks. 

In this paper, we attempt to extend MAS architectures to WMSNs and focus on detailed MAS 
implementations, such as agent mental state models and collaboration mechanisms, in addition to high 
level multi-agent architecture designs. 

 
2.2. Multi-agent negotiation 
 

As noted above, one of the benefits offered by MAS is intelligent collaborative processing. There 
are various approaches to achieve collaboration between agents, and negotiation is a prevalent form of 
interaction that enables groups of agents to arrive at a mutual agreement regarding some belief, goal or 
plan, and so forth.  

Diversified negotiation mechanisms have been reported in the literature. Multi-issue negotiation 
problems are investigated in [21], [22] and [23], but focus on different aspects. In [21], effort is made 
to address the problems of limited computational resources and tough deadlines. Bilateral multi-issue 
negotiation in an incomplete information setting is studied in [22]. In [23], they investigated 
negotiation in the scenarios of interdependent multiple issues, where nonlinear utility functions are 
used.  

Relatively more work has been reported regarding single issue than multi-issue negotiation. A 
comprehensive survey of popular negotiation mechanisms can be found in [24]. It presents an auction 
based market architecture system for multi-agent contract negotiation in [25]. In [26] a general 
approach for negotiation is developed and a generic theory of strategy in negotiation interactions is 
proposed in [27].  

Little work has been reported on negotiation in WSNs. In [28] agent negotiation is employed to 
solve the resource allocation problem in radar sensor networks for target tracking. It takes real time 
issues into serious consideration, and integrates a real time Belief-Desire-Intention (BDI) model and a 
temporal logic model. It establishes a virtual market in [29] to enable agent negotiation so as to 
efficiently allocate limited energy, radio bandwidth and other resources in sensor networks. 

Multi-agent negotiation for problem solution in WSNs (applicable to WMSNs too), as emphasized 
in these works, is application specific. Thus available negotiation mechanisms should be carefully 
chosen and adapted to accommodate particular applications in WMSNs.   
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2.3. Statistical dimension reduction and classification 
 

In the statistical classification domain, one of the most active directions is the development of 
practical Bayesian methods [30]. Gaussian processes classification (GPC) represents one of the most 
important practical Bayesian classification methods [30, 31]. Overviews and principles of Gaussian 
process and its classification applications can be found in [30] and [31]. Several approximation 
schemes have been suggested for GPC, which include, among others, Laplace’s method [32], 
variational approximations [33], mean field methods [34] and expectation propagation [35]. GPC has 
found applications in gender classification [36], biomarker discovery [37], target recognition [38] and 
multi-user detection in CDMA receivers [39].  

As noted, in WMSNs it is imperative to significantly reduce multimedia data volume to satisfy 
memory and computation constraints. This is generally achieved by feature extraction and dimension 
reduction [5, 40, 41]. Feature extraction is more application specific [42], but dimension reduction is a 
general issue. Publications [43] and [44] review traditional and current state-of-the-art dimension 
reduction methods. Among these available methods, principal component analysis (PCA) is one of the 
simple but effective dimension reduction techniques [43], which has found applications in feature 
detection [45], disease diagnosis [46], biomedical sample identification [47], shape retrieval [48] and 
remote sensing [49]. 

Our investigation is inspired by the above literature, and initiatives are taken to implant these 
approaches into WMSN scenarios which have not been explored much. Efforts are made to tailor or 
improve these approaches to address many of the new challenges presented by the emerging WMSNs. 
 
3. Negotiation Mechanisms for Target Classification 
 

It is pointed out in [11] that WMSN architectures have to support heterogeneous applications with 
different requirements and consequently it is necessary to develop flexible hierarchical architectures 
that can accommodate the requirements of all these applications in the same infrastructure. In this 
paper, a hierarchical architecture is developed to deploy MAS in WMSNs. There are two principal 
objectives in WMSN target classification, i.e. guaranteeing reliable classification accuracy and 
accommodating to constraints such as limited energy, bandwidth and computation capabilities in 
WMSNs. To satisfy these two goals concurrently, the mechanism of negotiation is incorporated and 
specially designed.  

 
3.1. Hierarchical multi-agent architecture for WMSNs 
 

Multi-agent architectures for WSNs have been extensively investigated in [12], [17], [18] and [19]. 
As far as system architecture is concerned, there is essentially no difference between WSNs and 
WMSNs; therefore those proposed architectures are equally applicable to WMSNs. Based on these 
reported works, we propose the following hierarchical architecture for WMSNs. The multi-agent 
WMSN architecture comprises four layers. At the top layer is the front-end interface agent responsible 
for accepting user requests, dispatching user directions and providing feedbacks in the form of static 
images, video or audio. To facilitate network management, the network is divided into several regions 
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managed by corresponding regional agents, based on geographical or similar criteria. A regional agent 
is usually provided with rich power supplies and computational resources, managing agents within its 
supervised region. To improve in-network processing efficiency and reduce communication load, a 
region is further divided into several sub-regions which are usually called clusters and managed by 
respective cluster agents. At the bottom layer is the query agent which exactly corresponds to a sensor 
node. Obviously a query agent is responsible for audio and video information acquisition and further 
processing. Evidently the proposed hierarchical multi-agent WMSN architecture is scalable, and 
readily enables the flexible configurations required by WMSNs. 

 
3.2. Agent reasoning model and communication language  
 

One of the dominant and most appealing advantages offered by MAS deployment in WMSNs is 
intelligent and collaborative in-network processing. As far as collaboration between agents is 
concerned, there are at least two important issues that have to be considered, namely how an agent 
reasons about the action to take and how the agents communicate with each other. 

There are diversified reasoning models for agents and we have chosen the Belief-Desire-Intention 
(BDI) model [50] because it has been well developed in theory [50, 51, 52, 53] and adopted in several 
sensor network applications[16, 20, 28]. 

The foundation for most implemented BDI systems is the abstract interpreter proposed by Rao and 
Georgeff [50]. BDI focuses on representing the agent’s mental states in a way imitating human beings. 
The beliefs represent knowledge of the world and describe the state of the world from the point of 
view of an agent. For WMSN applications, beliefs are essential [20] because the environment is 
dynamic and therefore past events need to be remembered. Moreover each agent in WMSNs only has a 
local view of the environment; consequently events outside its sphere of perception need to be 
memorized. Desires refer to such objectives as the agent would like to accomplish. Intentions represent 
what the agent has chosen to do. They are effectively the desires that the agent has to some extent 
committed to. From the point of view of implementation, intentions are the set of plans that have been 
adopted by the agent. Plans refer to a set of sequential actions that an agent performs to achieve one or 
more of its intentions. 

Agent interaction requires some kind of communication, and the most accepted agent 
communication languages (ACL) are those based on speech-act theory, for example, FIPA-ACL 
developed by the Foundation for Intelligent Physical Agents (FIPA) [54]. FIPA-ACL presumes two 
agents share a common ontology, which ensures the agents ascribe the same meaning to the symbols 
used in the message. It also defines the individual message types that are central to the ACL 
specification. In particular, the form of the messages and meaning of the message types are defined.  

Though many realizations of the BDI interpreter have been developed, the release of JADEX is 
gaining more acceptances recently [55, 56, 57]. JADEX is based on the BDI model and uses FIPA-
ACL for communication. It is a promising technology and has been used for sensor network 
implementation in [20]. In this paper, we employ JADEX to implement the negotiation mechanism 
within the multi-agent WMSN framework.  
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3.3. Two phase negotiation mechanisms   
 

Collaborative processing is crucial for WMSN applications where energy supply and computation 
capabilities are severely limited. As stated above, multi-agent negotiation is an effective mechanism to 
achieve collaboration and cooperation in MAS. Formally we propose the following definition [58]: 
negotiation is a form of interaction in which a group of agents, with conflicting interests, try to come 
to a mutually acceptable agreement on the division of scarce resources.  

