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Abstract: The limited energy supply of wireless sensor neka@oses a great challenge
for the deployment of wireless sensor nodes. Ia gaper, we focus on energy-efficient
coverage with distributed particle swarm optimiaatand simulated annealing. First, the
energy-efficient coverage problem is formulated hwigensing coverage and energy
consumption models. We consider the network congpos$etationary and mobile nodes.
Second, coverage and energy metrics are presengaluate the coverage rate and energy
consumption of a wireless sensor network, whereichexclusion algorithm extracts the
coverage state and Dijkstra’s algorithm calculdéiteslowest cost path for communication.
Then, a hybrid algorithm optimizes the energy comstion, in which particle swarm
optimization and simulated annealing are combinedfind the optimal deployment
solution in a distributed manner. Simulated anmeals performed on multiple wireless
sensor nodes, results of which are employed teecbthe local and global best solution of
particle swarm optimization. Simulations of wiredesensor node deployment verify that
coverage performance can be guaranteed, energyuroptien of communication is
conserved after deployment optimization and thenapation performance is boosted by
the distributed algorithm. Moreover, it is demoattd that energy efficiency of wireless
sensor networks is enhanced by the proposed otiimiz algorithm in target tracking
applications.

Keywords: Wireless sensor network, deployment optimizatiorergy efficiency, particle
swarm optimization, simulated annealing.
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1. Introduction

Wireless sensor networks (WSNs) can implement uarammplicated tasks in the sensing field via
a large number of smart wireless sensor nodes wheve sensing, storage, processing and
communication capabilities. All the wireless sensmdes work collaboratively to leverage their
individual efforts for the entire application. Senbattery-powered wireless sensor nodes are greatly
constrained with regards to energy supply, eneffigiency becomes a critical problem in WSNs. As
an essential requirement, sensing coverage hasitesstigated in a few literature reports [1,2].€Th
coverage problem is defined from several pointgi®iv, including deterministic, statistical, worsica
best case in [3]. In particular, efficient netwodeployment considering coverage as well as
connectivity is discussed in [4,5]. Target trackiag typical application for WSNs and poses atgrea
challenge to achieve both high reliability and Idifgtime [6]. For WSNs which implement target
tracking applications, the efficiency of energy gsahould be taken into account in the deployment.
Generally, wireless communication spends much nemergy than sensing and computation, so it
should be the primary consideration [7]. In addifithe potential processing capability of multiple
wireless sensor nodes may contribute to bettemigdition performance [8].

Due to the above-mentioned requirements of deplaymmeWWSNs, we propose distributed particle
swarm optimization and simulated annealing (DPSOf@A)energy-efficient coverage. This method
takes the energy consumption of target tracking &uicount to optimize the energy efficiency of WSN
coverage with distributed computing. Sensing cayer@nd energy consumption models for WSNs are
introduced first. The purpose of optimization isfittd the best deployment of mobile wireless sensor
nodes so that the sensing coverage requirememttisfiesd and communication energy consumption
can be minimized. Then the grid exclusion algorittemexploited to calculate the coverage rate of
specific network deployment, which has minimizednpaitational cost and scalable granularity. We
adopt Dijkstra’s algorithm to search the lowestt guhs for data collection, which will be regarded
packet transmission paths in target tracking appbos. The sensing coverage rate and total energy
consumption of data collection are defined as ayeland energy metrics, respectively. The DPSOSA
algorithm is then employed to optimize the commatian energy consumption under a given sensing
coverage requirement. It is executed over a nurmbeodes, in which the particle swarm optimization
(PSO) procedure is aided by the optimization resoft simulated annealing (SA) for the global
optimal solution. In DPSOSA, a number of particeee given a better view to search for better
solutions in their vicinity, by which the PSO prdcoee can be corrected. Meanwhile, as multiple
particles need to be optimized, the optimizati®kt@ assigned among wireless sensor nodes to boost
up the computational capability. With simulatiorfsdeployment optimization and target tracking, the
energy efficiency of the proposed distributed optation algorithm is verified.

