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Abstract: An overview of the ‘triangle’ method for estimating soil surface wetness and 

evapotranspiration fraction from satellite imagery is presented here. The method is 

insensitive to initial atmospheric and surface conditions, net radiation and atmospheric 

correction, yet can yield accuracies comparable to other methods.  We describe the method 

first from the standpoint of the how the triangle is observed as obtained from aircraft and 

satellite image data and then show how the triangle can be created from a land surface 

model. By superimposing the model triangle over the observed one, pixel values from the 

image are determined for all points within the triangle. We further show how the stretched 

(or ‘universal’) triangle can be used to interpret pixel configurations within the triangle, 

showing how the temporal trajectories of points uniquely describe patterns of land use 

change. Finally, we conclude the paper with a brief assessment of the method’s limitations.   
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1. Background 

Remote sensing of surface turbulent energy fluxes and surface soil water content dates back to the 

1970s. The basic technique was first attempted by geologists (Watson; 1971) to help locate mineral 

deposits, and later by meteorologists (Price, 1980; Soer, 1980; Carlson et al., 1981; Price, 1982; 

Wetzel et al., 1983; Carlson et al., 1984) to estimate surface turbulent energy fluxes and surface soil 

water content. Many other papers, following along on similar lines, emerged during the 1990s, of 

which only a few notable papers will be mentioned here: Nemani and Running, 1989; Kustas, 1990; 
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Stewart et al., 1994; Kustas and Norman, 1996; Bastiaanssen et al., 1998; Mecikalski et al, 1999;  

Petropoulis et al., 2006.  

The basic idea behind all these techniques is that surface radiant temperature (Tir) – and by 

association the surface turbulent energy fluxes -- are sensitively dependent on the surface soil water 

content. In order to devolve the surface soil water content and the surface turbulent energy fluxes from 

the surface radiant temperature some methods employ a land surface (soil/vegetation/atmosphere 

transfer (SVAT)) model; the latter is essentially used to back calculate these quantities by assuming 

that the turbulent heat and moisture fluxes derived thereof are those where model and measured Tir are 

identical at the time of measurement. Some of these SVAT models, such as those of Carlson (Carlson 

et al., 1981) involved the concept of thermal inertia, in which the daily temperature amplitude, as 

measured by the combination of day and night satellite images, was used as the temperature variable. 

Others are much simpler, such as using the midday temperature and an estimate of the net radiation, in 

such methods as pioneered by Seguin and Itier (1983), or the morning rise in Tir from a succession of 

images (Wetzel and Atlas, 1983) in order to calculate evapotranspiration. Later, techniques were 

developed to include the fractional vegetation cover (Fr) as an additional model variable estimated 

from the measured Normalized Difference Vegetation Index (NDVI) or other vegetation indices. As 

the surface layer models became more complex, additional ancillary parameters were added, such as 

stomatal resistance,  surface albedo, and ambient wind speed. 

All of these methods require precise calibration of the satellite surface temperatures and 

initialization of the land surface model with atmospheric measurements. Small errors in measured 

temperature might yield unreasonable values of the surface energy fluxes, Indeed, estimates of 

atmospheric and land surface parameters are often poorly known. Since satellite temperatures are 

subject to an accuracy of ± 1 – 2 C, while the different models yield different results for the same input 

and each model only symbolically represents the actual physical variables, the estimates derived from 

the satellite measurements for any methodology are subject to considerable uncertainty without any 

independent and easily accessible means of validating or constraining the input. 

During the 1990s a new approach to mapping both the land surface moisture and the surface 

turbulent energy fluxes was developed. This method, referred to here as the ‘triangle’ method, allows 

the pixel distribution from the image to fix the boundary conditions for the model, thereby largely 

bypassing the need for ancillary atmospheric and surface data. The triangle method is based on an 

interpretation of the image (pixel) distribution in Tir/Fr space.  If a sufficiently large number of pixels 

are present and when cloud and surface water and outliers are removed, the shape of the pixel envelope 

resembles a triangle. Simulations with a SVAT model  have also demonstrated that if an image 

contains a full range of soil water content and fractional vegetation cover, the shape of the surface 

radiant temperature and vegetation fraction values will also form a triangular (or slightly truncated 

trapezoidal) shape. Basically, a triangle emerges because the range of surface radiant temperature 

decreases as the vegetation cover increases, its narrow vertex attesting to the narrow range of surface 

radiant temperature over dense vegetation. 