In WMSN scenarios, the scarce resources primarily include energy, memory, communication and 
computational capability. The objective of the negotiation is to guarantee reliable and high 
classification accuracy and in the meanwhile satisfy such constraints as limited power and low 
bandwidth. Each agent has the desire to classify the target detected in the WMSN sensing field. But 
not all agents can realize their desires due to limited resources. Only the agents enabling efficient 
resource usage are allowed to participate in the classification tasks and consequently realize their 
desires. Essentially each agent possesses its own resources of energy and computation, so in this paper, 
resource allocation actually means whether the agent should engage in a classification task that 
necessitates usage of these resources.  

Thus the negotiation in this context refers to the mechanism where the agents come to a mutually 
acceptable agreement on how to allocate classification tasks among the agents and how to make the 
most reliable and accurate decision from individual decisions of the involved agents. Consequently the 
negotiation can be intuitively divided into two phases, namely task allocation and individual decision 
combination. 

 
3.3.1. Phase one: task allocation 

We first investigate the negotiation mechanisms for efficient task allocation among all the agents. 
Obviously there are usually many different possible allocations, so negotiation can be seen as a 
“distributed search through a space of potential agreements” as proposed by Jennings in [58]. Suppose 
the deployed WMSNs, following the proposed hierarchical multi-agent architecture, are represented 
by 1 2{ , ,..., }mA a a a= , where m is the number of deployed sensor nodes and ai denotes an agent or 
equivalently a sensor node. The search space can be seen as a set of deals { }1 2, ,..., nΨ = Ω Ω Ω where n is 
the size of the search space and iΩ represents one possible deal [59, 60]. For task allocation problems, 
a deal iΩ can be expressed in the form of an m-dimensional vector whose j-th component indicates 
whether the task is assigned to the agent ja . How to indicate such an assignment is a trivial issue, and a 
common choice is to use +1 for assignment and -1 for the opposite. For example, in a given scenario 
where m=4, the deal 1 [+1,-1, 1,-1]Ω = +  means the task is assigned to 1a and 3a . 

Since the goal is to find the most appropriate task allocation strategy, then it naturally leads to the 
problem of deciding whether one deal is better than another. In agent methodology, this is determined 
by a binary preference relationship [59]. If it holds i g jΩ Ω , then we know that for agent g, the 
deal iΩ is at least as good as jΩ . It is also common to use a similar notation to express the concept of 
strict preference. By i g jΩ Ω it means for agent g the deal iΩ is better than jΩ [59, 60]. For 
convenience, the preference relationship is often described in terms of a utility function :gU RΨ → , 
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which assigns a real number to each possible deal, evaluated by agent g. By means of utility functions, 
we have the following relationship [59]: 

( ) ( )g i g j i g jU UΩ ≥ Ω ⇔ Ω Ω      (1) 

Each agent may have its own preference and therefore a deal may be preferred by one agent but 
disliked by another. As far as MAS are concerned, the objective should be to find a deal that is 
preferred by as many agents as possible. The frequently used criterion to determine such a deal is 
Pareto optimal [59]. A deal is Pareto optimal if it is not dominated by any other deal. A deal iΩ is said 
to dominate a deal jΩ if for any agent g in the MAS, ( ) ( )g i g jU UΩ > Ω holds true. There are a variety of 
mechanisms to find the Pareto optimal deal, such as game-theoretic approaches, argumentation and 
auctions [59, 60].  

These approaches have all been extensively investigated and have found application in a wide range 
of fields. Different applications may have distinct requirements, and consequently the design 
objectives of negotiation mechanism should be identified first before choosing the most suitable 
mechanism.  

In addition to the requirements of efficient resource usage and reliable classification accuracy in our 
investigated problem, the negotiation should be conducted in a real-time manner for WMSN 
applications in a general sense. In [28], it outlines the following design objectives for negotiation in a 
real time, dynamic and distributed environment.  

Objective 1: A negotiation should be bounded by time, which means whether successful or not, a 
negotiation should complete within a predefined time window.  

Objective 2: Each step of the negotiation should be fast, so that the negotiation process that consists 
of multiple steps will be finished quickly.  

Objective 3: A negotiation should be kept short, that is, the number of iterations should be 
minimized.  

Objective 4: The negotiation-related messages should be kept short so as to reduce loss and improve 
communication speed.  

These design objectives serve as our design guidelines too, because our applications also fall into 
the domain of sensor networks and present even stronger real-time requirements. Taking these design 
objectives into account, we choose the auction based negotiation mechanism for collaborative target 
classification in WMSNs. Auction is simple and easy to implement [59], therefore it can easily satisfy 
the real-time requirements. But traditional auction mechanisms have to be modified to accommodate 
the task allocation problem in WMSNs. 

 As is well known, an auction system consists of three components, namely, the auctioneer, bidders 
and goods (items). In the task allocation problem, many agents bid to try to get involved in the 
classification tasks. There is actually only one item (i.e. the classification task) to be auctioned, 
however it is desired in the investigated target classification applications that several agents may win 
the bidding simultaneously. This is contradictory to commonly used auction mechanisms where an 
item can only be sold to a single bidder [59]. Moreover, in traditional auction, it may require several 
rounds to come to a final deal, which is time consuming and undesirable for real-time processing 
required in WMSNs.  
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To address these problems, a modified version of the auction mechanism called One Shot Dummy 
Multi-Item Auction (OSDMIA) is particularly proposed. OSDMIA reaches an agreement on task 
allocation in a single bidding round and thus guarantees real-time in-network processing. By dummy 
multi-item auction, it is intended to mean that allocation of the single classification task to several 
agents is treated as allocation of several different tasks (essentially the same task) among the agents. In 
other words, selling the same item to several buyers simultaneously is seen as selling several dummy 
duplicates of the item to several buyers. Since only one item is actually sold, therefore it is called 
dummy multi-item auction. By OSDMIA, this special task allocation issue is transformed into a 
traditional on shot multi-item auction problem.  

In the following, the details of OSDMIA are presented. The OSDMIA auction system can be 
represented by the tuple { }, ,Auctioneer Bidders Items . In the tuple, the auctioneer is responsible for 
supervising the auction and the bidders are the agents trying to get involved in the classification task. 
Suppose the task is predefined to assign to Ni agents, then the items exactly refer to the Ni dummy 
classification tasks. Recall the MAS are represented by { }1 2, ,..., mA a a a= . Suppose the agent Auca  acts as 
the auctioneer. Then the bidders are actually the agents { }\ AucA a . Denote the items by{ }1 2, ,...,

iNT T T . In 
this way, the negotiation system can be expressed as: 

{ }{ }1 2, \{ }, , ,...,
iAuc Auc NOSDMIA a A a T T T=     (2) 

Two of the most important issues concerning OSDMIA can be easily identified, namely 
specification of the auctioneer aAuc and determination of Ni. These issues are essentially open and 
difficult to find optimal solutions. However if they are viewed from the perspective of engineering 
rather than theory, then things get much easier. Engineering applications don’t necessarily require the 
solutions to be optimal. Instead as long as the solution is sufficient, then it is desirable and applicable. 
Consequently some sufficient solutions to the two issues are suggested.  

Recall that MAS are deployed on WMSNs in a hierarchical manner, where the network is divided 
into a set of clusters coordinated by cluster agents. So a straightforward choice is to specify the cluster 
agent as the auctioneer aAuc. It must be clarified that in this sense the MAS denote the cluster only 
instead of the whole WMSNs. In other words, the MAS considered in the negotiation process are only 
part of the whole MAS representing the WMSNs. But the notations are not changed, therefore in the 
following m is used to denote the number of agents in the cluster and the multi-agent 
system { }1 2, ,..., mA a a a= represents the cluster.  