The rest of this paper is organized as followstigec2 formulates the energy-efficient coverage
problem with stationary and mobile wireless semsmtes in WSNs, where the sensing coverage and
energy consumption models are presented. In Se8fitwo important metrics, coverage and energy,
are defined for network deployment evaluation agdicgy to the fundamental model, where the grid
exclusion and Dijkstraalgorithm are introduced. Then Section 4 presdreasXPSOSA algorithm for
energy-efficient coverage in WSNs. In Section 5,siveulate the deployment optimization algorithm
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for target tracking application and analyze enesfiizciency of WSNs. We conclude the paper in
Section 6.

2. Preiminaries

We assume a WSN composed of two types of wirelessos nodes: stationary and mobile nodes.
In the sensing field, the stationary nodes areayeypl randomly, while the mobile ones can adjust the
positions adaptively against the environment. Wi mobile nodes located at their proper positions,
WSN can implement target tracking applications.sAswn in Figure 1, wireless sensor nodes which
are close to the mobile target trajectory may aeqdata. A sink node is located in the centre of
sensing field, to which the observations will bewfarded hop by hop [9,10]. It is assumed that the
positions of nodes can be obtained by global mositg system (GPS) [11]. In this section, we will
describe the sensing coverage model for reliabiligtection. Considering the energy efficiency
problem, energy consumption model of communicatvdhbe discussed.

Figure 1. In the target tracking application of WSNs, the ifetarget moves through the
sensing field and wireless sensor nodes arountl iteort their data to the sink node in
a multi-hop manner.
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2.1. Sensing coverage model

Each wireless sensor node integrates three radaorsewith the same sensing rad®yriented at
120° intervals. Azimuth coverage of radar sensor9° ~ +60° [12]. For each wireless sensor niide,
Is assumed that the strength of received detestgral varies exponentially with the distance fribra
target. If the coordinates of wireless sensor nagled a target arei(y;) and &argesYiarged), respectively,
the received signal strength reflected off thedtigf

Gi - Go e’Edzargez‘n (1)
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whereGg is a constant which denotes the strength of eanissignal 5 is the attenuation constant. And
drarget,i IS the Euclidean distance between the targesansor:

dtarget,i = \/ ( Xarget ~ Xi)2 + ( Yiarget ~ yi) 2 (2)

According to the sensitivity and reliability of s, we can define a threshold of received signal
strengthGy,, and calculate the detection reliability as:

ri:{o G <G, 3)
r, G=G,

whererg is the reliability of sensor when the receivednaigstrength exceedSy,, 0 <ro<l. Thus,
wireless sensor nodecan physically cover a plate area with radiys where the centre locates at
(x,¥i) . The sensing radiug, can be calculated as:
Ra=-LinSn (4)
B G

Considering the inherent redundancy of WSNs, weudis thek-coverage problem, that is, certain
area is covered byor more wireless sensor nodes at the same ingtahis case, synthesis detection
reliability of the area is at least:

R=1—|j(1—ri) ()

Therefore, we can acquire high synthesis detecgbability even though the detection reliability o
individual wireless sensor node is limited.

2.2. Energy consumption model

During target tracking, wireless sensor nodes hlagdunctions of data acquisition, processing and
reporting. The related sensing, computation and nconication operations will lead to energy
depletion. Out of all the energy consumption sasliceWSNs, wireless communication is the largest
portion. Thereby, it is the main one taken intocarct here. As radio signal attenuation in the sir i
related with the propagation distance, we adoptftBe space propagation model [13], which is
expressed as:

/]S 2
. (m j ®)

wherelL,; is the path losss is the wavelength of signal, awk} is the propagation distance. If radio
signal propagates between wireless sensor naelj, which are located aw(y;) and §;y;), the
corresponding propagation distance can be calcl&de

d, =\(s =) +(v-y) 0

Accordingly, a model of wireless communication ssamed to analyze energy consumption of
communication. Here, the power consumption of tfaasmission between wireless sensor nael
j is calculated as [14]:
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W=ar, +ad (8)

wherery denotes the data rate, denotes the electronics energy expended in traisgnone bit of
data,a>>0 is a constant related to the radio energy. Giventidnsmission tasks through the network,
the energy consumption feature of WSNs can be rodxdai