Soil water content and surface turbulent energy fluxes are obtained, in effect, by stretching the 

model triangle to fit the observed one, thereby defining values for surface soil water content and the 

turbulent surface energy fluxes at every pixel within the triangle. The triangle concept was first 

introduced by Price (1990) and later elaborated upon by Carlson et al., (1994; 1995), Gillies and 



Sensors 2007, 7                            

 

 

1614

Carlson (1995), Lambin and Ehrlich, (1996); Gillies et al., (1997), Owen et al. (1998) and by Islam and 

his associates (Jiang and Islam, 1999; 2001; 2003). An earlier variant of the triangle method was 

published by Moran et al., (1994) in which isopleths of a crop water stress index inside the triangle 

were used to evaluate substrate water deficits. The triangle method subsequently was adopted and 

applied by a number of  researchers (e.g., Crombie et al., 1999: Ray et al., 2002; Sandholt et al., 2002; 

Chauhan et al., 2003; Bastiaanssen et al., 2004; Gillies and Temesgen, 2004; Liang, 2004;  Margulis et 

al., 2005; Stisen et al., 2007).  

An overall description of the triangle method will be presented in section 2, first from an 

observational and then from a model perspective. Section 3 will present some additional insights 

provided by the triangle method, beyond its ability to yield the geophysical parameters referred to 

above. Section 4 contains a discussion of the methodology’s weaknesses and strengths and section 5 is 

brief summary of the paper. 

2. A Description of the Triangle Method 

a) Observed properties of the triangle 

 

Consider a ‘raw’ scatter plot of surface radiant temperature versus NDVI for an AVHRR image 

over eastern Pennsylvania in summertime (Figure 1). (Unlike most published articles pertaining to the 

triangle, our figures are plotted with the ordinate as NDVI (or Fr) and the abscissa as some transform 

of surface radiant temperature.)  One aspect immediately strikes the observer: a sharp edge to the data 

on the warm side of the envelope (along with plausible borders for the top and bottom of the scatter 

plot). The cold side of the envelope is poorly demarcated, exhibiting a tail toward low values of 

temperature and NDVI. One can make the case that the well-defined borders represent physical limits, 

such as zero available soil water content, zero vegetation cover and full vegetation. Figure 2, a scatter 

plot made from aircraft measurements using the NASA NS001 radiometer (5 m surface resolution), 

shows a better defined cold edge.  

Several salient aspects of the triangle need to be explained. The scatter plots shown in Figures 1 and 

2 slope toward the left (lower temperatures) with increasing vegetation fraction, a consequence of the 

fact that sunlit vegetation is generally cooler than sunlit bare soil. That the triangle exhibits a very 

small variation in Tir at dense vegetation (the top vertex of the triangle) is a crucial observation 

essential to modeling the pixel distribution (see section 2b). The warm and cold edges, labeled 

accordingly on Figure 2, thus refer to the soil surface radiant temperature limits in the image for the 

highest and lowest temperatures at a given fractional vegetation cover (or NDVI); as we will postulate, 

the vegetation temperature does not vary in space, so variations in temperature in the triangle reflect 

only the soil surface and therefore the soil surface dryness. Cold and warm edges, respectively, 

correspond to the wettest and driest pixels. A central assumption here is that, given a large number of 

pixels reflecting a full range of  soil surface wetness and fractional vegetation cover, sharp boundaries 

in the data reflect real physical limits: i.e., bare soil, 100 percent vegetation cover, and lower and upper 

limits of  the surface soil water content, e.g., completely dry or field capacity, respectively. The warm 

edge, denoted by the slanting heavy dashed line in Figure 2, thus corresponds to a dry soil surface soil 

limit, whereas the cold edge denotes a fully wetted soil surface.  
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Figure 1. Scatter plot of satellite pixel values of NDVI versus radiant surface temperature from an 

AVHRR image approximately 100 km on a side located near Philadelphia, Pennsylvania, 

August 17, 1991. The warm edge, denoted with an arrow, is evident from the sharply defined right side 

of the pixel envelope. Pixels likely representing clouds and water are labeled with arrows. 