By contrast, determination of Ni is comparatively more complicated than the choice of the 
auctioneer. On one hand, scarce resources make it necessary to set Ni as small as possible, however on 
the other hand, a larger Ni is desirable to enhance the classification accuracy which is one of the 
dominant objectives in target classification applications. To reach a compromise between them, in this 
paper it is proposed to set Ni as 3.  

Now that the OSDMIA system is established, we proceed to consider some other important issues 
related to temporal performance in the auction. A fundamental issue is when OSDMIA will start. This 
is important but in some sense simple. When a target is detected, the auctioneer aAuc starts OSDMIA 
by sending a message to all the agents in the cluster to ask for bidding. If the agents are in critical 
energy state or engaged in some other tasks, they may simply refuse to bid. Otherwise, they retrieve 
audio information about the target and decide how to bid. As stated above, OSDMIA is a one shot 
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auction; therefore each agent only has the chance to bid once. Finishing bidding in one round satisfies 
the design objective that a negotiation should be kept short. Another issue related to time is the 
negotiation time bound. The auctioneer cannot wait endlessly for the agents to bid. The solution is to 
specify a time window for the bidding process. Bids made within the time window are valid, but if 
they are made out of it, they will be simply rejected or discarded. Since the allowable time window 
varies with system requirements, therefore its specification is application specific.  

In any auction, to buy an item, the agent has to bid some price. Consequently it is necessary to 
investigate the form of price in OSDMIA. As required for efficient and reliable in-network processing, 
the agent reporting higher classification accuracy and more available resources should be more likely 
to win the auction. Additionally with other factors being the same, if the agent is closer to the target, 
its classification result should be more reliable, because the signals are less contaminated by noises. 
Based on these observations, the bidding price should be a combination of these quantities. Hence the 
bidding is assumed to take the following form. 

 { }, ,a r sBidding C A S=       (3) 

In (3) Ca denotes a priori classification accuracy; Ar represents available resources and Ss indicates 
the strength of the observed signals which implicitly indicates the distance between the agent and the 
detected target. To simplify the discussion, Ar is restricted to represent available energy only, that is to 
say, the percentage of the remaining energy. Suppose the detected audio signal x[n] contains Ns 
samples. Under such assumption the signal strength sS is calculated by   

2

1
[ ]

sN

s
n

S x n
=

= ∑                  (4) 

Given the form of the bidding, the price can be obtained simply by means of the utility function  

: a r sU C A S R× × →         (5) 

Careful examination of (5) shows the three quantities (i.e. Ca, Ar and Ss) are expressed in different 
scales. Classification accuracy Ca and available resource Ar are expressed in percentage (relative 
value), but signal strength Ss is expressed in absolute value. To make them consistent and comparable, 
it is proposed to normalize Ss to the range between 0 and one hundred percent. The normalization is 
performed by the auctioneer. It finds the largest Ss denoted by Ssmax from all the bids and normalize it 
to unit, while other signal strength is normalized accordingly. Subsequently the bids are evaluated by 
the auctioneer aAuc following the utility function  

 
( )max: /Auc a r s sU C A S S R× × →      (6) 

 
The utility function AucU may take different forms but in this paper we simply propose the following 

one  
2 2

max( , , ) ( / )Auc a r s a r s sU C A S C A S S=      (7) 

Using this utility function, available energy contributes more to the price, because it has the unity 
exponent. Note that for numbers less than one, the larger their exponents are, the smaller their 
evaluated values are. For example, if Ar and Ca are equal and less than one, then 2

aC is smaller than rA . 
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A priori classification accuracy and signal strength are treated as equally important. The reason to put 
larger weight on Ar is very straightforward, because energy is critical to prolong the lifetime of 
WMSNs.  

Suppose there are Nr buyers bidding in OSDMIA. Usually Nr is less than ( )\{ }Auccard A a which is 
actually 1m − . The reason is at least twofold. On one hand, some bids may be made beyond the time 
window specified for the auction, and therefore they will be considered as invalid bids. On the other 
hand, some agents may refuse to bid because, for example, they are in critical shortage of power and 
can not possibly get involved in the classification task. The auctioneer determines the price of each 
bidding agent by (7) and chooses the three agents that bidding the highest price as the winner of 
OSDMIA. The auctioneer notifies these agents of their winning the auction and these winners start to 
be engaged in classification of the detected target immediately.  

 
3.3.2. Phase two: combination of individual decisions 

The reason that several agents are selected by OSDMIA to jointly participate in the classification is 
principally due to the uncertainties related to audio signal acquisition and the predictions the classifiers 
make. After the winners of OSDMIA make their individual decisions, they should be combined to 
make a more reliable decision. There are various approaches to such combination, and we adopt the 
committee decision mechanism proposed in [61] and [62]. This approach views each winner as a 
member of the committee, where the final decision is made based on member decisions. There is a 
variety of benefits of committee decision, for example, the committee decision can, to some degree, 
cancel out errors of the individual committee members. Usually the decision of the committee is 
obtained by a weighted combination of the decisions of the committee members [61 , 62]. 

Figure 1. Illustration of target classification committee decision in WMSNs. 

 
 
The weighted committee decision used in this paper is schematically illustrated in Figure 1. The 

winner agents (i.e. committee members), retrieve audio information by corresponding sensors and 
make individual decision. The committee decision D  is made by a weighted combination of member 
decisions: 
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 i i

i

w d
D

w
= ∑

∑
      (8) 

In (8), individual decision id is made by the member i . It must be clarified that the classification 
decision made by the winning agents in this paper indicates the probability that the target belongs to a 
certain category. In other words, decision id is within the range between 0 and 1. Weight iw is 
employed to indicate the significance of the member i . The introduction of the term iw∑ is meant to 
normalize the weights. This is no unified approach to set weight for each committee member. In this 
paper, similar to the determination of the utility functions, we propose to set the weight as 

max/ sa sw C S S=       (9) 

where maxsS  denotes the largest signal strength of all the committee members, which differs from 
maxsS used in (7). 
Setting the weight this way, it means that classification accuracy aC and signal strength Ss make 

equally significant contributions to the final committee decision. It is necessary to note that (9) is only 
one of the possible settings. Obviously it is an open issue, which requires further investigation to find 
the optimal setting. Nevertheless for real world applications, there is no need for optimal setting and 
sufficient setting is enough. 

In summary, the two phase multi-agent negotiation mechanism is proposed to enable efficient 
collaborative in-network processing for target classification in WMSNs. The target classification task 
is efficiently allocated to guarantee classification accuracy and meanwhile reduce consumption of 
scarce resources. To enhance the reliability and accuracy of classification, weighted committee 
decision is introduced to combine individual decisions. In this section, it is assumed that the classifier 
is already known. In the section that follows, the classifier and related processing approaches will be 
discussed. 

 
4. Statistical Dimension Reduction and Classification  
 

In WMSNs, the volume of raw multimedia data is generally prohibitively large, and consequently it 
is imperative to employ data compression or dimension reduction techniques to reduce memory and 
computation requirements. Taking the statistical nature of retrieved audio information into account, a 
set of statistical approaches is proposed for dimension reduction and classification in this section. Note 
that in the context of this paper, data compression and dimension reduction take the same meaning and 
are used interchangeably. 