3. Evaluation Metrics of Energy-efficient Coverage

To achieve reliable detection and energy consemati target tracking application, WSNs should
apply an energy-efficient coverage scheme. Covemagesnergy performance is concerned in potential
mobile node deployment. For specified detectiomaipdity, sensing area needs to be covered byicerta
number of wireless sensor nodes. The area whictsatsty this reliability requirement in the whole
sensing field can reflect the coverage performa@tethe other hand, data packet transmission from
wireless sensor nodes to the sink node results nergg consumption. An energy-efficient
communication framework can be established by ¢kt cost paths. This framework indicates the
lowest energy consumption level which can be predidy different deployment of WSNSs.

It is assumed that there arestationary nodes and mobile nodes in & x L square sensing field.
The coordinates of sink node atgq, L/2). In a possible network deployment, the coordimateall
wireless sensor nodes;, V) (i=1,2,..,n+m) can be obtained, where the indices of the statjoand
mobile nodes areé<1,2,..,n and {=n+1,n+2,..,n+m), respectively. Accordingly, coverage and energy
metrics and related algorithms will be presenteeMaluate the network deployment in this section.

3.1. Coverage metrics

Typically, certain detection reliabiliti®? is required for specific target tracking applioati Based
on Equation (5), the required number of wirelesssee nodes, which can detect the target with
reliability ro at the same time, can be calculated as:

k™ =log,_, (1~ R™) (9)

The area which is covered Wf® or more wireless sensor nodes is regarded aselfable
detection area. To provide integrated and contisudetection of targets in the sensing field, the
reliable detection area should be as large aslgesdiherefore, we define the proportion of relabl
detection area in the whole sensing field as tiver@me metric.

As discussed in Section 2.1, each wireless sermie novers a plate area with radRis Due to
the irregular network deployment, the coverageegtabblem is too complicated for geometric analysis
Thus, we exploit a numerical method, the grid esicln algorithm, to extract the coverage state
information. The pseudo-code for grid exclusioroaltpm is outlined in Algorithm 1.

Algorithm 1

1. Initialization
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Divide the square sensing field i uniform grids. Each grid is &/4)x(L/l) square area.
Simplify the grids into points, then each grid da denoted by its centre point. The coordinates of
points are:

{(x5%, y9)] %, y=1U2L3L/21,;-,(A- 1L /2) (20)
Initialize the coverage state matrix {cay)}:
cov(,j)=0ij=12:"1I, (11)

Set the number of reliable detection pamim= 0 and set the number of unreliable detectiom{soi
n,=0.

2. Coverage state for stationary nodes on the wheissing field

Check the detection reliability point by point.
Forx®=L/21,3L/2l,...,(2-1)L/2l
Fory® =L/21,3L/2l,...,(2-1)L/2l
This point is related to the element d8y}) of the coverage state matrix:

i9=x%/L+1/2,j%=yq L +1/2 (12)

Check whether stationary nodeovers this point.
Fori=1, 2,...,n
Calculate the distance between stationary m@hel the point:

d? =(x = X0)2 +(y - y)? (13)

Update the coverage state matrix as:

covag,jg):{covag"‘?)” o che (14)
cov(?’,j’) d=Ra
End
If cov(i%j% >K*
Update the number of reliable detection point:
num= numr1 (15)
Else
Record the unreliable detection point:
no=n+L 06 %)= 08, ¥) ()= @©°) (16)
End
End

End
The coverage state matrix of stationary nodes tigioéd.