As stated, highest and lowest values of NDVI, denoted  respectively in Figure 1 as NDVIs and 

NDVIo, pertain to 100% vegetation cover and bare soil, respectively. The latter is analogous to the 

‘line of soils’ in other types of representations (Price, 1990). As shown by Carlson and Ripley (1997), 

vegetation amounts can increase beyond the threshold at which Fr just reaches 100%, but with very 

little further increase of NDVI.  

Outlying points, which here constitute a very small percentage of the whole, may represent 

anomalous surfaces, including standing water and cloud. It is quite likely in Figures 1 and 2 that the 

scatter of points below and to the left of the main envelope of points correspond to either cloud or 

standing water. In any case such points are discarded from analysis, or assigned default values for 

totally dry or wetted soil surfaces where pixels are close to the dry or wet edges. 

In subsequent representations of the triangle, we will present the abscissa as a scaled surface radiant 

temperature T*, which varies from 0 (Tmin, the temperature pertaining to a dense clump of vegetation 

in well-watered soil) to 1.0 (Tmax, the temperature of dry, bare soil – represented by the highest 

temperatures in the image). Thus, we define T* as 
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where Tir is the surface radiant temperature, as shown in Figure 2, Similar formulations to that of 

T* have been made: using the surface air temperature instead of Tmin (Jiang and Islam, 1999) or the 

rate of rise of morning surface radiant temperature (Sandholt et al., 2002; Stisen et al., 2007). We will 

also transform the ordinate to fractional vegetation cover, using the algorithm 
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Figure 2. Scatter plot of NDVI versus surface radiant temperature for an NS001 image over Walnut 

Gulch, Arizona during summertime. Salient features of the triangle are: the maximum and minimum 

temperatures as vertical, dashed lines (Tmax and Tmin), the warm edge (heavy dashed line), the cold 

edge and the limits for dense vegetation (NDVIs) and bare soil (NDVIo). 

Some authors (Gutman and Ignatov, 1998) favor a linear relationship between NDVI and Fr, rather 

than the square shown in Equation 2. The advantage of this scaled version of the triangle is that both 

coordinate axes vary from 0 to 1.0 regardless of the amount of net radiation or the ambient air 
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temperature. Here, both measured and model coordinates vary from 0 for well-watered vegetation 

(Tmin) to 1.0 for dry, bare soil (Tmax), respectively the left and right vertical dashed lines in Figure 2. 

Many authors tend to favor plotting un-scaled Tir versus NDVI, as in Figures 1 and 2, rather than 

scaling the data, although we favor scaling the coordinates because that yields a ‘universal’ triangle 

whose coordinates do not depend on ambient conditions. Scaling also reduces the sensitivity of Fr (and 

probably T*) to atmospheric correction (Carlson and Ripley, 1997), helps to isolate cloud and water 

pixels which tend to lie outside the triangle, and allows comparison of pixel data from different days 

and seasons within the same framework. 

 

b) Modeling the triangle.  

     .  

Primary input into the SVAT model referred to in this paper and used to create Figure 3 are a range 

of surface soil water content and fractional vegetation cover.  Root zone soil water content, which 

governs the plant transpiration, is set at a value close to field capacity, thereby yielding an effective 

potential transpiration from the plants.  Output consists of surface evapotranspiration, surface sensible 

heat flux, surface radiant temperature and other variables as a function of time during a 24 hour day; 

values pertaining to the time of satellite or aircraft overpass are used to compose the triangle.  Given a 

complete range of surface soil water and Fr values as input and the assumption of potential 

transpiration for the leaves, this or any comparable SVAT model  (such as the SEBAL model 

(Bastiaanssen et al., 2004))  would yield a triangular pattern of soil water content in Tir/Fr space, 

similar to the one used to compose Figure 3. Soil water content in our model is equated with a soil 

surface moisture availability, Mo, defined alternately as the ratio of soil surface evaporation (LEs) to 

the potential evaporation at the soil surface radiant temperature in patches of bare soil Ts (as opposed 

to Tir, the surface radiant temperature for the complete soil/vegetation canopy) or, alternately, as the 

ratio of soil water content to that at field capacity. (It should be noted that the definition of potential 

evaporation is not the same as that using the Penman or Priestly-Taylor equations.) Mo can also be 

expressed as the ratio of soil surface resistance to the soil surface plus atmospheric resistance. The 

equivalence of Mo to the fraction of field capacity has never been tested, but it seems a reasonable 

approximation, since both parameters vary from zero for completely dry soil to 1.0 for a fully wetted 

soil. 