 
4.1 Feature extraction 
 

Feature extraction is one of the simplest but effective data compression approaches. It helps to 
reduce the data volume by extracting the most useful information from raw data. In [5] compression of 
acquired acoustic signals by means of spectral analysis is proposed. In this paper, we propose to 
extract features using power spectral density (PSD) estimate, which is briefly explained in the 
following. 
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Suppose the observed acoustic signal x[n] is an Ns point series. It is required that Ns takes the form 
of Ns =2β where β is an integer. In cases where the acquired signals fail to meet this requirement, 
simply pad them with zeros to satisfy it. The power spectrum of x[n] is denoted by Sxx[k] which is 
given by: 

21[ ] ( )xx
s

S k X k
N

=        (10) 

where X(k)is the Fourier transformation of x[n], determined by: 
 

 
1

0

2( ) ( )
s

k

N
j n

k
n s

X k x n e k
N

ω πω
−

−

=

= =∑ ，      (11) 

 
The power spectrum Sxx[k] is divided into M=2γ  adjoining segments (without overlapping) where γ 

is less than β. In other words, the derived p-th segment (1 )pSG p M≤ ≤ is a set containing the following 
elements:  

 
 { [ ( 1) / 1],..., [ ( 1) / / ]}p xx s xx s sSG S N p M S N p M N M= − + − +   (12) 

 
Then, the average pSG of pSG  is calculated: 

 

 
( )

1 ( )
xx p

p xx
S r SG

SG S r
M ∈

= ∑      (13) 

 
Combine the M average power, and we get a feature vector: 
 

 1 2[ , ,..., ]MF SG SG SG=       (14) 
 

Usually F is normalized to make it possible to compare the features extracted from various samples: 
 

2
/F F F=        (15) 

 
where 

2
F is the vector-2 norm of F determined by 

 
2

2 1

M

t
t

F SG
=

= ∑       (16) 

 
In this way, the maximum element in the feature vector F is normalized to one. When the features 

are extracted from raw data samples, a Gaussian process classifier can be learned from them. However 
not all the information contained in the feature vector will contribute much to the final classification 
decision, therefore it is desirable to discard these less useful elements. This can be done by the 
dimension reduction technique of principal component analysis covered in the following section. 
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4.2. PCA dimension reduction 
 

As is well known, problems will arise when performing classification in a high-dimensional space, 
which is often referred to as the “curse of dimensionality”. The problems are even more serious for 
WMSN applications where high dimensional feature vectors require more memory and computation 
expenditure. So it is desirable to reduce the dimension while preserve the useful information of the 
extracted features.  

Principal component analysis (PCA) provides us with an ideal solution. It reduces dimensions and 
meanwhile preserves as much information as possible. In statistics, the goal of PCA is to reduce the 
dimensionality of the data while retaining as much as possible of the variation present in the original 
dataset. 

Simply put, PCA just transforms 1 2[ , ,..., ]T
Na a a=X  in N dimensional space into 1 2[ , ,..., ]T

Kb b b=Y  in 
K dimensional space where K N<< . Suppose the basis for N dimensional space is { }1 2 Nv , v , ..., v  and 
that for K dimensional space is{ }K1 2u ,u , ...,u . Suppose there are M samples 1{ }M

i i=X , and their principle 
components can be calculated following the procedures [43, 46, 63] as listed in Figure 2. 

There arises a problem related to the selection of K. Denote the variance of jX  in 1{ }M
i i=X by 2

jσ . It 
can be shown (see [63]) that the total variance of the N components of the given samples 1{ }M

i i=X  is 
governed by  

 2
N N

j j
n n

σ λ=∑ ∑       (17) 

It has been shown larger eigenvalues corresponds to components with larger variance; therefore we 
can keep the principal components that account for the total variance to a desirable extent. Suppose we 
desire the variance of the principal components contribute no less than α of the total. Then K is 
determined by: 

 
 min { }K m=       (18) 

 
where m satisfies the following formula [63] 
 

 

m

j
n
N

j
n

λ
α

λ
≥

∑

∑
      (19) 

 
In this way K, the number of principal components, is determined.    
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Figure  2.  Algorithm to compute the principal components of given samples. 

The principal component analysis algorithm to reduce the dimension of the M 
N-dimensional samples 1{ }M

i i=X from N  to K where K is much less than N. 
Step 1: Find the mean X of 1{ }M

i i=X : 

1

1 M

i
iM =

= ∑X X       (20)

Step 2: Transform 1{ }M
i i=X  to zero-mean samples 1{ }M

i i=Z   

i i= −Z X X            (21)
Step 3: Combine iZ to form a matrix 1 2[ , ,..., ]M=A Z Z Z , then compute the sample 

covariance matrix C  

1

1 M
T T

i i
iM =

= =∑C Z Z AA     (22)

Step 4:  Compute eigenvalue iλ  and eigenvector iu  of C : 

i i iλ=Cu u       (23)
where 1 2 ... Nλ λ λ≥ ≥ ≥  
Step  5: Express the sample iX  in the basis of 1{ }N

i i=u  

1

N

i i i
i

b
=

− = ∑X X u      (24)

Step 6: Approximate iX with iX by retaining the components corresponding to the K 
largest eigenvalues: 

1
( )

K

i i i
i

b K N
=

− = <<∑X X u               (25)

The resulted  
1 2[ , ,..., ]T

Kb b b=Y      (26)
is the so called the principal components of iX . 

 
4.3. Gaussian process classification 
 

A Gaussian process is a generalization of the Gaussian probability distribution [30, 32]. A 
probability distribution describes random variables which are scalars or vectors, but a stochastic 
process governs the properties of functions. Gaussian process classification (GPC) is a promising 
statistical classifier for both binary and multi-category classification. In this paper we focus on binary 
classification, that is, it is assumed the target intruding the deployed WMSNs belongs to one of the two 
known types.  

A binary classification problem can be simply formulated as follows [30, 32]: Given the set of m 
observed data { }( , ) 1,2,...i iD y i m= =x , where d

i R∈x is the input and in the 
meanwhile { }1, 1iy ∈ + − denotes its class label, determine the probability distribution ( | )p y x from the 

given data so that it can be used to predict the label of new inputs.  
Since it invariantly holds ( 1| ) ( 1| ) 1p p+ + − ≡x x , we focus on the probability distribution 

of ( 1| )p y = + x only. For GPC, this probability is related to a latent function ( )f x  which is mapped to 
the interval of [0,1]  by a sigmoid transformationσ . For example the logistic function [30] 
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1( )
1 exp( )

z
z

λ =
+ −

      (27) 

 
can achieve such sigmoid transformation, which squashes its argument in the domain of [ ],−∞ − +∞ into 
the range of [0,1] . 

By the sigmoid transformation σ , the model ( 1| )p y = + x  is replaced by ( ) ( )1| ( )p y fσ= + =x x . 
Therefore in GPC, the Bayesian inference is essentially closely related to the latent function ( )f x . Let 

( )i if f= x and [ ]1,...,
T

mf f=f be shorthand for the values of the latent function. Moreover, 

[ ]1,...,
T

my y=y and [ ]1,...,
T

m=X x x denote the class labels and corresponding inputs, respectively. Given 
the latent function, the class labels are independent; therefore the joint likelihood ( )|p y f can be 

factorized as [32]  

( ) ( )
1

|
m

i i
i

p p y f
=

= ∏y f       (28) 

Here we introduce the relationship ( ) ( )i i i ip y f y fσ=  without proof, and detailed derivation can be 
found in [30]. By Gaussian process, the joint distribution of latent function values corresponding to 
any set of inputs X is a multivariate Gaussian distribution ( ) ( )| ,p =f X 0 KN with the mean of 0. The 
covariance matrix K is parameterized byθwhich is generally referred to as hyper-parameter. In other 
words, the covariance matrix is defined by its elements ( , , )ij i jk=K x x θ , where k  is a covariance 
function. Following Bayes’ rule, the posterior distribution of the latent function for given θ and D can 
be expressed as [32] 

 

( ) ( ) ( )
( )

( )
( ) 1

| | , ,
| , ( )

| |

m

i i
i

p p
p D y f

p D p D
σ

=

= = ∏
y f f X θ 0 K

f θ
θ θ

N    (29) 