3. Coverage state for mobile nodes on the unredialetection area



SensorL007, 7 634

Check the detection reliability excluding the rbledetection point.
Forj=1, 2,....n;
Check whether mobile nodeovers this point.
Fori=n+1,n+2,...,ntm
Calculate the distana¥ betweenx,y;) and &,y:).
Update the coverage state matrix adopting Equétioh
End
If cov(if,jj) >K*
Update the number of reliable detection points @saion (15).
End
End
Finally, the coverage metr{€ can be calculated as:
c=1um (17)

| x|

Instead of calculating the coverage state of akkless sensor nodes at one time, the coverage state
matrix of stationary nodes is first extracted ia trid exclusion algorithm. Excluding the reliablea,
the coverage state of mobile nodes is then cakailan the remaining area. In this way, only Steyh 3
the algorithm needs to be implemented repeatedignwd different deployment of mobile nodes is
evaluated, thereby computational costs could bacesti Moreover, only the recorded information of
unreliable detection area is necessary for multipieless sensor nodes in distributed optimization
algorithms, such as DPSOSA, to be covered in Sedtico that the distributed optimization structure
can be simplified and its communication costs Wwél low. Notice that granularity of computation is
scalable by easily adjusting the division paramkté&he tradeoff can be made between computational
cost and coverage evaluation

3.2. Energy metrics

During target tracking in WSNs, wireless sensorasodpend significant energy reporting their
observations. With the model presented in Secti@nwe analyze the energy consumption of wireless
communication.

According to Equation (8), the wireless sensor saglkich are far away from the sink node would
spend too much energy when their data packetsransnbitted directly. These nodes may find a
number of other nodes for data forwarding and saghulti-hop manner will potentially conserve
energy. Thus, the lowest cost path to sink nodeldhme found for each wireless sensor node.

Here, Dijkstra’s algorithm is introduced to solvestlowest path problem, which can accomplish
breadth-first path search between one single adgim vertex and all the other vertexes on the
connected graph [15,16]. Since any vertex thatshaster path to the destination vertex is traversed
the optimal solution can always be found.
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For any given WSN deployment, the sink node isnagrhas the destination vertex and denoted by
Uo, While wireless sensor nodes are taken as albther vertexes and denoted by {w, u, -, tn} .

The edge weight between vertgxandu; is defined according to Equations (7) and (8):

w =a,+a,d.? i,j=012;- n+m,i# | 18
1,] 1 2%

Then the pseudo-code for the lowest cost path lsésuautlined in Algorithm 2.
Algorithm 2

1. Initialization

Adopt variableD; to represents estimate of the lowest cost fupio up. It converges to the real value
after iterations. Initialize the connected graph as

D,=0,D =@, i=12-n (19)

The set of vertexes which have found the lowedt paths is denoted I, setQ=0.
2. lteration

While Q#U
Find the next vertex with the lowest cost pathigo
For any vertexu 0 Q

If D; satisfies:

n+m

D, =minD, (20)

The lowest cost path from vertexto up is found.

UpdateQ:
Q=QU{y (21)
Record the vertey;, setig=i.
End
End
For any vertexu; 0 Q
UpdateD;:
D, =min{D;, @, +D} (22)
End

End

After iteration,D; denotes transmission energy consumption per doih fvertexu; to up adopting
the lowest cost path, where 1, 2,...,n+m.

Thus, the lowest cost paths from all wireless sensdes to sink node are available, which form
an energy-efficient communication framework. Thienfiework reflects the lowest energy consumption
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level which can be provide by the given networkldgment. Since each wireless sensor node has the
opportunity to detect a target and report its datacan evaluate the energy consumption by thé tota
cost of all the reporting paths. Therefore, thegynenetricE of network deployment is calculated as:

E=Y D (23)

i=1

Generally, different deployment of mobile nodesresponds to different energy metric values. The
proposed coverage and energy metric will be useeividuate different network deployment in the
optimization algorithm.

4. Distributed Optimization Algorithm for Ener gy-efficient Coverage

When WSNs are initially organized, proper deploytneinmobile nodes is desirable to achieve
energy-efficient coverage. Also, the environmeny wause changes in WSNSs, such as the appearance
of node failures. Therefore, position adjustingradbile nodes is necessary for resource re-allatatio
With the proposed coverage and energy metricsogiep@nt optimization should be implemented to
provide adaptability for WSNs in these cases. Thies,optimization results are broadcasted over the
network so that WSNs can be self-organized.