The SVAT model used to create Figure 3 is a 1-dimensional model developed at Penn State and 

called Simsphere (currently residing with ample documentation for user operation at 

http://www.agry.purdue.edu/climate/dev/Simsphere.asp). The figure shows the model solution 

expressed in T*/Fr space as isopleths of Mo, the soil surface moisture availability, and the 

evapotranspiration fraction EF, the latter defined as the ratio LE/Rn, where LE is the surface 

evapotranspiration (soil plus vegetation) and Rn is the net radiation at the surface. The solution, 

however, is intractable unless one crucial assumption is made which is based on the shape of the 

observed triangle: that the transpiration for the vegetation itself occurs at a constant (i.e., potential) 

value for all values of Mo and Fr.  This condition requires that Mo becomes increasingly indeterminate 

and begin to merge as Fr approaches 1.0 at the vertex of the triangle. Although the pixel distribution 

sometimes appears truncated at the top of the triangle,  model simulations show that a flattened top can 

be reproduced by allowing the thermal inertia in the model (a product of soil thermal conductivity and 
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diffusivity) to increase with increasing soil water content. The other vertices, left and right, 

respectively, correspond to the condition for a totally wet soil (Mo=1.0; Fr=0; EF= LEs/Rn) and a 

completely dry soil (Mo=0; Fr=0; EF=0). 

 
Scaled Surface Radiant Temperature (T*) 

Figure 3. Model simulated triangle showing fractional vegetation cover (Fr; %) versus scaled radiant 

surface temperature (T*) (see definition in text). Slanting, nearly straight, lines represent the soil 

surface soil moisture availability, Mo labeled at intervals of 0.1, increasing from 0 on the right side 

(the warm edge).. Curved lines labeled as fractions represent the evapotranspiration fraction, EF. 

This assumption – that the transpiration occurs at near potential regardless of the surface soil water 

content – precludes any analysis of the water stress on vegetation using the triangle method. It merely 

formalizes the observation that Tir has little spatial variation at full vegetation cover, at least within the 

margin of measurement error. Although individual leaves subjected to water stress do tend to 

experience an increase in their radiant temperature, it is our observation that regardless of the soil 

water content (short of wilting) an ensemble of leaves comprising a dense vegetation cover tends to 

show little spatial variation in Tir. 

It is important to note that while the Mo contours are almost straight lines, the EF isopleths are 

highly curved. Moreover, these isopleths show in EF decreasing with increasing Fr at high values of 

Mo, reflecting the fact that the stomatal resistance of vegetation impedes transpiration even when the 

soil is wet. When the soil is dry, however, soil surface evaporation becomes a less important 

component than for wet soil and therefore EF increases as a function of Fr along the warm edger.  

Islam (e.g., Jiang et al, 2004) use a factor β times Fr multiplied by the potential transpiration at a given 

Fr to account for the reduction of transpiration below potential. This mathematical device, however, 
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does not capture the previously mentioned reversal in the change in EF with decreasing Fr between 

wet and dry soils. 

Given both model and image values of T*, derived from their respective Tmax and Tmin, the model 

triangle is effectively stretched over the observed one, thereby defining all measured pixel values 

within the triangle in terms of the model output. A virtue of the triangle method is that regardless of 

the net radiation or changes in ambient temperature from one day to the next (such as might occur after 

the passage of a cold front) or differences of the satellite or aircraft measurement time, a similar 

triangle is generated over a succession of days with a more or less identical configuration of EF and 

Mo isopleths within the triangle. 

 

 

Figure 4. Isopleths of moisture availability (Mo) overlaying the pixel envelope shown in Figure 2, as 

determined from the SVAT model. The ordinate values are plotted as NDVI (left side) and fractional 

vegetation cover (Fr; right side) and  the abscissa is the radiant temperature. The thin curvy line below 

the Mo labels denotes the bottom part of the pixel envelope in Figure 2. 