 
Note that ( )| ,p Df θ is not Gaussian. The objective of GPC is to predict the class label *y of a new 

input *x , which can be achieved by computing [32] 
 

 ( ) ( ) ( )* * * * * * *| , , , ,p y D p y f p f D df= ∫θ x θ x     (30) 

 
where ( )* *, ,p f D θ x is determined through [32] 

 
 ( ) ( ) ( )* * * *, , , , , ,p f D p f p D d= ∫θ x f X θ x f θ f     (31) 

 
However, none of the distributions, i.e. posterior ( )| ,p Df θ , predicted posterior distribution 

( )* *| , ,p y D θ x  or the marginal likelihood ( )|p D θ can be analytically calculated [30, 32]. Therefore 

Gaussian approximations are employed instead to calculate these distributions. By means of Gaussian 
approximations, the posterior ( )* *, ,p f D θ x is approximated by the following Gaussian distribution [32] 

 
 ( ) 2

* * * * *, , ( , )q f D f μ= Σθ x N      (32) 
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The mean *μ of the Gaussian distribution is 1
*
T −k K m while the variance 

2
*Σ is ( )1 1 1

* * * *( , ) Tk − − −− −x x k K K AK k ,where [ ]* 1 * *( , ),..., ( , ) T
mk k=k x x x x is a vector of prior covariance 

between *x and the training input X [32]. Determination of the parameters m and A is to be expounded 
later. With the Gaussian approximation, the probability that a new input *x belongs to class +1 can be 
analytically computed as [32]  

 
( ) ( ) 2

* * * * * * *1| , , ( , )q y D f f dfσ μ= + = Σ∫θ x N    (33) 

 
To simplify the expression, Let ( ) ( )ln ln p=f y f L  and  

 

( ) ( ) ( )11 1ln , ln ln ln 2
2 2 2

T mQ D π−= − − −f θ f K f K f  L   (34) 

 
Under these settings, the parameters m and A can be found by the Laplace’s method [30, 32]  
 

( )arg max ln ,Q D
∈

=
f

m f θ       (35) 

 
( ) 11 ln

−−= − ∇∇fA K L       (36) 

Note that in GPC, the only parameter undetermined is the hyper-parameterθused by covariance 
function. Take the frequently used isotropic squared exponential (isoSE) covariance function [30] for 
example. The function takes the form of  

 

( ) ( )2 11( , ) exp
2

T

p q f p q p qk σ −⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

x x x x M x x    (37) 

 
where 2−=M I  ( I is the unit matrix). It is evident the hyper parameter is ,fσ⎡ ⎤= ⎣ ⎦θ for the isoSE 

covariance function. 
Obviously the classification accuracy is closely related to the value ofθ . It is shown in [30] and [32] 

that the optimal hyper parameter is theθ  maximizing the marginal likelihood ( )p D θ . Using Laplace’s 

method, the marginal likelihood can be approximated as [32]  
 

( ) ( ) ( ) 1ln ln ln 2 ln
2 2
mq D π= + +θ m A  Q     (38) 

 
Conjugate gradient methods can be employed [30, 32] to optimize (38) which will determine the 

optimal hyper parameterθ .  
All of these introduced statistical approaches have been well developed and have proved effective 

in relevant applications. Nevertheless their effectiveness and efficiency for target tracking in WMSNs 
still need experimental evaluation.   

 
5. Experiments 
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5.1. Experimental setup 
 

The proposed statistical processing approaches and agent negotiation mechanisms for target 
classification in WMSNs are evaluated by simulation with the real world data reported in [64]. In [64] 
both acoustic and seismic signals are collected by the deployed wireless sensor nodes, but in our 
WMSN simulation only the acoustic signals are used. These real world acoustic data are collected by 
microphone sensors at the sampling frequency of 4.96 kHz. The objective in [64] is to evaluate the 
performance of WSNs for vehicle classification in real world deployment. Four classes of vehicles are 
investigated in [64], but only the data collected from Assault Amphibian Vehicle (AAV) and Dragon 
Wagon (DW) are publicly accessible. Therefore in our simulation, the objective is to apply the 
proposed approaches to classify two classes of vehicles (i.e. AAV and DW) in WMSNs. Data collected 
in several runs are available, but in this paper we use the data of run 3 exclusively. In run 3, 18 sensor 
nodes are used, whose deployment is illustrated in Figure 3. In the figure, Nx denotes the x-th sensor 
nodes deployed in the experiment, which is identical to the naming convention used in [64]. The 
deployed sensor field covers an area of approximately 250x150 meters and the separation of adjacent 
sensors ranges from 20 to 40 meters. 

Following the proposed hierarchical multi-agent architecture, all the sensor nodes in Figure 3 form 
a cluster, of which N52 is nominated as the cluster agent according to their geographic distribution. 
Though the number of deployed sensor nodes is relatively small, yet it can be viewed as a miniature of 
the proposed multi-agent architecture, because most of the required processing is actually performed 
within the cluster. The proposed multi-agent architecture is implemented by means of the BDI agent 
engine of JADEX. Using the JADEX engine, each sensor node is represented by a BDI agent. These 
agents may be deployed on a single or several computers. In our simulation, all the agents in the 
cluster are deployed on a single computer. Agent perception or equivalently data acquisition is 
simulated by feeding the real world data to the agents. Relevant statistical processing and agent 
negotiation mechanisms are implemented by programming using the JADEX engine.   

Figure 3. Sensor node deployment for target classification in the simulation.  
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5.2. Feature extraction and dimension reduction  
 

In real world applications, the acoustic signals emitted from the vehicles are inevitably affected by 
noises from various sources. Moreover the acoustic signals will attenuate as they propagate in the air, 
which means that the signals detected by sensors located at different sites generally show distinct 
amplitudes. These phenomena are clearly illustrated in Figure 4. The corresponding scenario is that an 
AAV vehicle moves in the sensor fields, where N48 and N49 both record the signals they detect. As 
the figure illustrates, the signals measured by the two sensors are similar on the whole, but the 
amplitudes are different. It can be noted that the signal of N49 lags behind that of N48 by 
approximately twenty milliseconds. Such lag corresponds to phase shift, which can be exploited to 
locate the target, but this issue is not our concern in this paper. If examined in detail, it is evident that 
the signals differ much at any corresponding intervals, even if taking the phase shift into consideration. 
This is primarily due to contamination by noises, but also partially attributed to the variety of 
microphone sensor quality. Obviously the noises occur randomly, and therefore statistical approaches 
should be exploited to counteract such undesired interference. Moreover it also justifies the in-network 
collaborative processing required by WMSNs, which can significantly enhance the reliability by 
reducing statistical uncertainty. 

Figure 4.  Acoustic signals (of the same AAV) observed by different sensors. 

 

Despite of all these uncertainties resulting from noise contamination and sensor quality diversity, 
the acoustic signals are suitable and sufficient to discriminate one kind of vehicle from another. Figure 
5 illustrates the AAV and DW acoustic signals recorded by N49 in the same run. The illustrated 
signals contain 512 points, which last for 103.2 ms (recall the sampling frequency is 4096Hz). 
Evidently, the pattern of the AAV acoustic signal is different from DW. Though such contrast can be 
easily noticed, yet it is not so easy to describe mathematically. In other words discrimination of signals 
in the time domain is intractable, and this is partially why feature extraction is needed. In addition, for 
WMSN applications, it also helps to reduce memory requirement. As proposed, power spectral density 
(PSD) estimate is used to extract features from the time series signals. PSD estimate of the signals 
shown in Figure 5 is reported in Figure6. Since FFT is performed on a sample of 512 points, therefore 
the frequency resolution of PSD estimate is 9.6875 Hz.  As Figure 6 illustrates, the resulting PSD, 
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which is represented in logarithmic scale, is normalized so that the largest component is unitary. The 
normalization is intended to make it more convenient to compare between them. From Figure 6, it can 
be seen that for most frequencies, the PSD of AAV is higher than that of DW. 