Following the previous assumption, there arstationary nodes ana mobile nodes available in
the deployment problem. The coordinates of mobddes are taken as non-integral input vectors for
optimization. As described in Section 3.1, certeaverage ratidCo, namely the optimized coverage
metric, is demanded under the detection reliabiktyuirement. Thus, the objective of optimizatien i
to decrease the energy consumption level of WSNarget tracking applications under the condition
that the required coverage metric is satisfied.

Kennedyet al developed particle swarm optimization in 1995doksn the analogy of swarms of
birds and fish schools. PSO is an efficient optatian tool for solving combinatorial optimizationch
dynamic optimization problems in multi-dimensiosglace, which implements fast convergence and
good robustness [17]. Here, it is considered asmogiment optimization algorithm in WSNs. Like
other evolutionary algorithms, PSO uses a fitnesgtion as criterion to evolve the behavior of the
solution population. In the algorithm, potentiallgmns, namely particles, fly through the searphce.
Each patrticle keeps track of the best positiona$ fachieved so far, which represents a particle
experiment. Another kind of experiment is the bpssition which has been achieved by the
companion of particle so far. The particle velocgtyonstantly adjusted according to the two kiofls
experiences.

PSO has a strong ability for finding the most ojtimesult. However, it has a disadvantage in local
minima. Thus, simulated annealing [18] which hadrang ability for finding the local optimal result
is introduced to avoid the problem of local minirB& mainly consists of the repeating of two steps:
generation mechanism and an acceptance criteti@tarts off at an initial random state with a high
temperature, and then a sequence of iterationsnisrgted. A perturbation mechanism transforms the
current state into a next state selected from #ighborhood of the current state. If this neighbgri
state has better fitness, the neighboring statéedepted as the current state. If this neighbostate
has worse fitness, the neighboring state is acdepith a certain probability determined by the
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acceptance criterion [19]. After sufficient timef acceptance, the temperature is decreased. This
process is repeated until the final temperatureashed.

We propose distributed particle swarm optimizatoad simulated annealing here. SA is applied on
the global best position of PSO. Then the vicimifythe global best position is searched to obtain a
local optimal result. Thereby, the procedure of HS@©orrected by the result. In the same way, the
best position achieved by individual particle candorrected by SA. Since SA maintains only one
solution, this extended optimization tasks candsegamed simply to a number of wireless sensor nodes
utilizing the distributed computing capacity of W&NIhe pseudo-code for DPSOSA is outlined in
Algorithm 3.

Algorithm 3
The sink node performs main part of the algorithm.
1. Initialization

The population of particles is set @,

Fori=1, 2,...,pop
For patrticlei, X; represents the current position, where the elesnemsent the coordinates of all
mobile nodes:

xi =(X1+1! Yot1s Xoe2s We2o o Kemos yvm)z{ kjl F1,2, ,2”’] (24)

Vi represents the current velocity it has achievef@so

Vi={y| j=1,2,,2m} (25)

Pi represents the best position it has achievedrso fa

R={pl =12 2m} (26)

Initialize X; as a random positioq (1) in the search space.
Initialize V; as a random velocity; (1).
Set the initialP; as:

RM)= X (1) (27)

End
According to the purpose of energy-efficient cogeran WSN, the minimization objective function
f(X) is defined for the positioK of any given particle as:

f(x)z{ pE-1 C=2C,

whereE and C are the metrics defined in Section 3.1 and 3.2e@sgely. Ey is a constant which
denotes the upper bound of energy metric, w@glés the demanded coverage ratias a constant for
balancing the two metrics.
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2. PSO iterations

Fort=1, 2,...,PSO_ITER
The global best position of particle is calculassd

R,®=min{f{R(3, TR} -» tROM £ # 22 52k (29)

Fori=1, 2,...,pop
The velocity of particle is updated as:

vi(t+D =n@V, O+ arg (- X1+ T B - k(N (30)