Islam and others (e.g., Jiang and Islam, 1999) adopt slightly different approaches. They also specify 

potential transpiration from vegetation, using, for example, the Priestly-Taylor relationship or a 
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Penman-Monteith one, but with an adjustment to account for the effects of stomatal resistance. The 

temperature variable is expressed as a difference (∆T =Tir-Tw), where Tw, similar to Tmin, is some 

reference cool temperature, either that of a water surface or an air temperature or that over a 

completely wetted surface.  Air temperature also provides an estimate for Tw, which can be obtained 

directly from the triangular pixel distribution by assuming that the temperature at the vertex of the 

triangle corresponds to that equal to or slightly above air temperature (Prihodko et al.., 1997). For 

example, a good choice of air temperature in Figure 2 would be Tmin, or that corresponding to the left-

hand vertical dashed line at To=25 C (or perhaps something slightly lower). Thus, the ∆T used by 

Islam and his associates is essentially T*.  Stisen et al. (2007) use the rate of rise of morning 

temperature, as defined from a succession of satellite images, as the variable ∆T. The latter is also very 

similar to T*. 

Figure 4 shows the modeled moisture availability isopleths superimposed on the pixel distribution 

in Figure 2, Mo = 0 and 1.0, respectively, corresponding to the warm and cold edges. Stretching 

implies that the derived values for Mo and EF are relatively insensitive to the choice of initial 

conditions, as the isopleths within the triangle will not change their configuration drastically with any 

reasonable choice of those conditions. Thus, Mo=0 and Mo=1 will always border the pixel envelope 

and Mo=0.5 will always appear somewhere in the middle of the triangle. The same is true for the 

relative stability of EF isopleths within the triangle. 

3. Practical applications 

In principle, the triangle method works with any reasonable land surface model. The model serves 

merely to create the relationship between measured Tir and Fr and the EF and Mo values.  Our 

approach is to use the model once to create a matrix of T* and EF values for an entire range of input Fr 

and Mo values, given a fixed set of ancillary input variables such as surface albedo and stomatal 

resistance. From this matrix, a set of polynomials are generated, which are then used to calculate Mo 

and EF for all pixel values. 

The relationships for Mo and EF are given by third order polynomial with cross products as 
 

3 3

0 0

( , ) *i j
ij

i j

Mo EF a T Fr
= =

=∑ ∑      (3) 

where the subscripts i and j pertain to the modeled surface radiant temperature T* (defined in 

Equation 1) and the fractional vegetation cover; the coefficients for the two surface parameters are 

given in Tables 1a and 1b. The multiple correlation coefficient, R-square, for both parameters are very 

close to 1.0 and the RMSE (root mean squared error) between the polynomial values and raw model 

output is less than 2 percent. 
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Table 1. Coefficients of the polynomial relationship for Mo (a; top) and EF (b; bottom) between T* 

and Fr as specified in Equation 3.  

3 3

0 0

( ) * i j
ij

i j

Mo a T Fr
= =

=∑ ∑ r2=0.9994, RMSE=0.0079 

aij j=0 j=1 j=2 j=3 

i=0 2.058  -1.644  0.850  -0.313  

i=1 -6.490  1.112  -3.420  -0.062  

i=2 7.618  3.494  10.869  4.831  

i=3 -3.190  -3.871  -6.974  -16.902  

 
3 3

0 0

( ) * i j
ij

i j

EF a T Fr
= =

=∑ ∑ r2=0.9993, RMSE=0.017 

aij j=0 j=1 j=2 j=3 

i=0 0.8106  -0.5967  0.4049  -0.0740  

i=1 -0.8029  0.7537  0.0681  0.2302  

i=2 0.4866  1.2402  -0.9489  -0.8676  

i=3 -0.3702  -1.3943  -0.7359  0.3860  

A reasonable fit for the warm edge is also given by a polynomial fit to the simulated model output .   
 

2
1 2* edgeT b a Fr a Fr= + +      (4) 

 

where the coefficients for the polynomial are given in Table 2. T*edge in Equation 4 determines the 

value of T* along the warm edge, which can assume values less than or equal to 1.0 depending on the 

value of Fr.  

Table 2. Coefficients for the polynomial relating the temperature along the warm edge and Fr as 

specified in Equation 4. 