To accommodate WMSN requirements related to memory, the whole PSD estimate is divided into 
16 segments (i.e. setting M=16), following (12) as proposed in the section discussing feature extraction. 
Choosing to divide it into 16 segments is not an arbitrary choice. In fact, such a choice is based upon 
the tradeoff between information loss and memory requirement. Smaller M means less memory and 
computation requirements, but more information will be lost, and vice versa. The 16-segmented 
features extracted from the PSD estimates shown in Figure 6 are illustrated in Figure 7. The frequency 
band indices represented by x-axis exactly correspond to the 16 segments. Note that to more explicitly 
demonstrate their difference, the logarithms of these PSD estimates are used instead of the original 
PSD estimates.  Obviously it is easier to discriminate AAV from DW by the extracted features, 
because the PSD distribution in the 16 frequency bandwidths demonstrates distinct patterns for AAV 
and DW.  

Figure 5. Signals of AAV and DW observed by the sensor node N49. 

 
 

Figure 6.  Normalized power spectral density of the acoustic signals illustrated in Figure 5. 

 

 
The data collected by N49 is divided into smaller samples of 512 points from which features are 

accordingly extracted. Then PCA is performed to further reduce feature dimensions. The key issue 
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then is to specify α( the variance contribution ) required by (19) to determine K (the number of 
principal components). Recall that the parameter α specifies the least that the principal components 
contribute to the total variance. The graph in Figure 8 shows K (the number of principal components) 
as a function of α (contribution to the total variance). The analysis is performed on the data collected 
by several sensor nodes (i.e. N60, N54, N49 and N48), and consequently the result can be generalized 
to other observed data. As expected, when α is set to 1, all the 16 components of the features are 
principal components. As variance contribution α declines, the principal component number K first 
decreases drastically but remains steady when α is less than about 0.9 for all the sensors nodes.  

Similar to the selection of M (the number of PSD division), determining the parameter 
α necessitates compromise between accuracy and memory requirement. For N49, when α is 0.98, K is 
already reduced to 5, which makes 68.75% compression of the original features. Obviously setting 
α as 0.98 can concurrently offer satisfactory dimension reduction and retain as much information as 
possible. Under this setting, the 16 component features shown in Figure 7 is reduced to 5 components 
by PCA, which is illustrated in Figure 9. Note that the 16 elements of the original features are all 
positive, but when reduced to 5 elements by PCA, both positive and negative elements exist. It can be 
explained by observing (21) where the data are so transformed that the mean is zero; therefore after 
PCA reduction, both positive and negative components are possible. 

Figure 7. Features extracted from the PSD shown in Figure 6 for AAV and DW. 

 

Figure 8. Relationship between the principal component number  
K and the specified contribution to total variance α. 
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Figure 9.  Principal components of the features illustrated in Figure 7.  
These principal components account for no less than 98% of the total variance. 

 

The above discussion is primarily focused on the signals collected by the sensor node N49, but the 
approaches are applicable to other sensor nodes too. In other words, feature extraction and dimension 
reduction are implemented as follows. PSD estimate uses 512 points and the resolution is 9.6875Hz. 
The whole PSD spectrum is divided into 16 segments to obtain the features whose dimensions are 
further reduced by PCA. In its implementation, the number of principal components is so selected that 
they will contribute no less than 98% to the total variance. 

By PSD feature extraction and PCA dimension reduction, the volume of raw data is extremely 
compressed, which not only satisfies the memory requirement in WMSNs, but also reduces the 
computation load of GPC. Training and testing of GPC with these reduced features will be detailed in 
the following section. 

 
5.3. Training and testing of GPC 
 

As stated in Section 4, GPC is essentially a supervised learning method, which means that the GPC 
classifiers should be derived by learning from given samples. The samples to be used are exactly those 
features extracted in the approaches illustrated in the above section. In our simulations, the samples are 
prepared in the following ways. The whole data collected by a sensor node is split into such segments 
as contain 512 points. These segments are consecutive but don’t overlap. A third of these segments are 
chosen as training samples and the remaining are used for testing. In this section, the data collected by 
N49 is used to exemplify GPC training and testing. Following the segment splitting schemes, there are 
294 samples for AAV, with 98 samples for training and 196 samples for testing. For DW, there are 178 
samples in all, of which 60 are used for training and the remaining 118 samples for testing.  As 
discussed in the above section, each of these samples contains 5 elements after PCA is performed.  

When implementing GPC, some important decisions have to be made, including covariance 
function specification, hyper-parameter determination and approximation method selection. In our 
GPC implementation, we have chosen the isotropic squared exponential covariance function(37), 
because there are only two parameters (i.e. l and σf) to specify. There are several approximation 
approaches to GPC, and in this paper, we have chosen Laplace’s approximation, because it is very 
straightforward and easy to implement. Usually the hyper-parameter θ=[σf ,l] is arbitrarily initialized 
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and then the optimal hyper-parameter is obtained by optimizing (38). Since the hyper-parameter 
generally takes the form of lnσf  and lnl in detailed implementation, therefore in the following we refer 
to lnσf  and lnl as the parameters. 

GPC is first applied to classify AAV and DW with reduced features with 5 components. The 
parameters are initialized as lnσf =0 and lnl=0. Using these initial parameters, GPC classifiers are 
trained and tested, and the results are illustrated in Figure 10 and Figure 11. Figure 10 shows the 
classification result using the initial parameter and Figure 11 illustrates the result obtained with 
optimal parameters (i.e. lnσf =1.3708 and lnl=1.5584). The x-axis represents the indices of the testing 
samples, and the samples corresponding to AAV and DW are intentionally grouped for better 
visualization. The vertical dotted line separates the two groups, the left and right of which corresponds 
to the AAV and DW samples, respectively. As said above, there are 196 and 118 samples for AAV and 
DW, and consequently the separating line is not in the middle. In the implementation, AAV is labeled 
as +1 and DW is labeled as -1. The y-axis indicates the probability that a sample belongs to the AAV 
class. Therefore if the predicted probability is greater than 0.5 (indicated by the solid horizontal line 
which is called the watershed line), then the corresponding sample is believed to belong to the AAV, 
otherwise it falls into the category of DW. These dots in the figure indicate the predicted probability 
that the corresponding samples belong to the AAV class. 

Figure 10. GPC with features reduced by PCA for the sensor  
node N49; the parameters are arbitrarily specified. 

 

Figure 11. GPC with features reduced by PCA for the sensor  
node N49; the parameters are optimized. 
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If GPC can classify these samples perfectly, or in other words, if all the testing samples are 

correctly classified, then all the dots denoting predicted probability should be located in either the left 
upper or the right lower quadrants defined by the vertical dotted line and the horizontal watershed line. 
However practically some samples will be misclassified, and subsequently several dots will be located 
in the quadrants other than the above ones. Overall classification accuracy can thus be determined by 
calculating the ratio of the dots located in the left upper and right lower quadrants to all dots in the 
figure. If classification accuracy of AAV or DW is to be individually calculated, only dots located on 
the left or the right side of the vertical dotted line need to be considered respectively. For example, the 
classification accuracy of AAV is determined by calculating the ratio of the dots in the left upper 
quadrant to all the dots on the left of the vertical dotted line. 