F]_:{rlj} and Fzz{rzj} are two separate random sequences, where 1, 2,..., 2n, ¢; andc; are
acceleration constants, representing the weightcoéleration terms that pull each particle towael t
local best position and global best position aft)l is the inertia weight for balancing the glolaald

local search ability. It is defined as:
t

The position of particle is updated as:
X (t+1) = X () +V (t+1) (32)
The best position of particle is calculated as:
_J RO fIX(t+D]= TR
F?(”1)'{><i(t+1> X (t+D] < R3] (33)

End

The sink node sorB(t+1) by their fitness. Select the b&& NUMpositions Pi5| i=1,2,....SA-
NUM}, which are to be optimized with SA. The optimizatmfirglobal best position will be performed
by the sink node, whil8A _NUM-1 wireless sensor nodes are randomly selecteptimize the other
positions.

The sink node transmits each particle to the rélatele. Then sink node and these nodes perform
parallel SA optimization.

Fori=1, 2,....SA-NUM

Perform SA iterations taking the initial state as:
A=PF ={a]| j=1,2,--,2m} (34)
Set an initial temperature
Fork=1, 2,....SA-ITER
The cooling condition is that the best state resiaimchanged fdk times.

While the cooling condition is not satisfied
Use a perturbation mechanism to generate a neg/stat

A = A+ rand_ nornid (35)
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whererand_normis a normally distributed random numbarz {J; |j =1, 2,.., Mand
A={d| j =1,2,--,2m} andd; is defined with a random integgrin [1, 2m|:

Y =1
{ '{o i # o (36)
The decrease of fitness is:
df = f(A)- f(A (37)
Check whether the new state should be accepteddicgdo Metropolis criteria.

If df <O
Accept the new staté& = A'.
Else ife D > rand, wherey isBoltzmann constant andnd is a random number in [0,1]
Accept the new staté& = A'.
Else
The new statéd’ cannot be accepted.
End
End
Cool down with a parametér

T=AT (38)

End
End
If any result is better the initial state, the Waess sensor node sends it back to the sink noderewh
the former position will be replaced.
End
Finally, the global best position presents theroed deployment of WSN.

In PSOSA, the sink node perforr®SO_ITERIiterations of PSO, where the inertia weigft)

linearly decreases through the course of the rularde inertia weight facilitates a global searchlevh

a small inertia weight facilitates a local seamhcordingly, the optimization process can conveme
the neighborhood of the global optimal solution sthéy at the prophase and converge to the global
optimal solution quickly at the anapha§&® NUMlIocal best positions are optimized by SA on the
sink node anA_NUM-1 other wireless sensor nodes. A& ITERiterations of SA, the optimized
results are utilized to correct the former postiolm this way, the algorithms have good poterital
obtain the optimal deployment of WSNSs.

5. Simulation Experiments
In this section, we will analyze the efficiency@PSOSA algorithm with simulation experiments.

The simulation environment will be specified. Thée simulation and comparison of algorithms will
be given. Finally, the network simulations will peesent for target tracking application.
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5.1. Simulation environment

The fundamental parameters of WSN are present8alie 1. The stationary nodes are placed
randomly in the square sensing field as shown gure 2(a). With the specified sensing radius of
wireless sensor node, we can calculate the inttisderage state of stationary nodes according to
Section 3.1. Figure 2(b) shows the initial coveragge, and the area with darker grey levels means
that there is coverage by more nodes.

Table 1. Fundamental parameters of WSN.

Parameter Value
Sensing field dimensiobxL 240mx 240m
Stationary node number 108
Mobile node numbem 20
Sink node coordinates (120,120,
Sensing radiuR, 30m
Sensor reliabilityg 0.6

In the energy consumption model, we get 5(Jbit anda, = 10Q@Ibit/m’. When we calculate
the coverage metric, the sensing field is dividad iL00 x 100 uniform grids. Accordingly, the iaiti
coverage metric ok-coverage area is presented in Table 2, wkerhanges from 1 to 6. As more
covering nodes are required to satisfy the religbithe initial coverage metric turns lower rapidl
Based on Equation (5), Figure 3 illustrates thedein reliability with different covering node nber.
The detection reliability grows exponentially anateeds 0.99 when the covering node number is 6.