2
1 2* edgeT b a Fr a Fr= + +  

Edge b a1 a2 r2 RMSE 

(Warm Edge) Mo=0 1.001  -0.892  0.075  1 0.0009 

(Cold Edge) Mo=1 0.216  -0.366  0.149  1 0.0005 

Admittedly, these relationships would not precisely fit every situation, but the fields of EF and Mo 

expressed by Tables 1 and 2 are probably sufficiently accurate (and certainly very convenient to use) 

for many applications where a suitable SVAT model is not available. These polynomials require 

relatively little expense in computer time or human resources in processing large images. It is 
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important to note that specifying the form of the cold edge is not necessary here, as Tmin is the essential 

variable for the cold  side of the pixel envelope (ref. Equation 1) and for calculating T*. 

4. Qualitative Interpretation of the Triangle 

Transforming the pixel values to those of Mo and EF using the polynomial, in effect, stretches the 

model triangle over the measured one. As previously stated, this transformation of the Tir/Fr space 

establishes the triangle (more precisely the relative configuration of its internal isopleths) as close to 

being invariant over a succession of images, regardless of the change in atmospheric conditions. One 

image can provide only a snapshot of the soil surface moisture. It is possible, however, to speak of a 

‘universal’ triangle, which has a further dimension: that of time. Not only do a succession of images 

show the changing surface wetness and evapotranspiration in the face of periods of precipitation and 

surface drying,  but  pixel values representing the same surface element, as determined from a 

succession of images, describe trajectories in time within a single triangle. The patterns produced by 

such trajectories provide a unique signature for the land use transformation (Lambin and Erhlich, 

1996). Moreover, it is not uncommon to find swarms of similar trajectories constituting a swath of 

pixels whose orientation suggests the evolution of land use. In a particular area. 

 

 

Figure 5. Scatterplot of selected pixels within the triangle, whose axes are labeled as Fr and T*, for an 

AVHRR image over a region around San Jose’, Costa Rica, on 24 December, 1990. Pixels are labeled 

as either forest (F), pasture (P), urban (U) or cropland (S). The nearly straight lines slanting upward 

toward the left are isopleths of Mo at intervals of 0.1 (ranging from zero along the warm edge to 1.0 at 

the cold side of the distribution). The curved lines labeled in fractions (all except for the dashed line 

representing the 0.55 value) are isopleths of EF. 
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For example,  Figure 5 shows the location of individual pixels within a triangle composed for an 

image over part of Costa Rica, including its capital, San Jose’ (Carlson and Sanchez-Azofeifa, 1999). 

Pixels classed as urban (U), forest (F), pasture (P) or crop (S) are labeled. Not surprisingly, urban 

pixels cluster near the lower part of the triangle, while pasture and forest cluster near the top. Overall, 

the distribution of pixels suggests two or possibly three distinct swaths, oriented from the upper left 

side to the lower right side of the triangle. These swaths also tend to cross from higher to lower values 

of Mo and EF, almost at right angles to the latter. 

 

 

Figure 6. Average trajectories of clusters A, B and C (roughly determined from the scatter plot in 

Figure 5) for the period 1990 – 1995 and 1995-1997 (the two arrow segments for each cluster).  

For example, Gillies and Carlson (1995) showed how seasonal changes in the surface fabric are 

captured by the pixel trajectories, which form closed loops. Irreversible land use changes, however, 

prescribe more open paths which do not return to their ‘origins’.  The latter is illustrated in Figure 6. 

We found that the swaths correspond to three small clusters of pixels, largely found along the outer 

part of the urban area constituting the city of San Jose; these will be designated by the letters A, B and 

C. We followed those pixels for seven years, starting with 1990 and ending in 1997; these are denoted 

by two continuous arrow segments in Figure 6, one for 1990-1995 and the other for 1995-1997. 
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Trajectory cluster A moves from the western edge of San Jose’, which is mostly suburban 

development with a moderate urban growth rate with some vegetation cover and a dry surface, toward 

lower vegetation and lower EF without much change in surface wetness (Mo). Trajectory B, 

representing points in the south and central part of the city, changes Mo and EF values more rapidly 

than  trajectory A. Trajectory C is similar to that of A except that the development from agricultural to 

urban land use was much further advanced. In all three cases urbanization takes the pixels toward the 

lower right hand corner of the triangle. These trajectories represent huge changes in urbanization in 

just seven years. 

Similar analyses pertaining to land use changes around a lake in Pennsylvania were shown by 

Carlson and Arthur (2000). As in the Costa Rica study, trajectories tend to move toward lower values 

of Mo and EF, though often with only a gradual crossing of Mo isopleths.  