Examining the two figures, some important conclusions relevant to GPC accuracy can be drawn. As 
illustrated in Figure 10, the overall classification accuracy is 90.13%, while individual accuracy is 
96.94% and 78.81% for AAV and DW respectively. In contrast, in Figure 11 the overall classification 
accuracy is 92.04%, while individual accuracy is 96.42% and 84.74% for AAV and DW respectively. 
Recall that the former figure represents GPC results with arbitrarily selected parameters, while the 
latter corresponds to the classification using optimized parameters. From the perspective of overall 
classification accuracy, GPC with optimized parameters achieves the accuracy that is approximately 
2% higher than that with arbitrary parameters. It means that optimal parameters will guarantee higher 
classification accuracy, which is as expected by intuition. As to individual classification accuracy, the 
above conclusion will not hold. It can be easily verified that for GPC using optimized parameters, 
though DW accuracy is much higher than GPC with arbitrary parameters, however AAV accuracy is 
slightly less than the latter. This phenomenon is not difficult to understand, since the objective of 
parameter optimization is to maximize the overall classification accuracy rather than individual 
accuracy. 

Figure 12. GPC using features without PCA for the sensor  
node N49; the parameters are optimized. 

 
 
The advantage of GPC with parameter optimization is much more than improvement in overall 

classification accuracy. The most appealing benefit lies in the enhancement of reliability of the 
predicted results. This can be confirmed by carefully examining and comparing between Figure 10 and 
Figure 11. In Figure 11 where the parameters are optimized, these dots are much closer to the desired 
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probability of 1 for AAV and 0 for DW than Figure 10 using arbitrary parameters. In Figure 10, there 
are a considerable number of dots lying near the watershed line (i.e. the solid horizontal line), which 
means that the prediction is not reliable.    

Experiments are also conducted to evaluate the influence of dimension reduction on classification 
accuracy. Figure 12 illustrates the results obtained from GPC with parameter optimization (initial 
parameters are lnσf =0 and lnl=0; the optimized parameters are lnσf =-1.9945 and lnl=1.6277), where 
the 16-component features are used (i.e. without PCA dimension reduction). In such case, the overall 
classification accuracy is 93.95%, while individual accuracy is 97.96% and 87.29% for AAV and DW 
respectively. As expected, GPC with 16-component features gives higher accuracy (for both overall 
and individual classification accuracy), than GPC using the features reduced by PCA. The results are 
reasonable, because the 16-component features are more informative than those features reduced by 
PCA where some information is inevitably lost. However for WMSN applications, accuracy decrease 
is well compensated by reduced memory and computation requirements. The significance is that 
vehicle classification by GPC and PCA is able to achieve good enough classification with minimum 
resource requirements, meeting the challenges presented by WMSNs.   

In summary, GPC with parameter optimization is both effective and reliable for the purpose of 
vehicle classification in WMSNs. Meanwhile, PCA dimension reduction significantly brings down 
memory and computation requirements, meeting the constraints of WMSNs. 

 
5.4. OSDMIA mechanism for target classification 
 

As stated in Section 3, when a target is detected in the field where the WMSNs are deployed, three 
agents will be selected by the OSDMIA mechanism to perform efficient collaborative in-network 
classification to determine whether the target is AAV or DW. Before their deployments, each of the 
agents learns a Gaussian process classifier from given samples (i.e. the data from [64]) following the 
same approaches described above. Using the BDI model, the learned classifier is essentially the belief 
that an agent holds about the world, and it has the desire to classify a detected target. However the 
desire can turn into a goal only if it wins the OSDMIA auction. The auction process to determine 
whether an agent will win the auction and fulfill its desires will be detailed as follows. 

The agent N52, as stated in the experimental setup, is designated the cluster agent; therefore it 
serves as the auctioneer. When the auctioneer detects or is informed of an intruding target, the 
OSDMIA auction is triggered. It sends a message to all the agents in this cluster to ask for bidding. 
This message also specifies the time window for the auction, which is assume to be 300ms in our 
simulation. The FIPA-ACL equivalent to this action is cfp (i.e. call for proposal). On receiving the 
message, an agent first checks its energy level before elaborating on whether to bid or not. If in critical 
shortage of energy, it will not participate in the auction. In our experiments, the energy level is 
simulated by random assignments, namely random numbers are generated and assigned to the agents to 
represent their energy levels. The larger the number is, the more energy is available, where the largest 
number is 1 and the least is zero. In our simulation, it is assumed that if the energy level is below 0.2, 
the agent will refuse to be engaged in the auction in order to preserve energy. 

 



Sensors 2007, 7                            
 

 

2226

Figure 13. Classification accuracy and energy levels of all the agents before the bidding. 

 
 
Actually both energy level and the learned classifiers are the beliefs of the agents. Figure 13 

illustrates the beliefs these agents hold about the world before bidding. The data for N52 is missing, 
because it is the auctioneer and thus won’t take part in the bidding. Obviously the classification 
accuracy doesn’t vary much for different agents, but the energy level differs a lot. It must be clarified 
that available resource in the figure refers to energy level exclusively and other resources are not 
considered in the simulation. Note that N41, N42, N46 and N53 are in critical energy level (the dotted 
horizontal line corresponds to 0.2); therefore they will deny to bid in the auction. 

Figure 14. Bids made by the agents in the auction. Some refuse to  
bid and some fail to bid within the given time window. 

 
 
As a consequence, all the agents except the four in critical energy status are involved in the auction. 

Each of them will sample the signals emitted by the target vehicle for 100ms (i.e. 496 points), from 
which the energy or the signal strength is calculated by(4). In our simulation, the energy is calculated 
from corresponding segments (i.e. the same time interval) of the data collected by the sensor nodes as 
reported in [64]. Then they will bid to the auctioneer by providing the parameters of classification 
accuracy Ca, available resource Ar and signal strength Ss. When the auctioneer receives these bids, Ss 
will be normalized following(6). The bidding action corresponds to the propose message in the FIPA-
ACL. The bids made by the agents are shown in Figure 14. Note that the bids corresponding to N50 
and 59 are all zeros, which is the same as N41, N42, N46 and N53 which refuse to bid due to critical 
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energy levels. This is explained by the fact that the two agents fail to bid within the given time window 
of 300ms. 

Figure 15. Utility functions of all the bidding agents.  

 
 
Immediately after receiving these bids, the auctioneer starts to calculate their utility functions by (7) 

and chooses the three agents that have the largest utility functions. The utility functions are shown in 
Figure 15. Evidently N49, N54 and N61 give the largest utility functions, and therefore they are the 
winners of the auction and are assigned the resources to perform classification of the intruding target. 
The winners are notified of their winning by the auctioneer. This action is implemented again by a 
propose message in FIPA-ACL, which is intended to instruct the agents to engage in the collaborative 
classification of the target vehicle. The winning agents respond to the auctioneer by the accept-
proposal message in FIPA-ACL to confirm that they are committed to the assignments. Then they 
perform feature extraction and reduction on the perceived acoustic signals and subsequently perform 
classification using their learned Gaussian process classifiers. 

In the experiment, the perceived acoustic signals are all simulated by the data collected by N47. 
Though in real world, it is impossible for the three sensor nodes to perceive the same signals from a 
give source, however for the purpose of simulation it is reasonable. The rationale is actually simple. In 
[64] the signals observed by all the sensor nodes differ from each other, and therefore the classifiers 
learned by them differ from each other too. Employing different Gaussian process classifiers to 
classify the same signal doesn’t make much difference from classifying several different signals. Using 
the simulated perception, the bidding agents report their individually predicted probability to the 
auctioneer by an inform message in FIPA-ACL, from which the auctioneer makes a final prediction by 
the mechanism of committee decision. Such decision making will be discussed in the following section.  

 
5.5. Committee decision mechanism 
 

When the auctioneer receives individual classification decisions from all of the winning agents, it 
combines these decisions following the committee decision mechanism proposed in Section 3. In this 
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section, it is assumed that the winning agents are still N49, N54 and N61 and the signals to be 
classified are simulated by the data collected by N47, following the results and assumption made in the 
preceding section. 