Figure 2. Initial deployment and coverage state of WSN: (ar@ment of sink node and
stationary nodes; (b) Coverage state of stationadgs in the sensing field.

‘ ® Sink node + Stationary node ‘
240
180} . T R
E 120 . m
) * - ..
3
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In the DPSOSA algorithm, the particle numbpep s set as 30, the acceleration constapts,=1,
and the PSO iteration numbBSO_ITERIis specified as 40. During each SA optimizatior, set
initial temperatureT as 0.0001 according to the fitness function. PatanK is 4 in the cooling
condition, while the cooling parameters 0.6. Besides, Boltzmann constant 1, andthe PSO iteration
numberSA_ITERS specified as 5.

Table 2. The initial coverage metric of k-coverage area.

k 1 2 3 4 5 6
Coverage metric (%) 98.00 91.45 83.17 70.80 54.03 37.25

Figure 3. Detection reliability as a function of covering modumber.

Detection reliability

0.2

——Synthesis reliability of nodes
===Reliability upper bound

0 5 10 15
Covering node number

Target tracking application of the optimized WSNIWwe simulated on a modeling platform, Opnet
Modeler, which is developed for communication netwand distribution system. It is assumed that
the sampling period of WSN is 0.5 s. Without losgenerality, a mobile target moves randomly in the
sensing area for 120 s. Wireless channel modebs&,lthe free space propagation model is utilized
and data rate is 1 Mbps.
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5.2. Simulations of deployment optimization

With the stated simulation environment, the DPSG@®orithm can be adopted to achieve energy-
efficient coverage. First, we should define theazage requirement, which is given by two parameters
detection reliabilityR®® and coverage ratiG. Considering the initial coverage state, we disaug
kind of coverage requirement to analyze the perémre of algorithm against different conditions: (1)
R®= 0.8, Cy = 95%; (2)R®%= 0.9, Cy = 95%. The required covering node numbéfdare 2 and 3
respectively. According to Table 2, the latter aage requirement is much stricter than the fornmer. o

Second, the constaBg which denotes the upper bound of energy metrialshioe specified for the
fitness calculation. Here, we search the lowest paths of the station nodes without any mobileenod

Assume the related path cost Bsi{| i=1, 2,...,n}, thenEy is defined as:
E, =max(D} )i+ 3. (39)

In this caseE,is 7.26 x 10° J/bit, andp is set as 10

Then, we implement DPSOSA to optimize the deployn®nWSN with a different computing
node numbeSA_NUM which varies from 1 to 9. Specially, the algamitis accomplished by the sink
node whenSA_NUMis set as 1. Since each wireless sensor nodetti@snformation to exchange
with the sink node and the computing node numbkmised during DPSOSA, its communication cost
can be ignored. As shown in Figure 4, the optinmratesults of DPSOSA are obtained under the two
kinds of coverage requirement. We can find thatreloptimized coverage metrics exceed 95%, while
the energy metric trends to be lower as the comgutiode number becomes larger. Hence, the
performance of DPSOSA benefits from the computatepacity of multiple wireless sensor nodes.

Figure 4. Optimization results of DPSOSA utilizing differecamputing node numbers
under two kinds of coverage requirement:Ra¥= 0.8, Co = 95%; (b)R*®%= 0.9,

Co = 95%.
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Figure 5. Convergence curves of the metrics under two kirid®weerage requirement
during DPSOSA: (a) Coverage metric; (b) Energy roetr
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To obtain ideal optimization results, the computmagde number is fixed as 9 in the following
discussion. Then, Figure 5 shows the convergenceeswof the metrics under the two kinds of
coverage requirement. Rather than the coveragereagent thatR®?= 0.8 andCy = 95%, it is more
difficult to achieve the coverage requirement tR&f' = 0.9 andCy = 95%. Therefore, the former
coverage requirement is satisfied at the beginniriigle the latter one is satisfied after 8 iteratian
the optimization procedure, which is shown in Feg&(a). In Figure 5(b), the algorithm can make
more effort to achieve improved energy metric wvitte former coverage accordingly. Meanwhile, the
former coverage requirement provides more adjugtafor mobile node deployment to achieve lower
energy metric.

Figure 6. Convergence curves of the metrics during DPSOSARS@ under the
coverage requirement thaf%= 0.9 andCy = 95%: (a) Coverage metric; (b) Energy
metric.
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Furthermore, we will compare the performance of DB& and general PSO algorithms. Here,
only the coverage requirement tHaf9= 0.9 andCy = 95% is considered. The same scenario and
fitness function is employed in PSO. In Figure lte tonvergence curves of coverage and energy
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metrics are presented during DPSOSA and PSO. Frgung=6(a), we can find that PSO spends much
more iterations than DPSOSA to satisfy the coveragairement though it has a better initial coverag
of mobile nodes. And the energy metric is signifita improved by DPSOSA compared to the
optimization result of PSO as shown in Figure 6(b).

According to the optimization results of PSO andSOFSA, we can obtain optimized deployment
and communication paths of WSN as shown in FigufEhé coverage ratio of the WSN in Figure 7(a)
and (b) is 95.13% and 95.31%, respectively. It lsarseen that the data paths obtained by DPSOSA
tend to provide more potential for multi-hop comnmation instead of using longer distance data
transmission, although both algorithms attemptdbieve energy efficiency. As a result, the energy
metrics obtained by PSO and DPSOSA are 5.83 XJIbit and 5.57 x 10 J/bit, respectively.

Figure 7. Optimized WSN deployment and communication pattogpadg two
algorithms: (a) PSO; (b) DPSOSA.
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Finally, scenarios of WSN are set up accordingigoife 7(a) and (b) for target tracking simulations.
Besides, we discuss a coverage-only deploymentchwvig optimized by DPSOSA taking only
coverage metric into account. In each sensing getlee closest wireless sensor node to the mobile
target is chosen via negotiation. It then acquinésrmation and sends a 2KB data packet to the sink
node along the optimized path. The total energyseomwption over time is extracted from the
simulations, as shown in Figure 8. We find that Wi8N optimized by DPSOSA has a lower energy
consumption than the one optimized by PSO. Moredagget tracking is a long term task, so more
energy could be saved during the lifetime of WSNempared to the coverage-only deployment,
DPSOSA achieves an energy conservation of 4.68%.

Figure 8. Energy consumption comparison of WSNs optimize®8{ and DPSOSA in
target tracking application
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From the experiments, the efficiency of multiplenguting nodes is verified and it is shown that
DPSOSA can applied under different coverage remergs. Then, the improved energy efficiency of
DPSOSA is demonstrated by algorithm simulations tardet tracking application compared with
general PSO.

6. Conclusions

Focusing on the energy-efficient coverage problériV8Ns, this paper has proposed distributed
particle swarm optimization and simulated annealiagoptimize the network deployment. In a
network composed of stationary and mobile wirelesssor nodes, the proper placement of mobile
nodes is discussed, considering sensing coverayerargy consumption. Then, the coverage metric
is defined utilizing a grid exclusion algorithm, Wehthe energy metric is calculated by Dijkstra’s
algorithm, which provides the optimal communicatipaths for data reporting. Particle swarm
optimization and simulated annealing are combiredirtd the global optimal solution, where the
fitness function is designed to minimize the enenggtric guaranteeing specified coverage ratio.
Besides, computation capability of multiple wiredesensor nodes is adopted to enhance the
optimization capacity. Experimental results repnésthat significant energy conservation can be
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achieved by the proposed optimization algorithm garad to general PSO, and energy efficiency of
WSN is boosted up in target tracking applicatiohisTpaper presents an evaluation method for energy-
efficiency of coverage problem in WSNs. The appiaraoriented property is realized by target
tracking. Still, further investigation should be ageaon adaptive routing schemes and scalable network
topologic.
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