In (9), the weight is proposed as the product of classification accuracy Ca and signal strength Ss. Of 
course this is an open issue, but from a practitioner’s point of view, as long as the weight setting is 
reasonable and good enough, it is well acceptable and applicable. The optimal setting is not necessarily 
the unique objective. It will be shown that the setting is good enough later, but before that the details 
concerning committee decision are examined first.    

Table 1. The committee decision made by three committee members. 

Committee 
Member 

Member Decision 
di 

Weight Component Member 
Weight 
Ca Ss 

Committee 
Decision 

D
Ca Ss 

N49 0.3911 0.9204 1.0000 0.9204 
0.6293 N54 0.6750 0.9746 0.9824 0.9574 

N61 0.8837 0.9440 0.7310 0.6900 
 

Table 1 demonstrates an instance of committee decision, where the decisions made by committee 
member N49, N54 and N61 are combined into a committee decision by N52 (the auctioneer and 
cluster agent). Note the signal strength Ss is calculated in the same manner as described in the section 
immediately above. In our simulation, the signal to be classified is extracted from the AAV data 
collected by N47, and thus we can know that the target is AAV. However as shown in the table, of the 
three committee member, N49 makes the wrong decision, because a decision (i.e. the predicted 
probability) less than 0.5 means that the target is DW. 

If the proposed negotiation mechanisms are not employed and it happens that N49 is used for 
classification of the target, then misclassification occurs. But if the negotiation mechanisms are used, 
the result is totally different. Though N49 misclassifies the target, but the other two members correctly 
identify it. The committee decision is dominated by N54 and N61 and the final decision is AAV, 
which cancels out the wrong decision made by N49. Even from this sole instance, the advantage of 
committee decision may be appreciated. 

As said above, the weight is determined by the product of classification accuracy Ca and signal 
strength Ss. Such choice is essentially arbitrary and a more theoretical approach is to assume the 
weight takes the form of (39) and find the optimal parameters σ and λ.  

 
max[ ] [ / ]sa sw C S Sσ λ=    (39) 

 
Optimization of parameters σ and λ is not practical in real world applications, but in this paper we 

will investigate the influence of σ and λ specifications on committee decision performance. It is 
supposed that σ and λ both range from 0 to 20 and all the data segments from N47 are classified by the 
three agents and a final decision is correspondingly made by the committee. Figure 16 and Figure 17 
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show the committee decision (overall classification accuracy) as a function of the parameters σ and 
λ, for AAV and DW respectively. The step size is 0.5 for both parameters. 

Figure 16. Influence of parameters σ and λ on committee decision accuracy for AAV classification. 

 

Figure 17. Influence of parameters σ and λ on committee decision accuracy for DW classification. 
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Figure 18. Comparison of individual and committee decisions 
(a) Member decision made by N49, with the accuracy of 79.03% 

 

(b)Member decision made by N54, with the accuracy of 87.50% 

 
(c) Member decision made by N61, with the accuracy of  91.93% 
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(d) Committee decision results, with the accuracy of 90.73% 

 
 
From these figures, it can be seen that σ has little influence on the committee decision accuracy, 

while the accuracy is greatly affected by λ. This is quite reasonable. The parameter σ corresponds to 
classification accuracy which varies not much, and therefore it affects little. However signal strength 
differs much and is related to noise contamination, therefore the parameter λ significantly influence 
the final decision accuracy. More importantly, we are concerned with the performance of the 
parameter λ=σ=1. Evidently such setting gives the best accuracy in neither figure. But in both figures, 
corresponding accuracy is actually suboptimal but it suffices to be used for real world applications. 
Therefore our proposed weight calculation by (9) is reasonable and sufficient. 

Now we proceed to investigate the performance of committee decision in dealing with the 
uncertainties relevant to target classification in WMSNs. There are a variety of uncertainties and 
several of them are considered here. The prediction uncertainty concerning a Gaussian process 
classifier is primarily because the samples to be classified usually deviate from the samples used to 
train the classifier. More formally, this is usually referred to as generalization error. On the other hand, 
the perceived signals may be badly contaminated, or the target might be operating in a total different 
situation. The uncertainties of individual prediction decisions and the uncertainty reduction achieved 
by committee decision are illustrated in Figure 18(a) through 18(d). In these figures, all the data 
segments of AAV collected by N47 are used, from which individual and committee decisions are made 
by N49, N54 and N61. 

Prediction uncertainties can be easily observed in the figures. For instance, the samples with indices 
around 50 are correctly classified by N61, but misclassified by the other two agents (i.e. N49 and N54). 
Such uncertainties are significantly reduced by the committee decision mechanism, as is observed in 
Figure 18(d). Moreover, it can be verified that the target is misclassified by the committee decision 
only when most of the committee members make wrong classifications. Though the classification 
accuracy achieved by the committee decision is not necessarily higher than the members (in fact in this 
experiment, the committee decision accuracy 90.73% is less than the highest member accuracy 
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91.93%)  , yet its decision is much more reliable. For DW classification, the results are similar where 
uncertainties are significantly reduced by committee decision. 

In summary, the proposed feature extraction and dimension reduction can efficiently deal with the 
statistical natures of the investigated problems and meanwhile reduce the memory and computation 
requirements in WMSNs. The two phase negotiation mechanism enhances the classification decision 
accuracy at the minimum communication expenditure, which efficiently achieves collaborative in-
network processing for WMSN target classification. 

 
6. Conclusions and Future Work 

 

The newly emerging technology of WMSNs has presented a variety of new challenges, including 
resource constraints, flexible architecture and multimedia in-network processing. Furthermore target 
classification using audio information in WMSNs is complicated by the uncertainties caused by noise 
contamination and inherent generalization error of GP classifiers. As verified by the simulation 
experiments, the proposed statistical processing and negotiation mechanism are capable of meeting the 
challenges and reduce the uncertainties concurrently. PSD feature extraction and PCA dimension 
reduction essentially perform lossy compression of raw audio data. Though some information is, to 
some extent, lost due to compression, yet it has great significance for WMSN applications, because 
memory and computation capability requirements drastically decrease. As revealed by experiments, 
the Gaussian process classifiers learned from training samples produce lower classification accuracy 
for new samples than testing samples, for the reason that the pattern of new samples usually deviate 
from that of the samples used for the classifier training. This uncertainty is reduced by choosing 
several agents to collaboratively engage in observation and classification of the target. To reach a 
compromise between resource consumption and accuracy, the agents are selected by the proposed 
auction mechanism OSDMIA. The auction finishes with one bidding round, which is so designed to 
ensure its real time performance. The committee decision mechanism proves to considerably reduce 
the uncertainty of individual classifier prediction and enhance the overall classification reliability.  

The proposed approaches are evaluated by simulation with real world data, and prove to be efficient. 
However, details such as CPU percentage, memory availableness and communication delay can not be 
precisely simulated. Therefore this work should be extended by real world deployment on such 
platforms as MICAz. In addition, deployment of multi-agent systems on real multimedia sensor nodes 
is more than a trivial task. Gaussian process classification proves to produce good classification 
accuracy and the approximation methods such as Laplace’s method radically reduces computation 
complexity. Nevertheless its real time performance still needs evaluation in real world deployment.  

In the proposed auction mechanism, the utility function is essentially arbitrarily specified, which 
calls for further in-depth investigation to be of general significance. The situation is the same for the 
weight determination of committee decision. More often than not these problems are application 
specific, but it is desirable if a guideline can be found that can invariantly guarantee good enough and 
sufficient performance. In addition, as far as negotiation is concerned, there are also some important 
issues (such as fraudulence in bidding and auctioneer selection mechanism) that require further 
investigation. 
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