In these types of analyses, each land use transformation has its own characteristic signal. A 

somewhat surprising aspect in Figure 6 is that points moving toward lower Fr change Mo very 

gradually, though they cross more sharply to lower values of EF. Trajectory A in Figure 6 almost 

maintains a constant (albeit low) value of Mo, though EF is changing rapidly with time because more 

and more of the dry bare surface is being exposed.  Ultimately, of course, complete urbanization 

requires that the trajectories reach the lower right vertex of the triangle. 

The significance of the swaths is that their orientation suggests a favored path for points undergoing 

similar land use changes as they undergo urbanization and progress toward lower values of EF and 

Mo. The assumption that the slope of the swath prescribes a surface canopy resistance, as claimed by 

Nemani and Running (1989), is not quite correct because the swaths do not imply a uniform surface 

fabric. It is true, however, that a swath having the same slope as the Mo isopleth will correspond to 

pixels having approximately the same soil surface resistance, because, according to the definition of 

moisture availability (air resistance divided by air plus surface resistance), Mo is largely controlled by 

the surface resistance and its lack of change in Mo following a trajectory toward lower Fr is largely 

due to the reduction of vegetation amount rather than a decrease in  the exposed soil surface wetness.  

5. Limitations of the Triangle Method Time 

The most severe limitation of the triangle method is that identification of the triangular shape in the 

pixel distribution requires a flat surface and a large number of pixels over an area with a wide range of 

soil wetness and fractional vegetation cover. Although not of first order importance, determination of 

the warm edge and the vegetation limits of bare soil and full cover requires some subjectivity. 

Nevertheless, the triangle method is effective with higher resolution imagery, such as those from 

Landsat or aircraft radiometers, because the triangle is more easily resolved than for AVHRR imagery. 

Nevertheless, Figure 1, though obtained from an AVHRR image, contains sufficient points to define a 

triangle because of the large number of data points, although the definition of the triangle requires 

more subjectivity  than with higher resolution imagery. 

Another difficulty is the use of a SVAT model, which requires some familiarity with the physics 

and in its initialization and operation on the part of the user, especially for regions where knowledge of 

the soil and vegetation characteristics is sketchy.  
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In practice, however, it is not necessary to specify many input parameters for the SVAT model with 

great accuracy. Nor is there need for the image to contain a complete spectrum of surface radiant 

temperatures and vegetation cover, as long as some patches of bare, dry ground and of dense 

vegetation can be resolved with sufficient number of pixels with to engender confidence in a 

representative value for each type of surface.  Thus, it is often possible to locate a city center having 

enough pixels to assign a value of Tmax, while a stand of trees might adequately represent dense 

vegetation and a value of Tmin. These temperature extremes sometimes can be determined with some 

confidence even for AVHRR imagery even where the number of pixels in the image is not very large, 

as shown in Figure 7.  Here, the warm edge is distinct,  though the bare soil extreme is somewhat 

uncertain, having been set, probably incorrectly in this example (Owen et al., 1998), at zero; a value of 

0.3 (dotted line) now seems a better choice.  In a study by Carlson et al. (1995), in which high 

resolution (aircraft; NS001) imagery was successively degraded from that of 5 m, it was shown that the 

warm edge remains distinct to a resolution of 80 and possibly to at least 320 m.  

 

 

Figure 7. Scatter plot of NDVI versus Tir for an AVHRR image over Central Pennsylvania, 14 June, 

1994. Tmax and Tmin, as defined in the text are shown, along with the limits for bare soil NDVI  

(NDVIo) and that for dense vegetation NDVIs. The  horizontal dotted line suggests a possibly better 

value of NDVIo, than that originally chosen in the article by Owen et al. (1998).  

Finally, it is necessary to emphasize a limiting aspect of all remotely based measurement systems 

based on the interpretation of the thermal infrared signal: the latter is capable of sensing the soil 

moisture only over the top centimeter or two of the bare soil surface visible to the radiometer field of 
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view. On the other hand, the values of ET and surface sensible heat flux are directly related to the 

surface soil water content and are, therefore, highly appropriate quantities to measure using thermal 

infrared sensors. 

6. Summary 

The triangle method has the capability of producing non-linear solutions for surface moisture 

availability and surface evapotranspiration from large image data sets. These important variables can 

be generated quickly with relative ease, since a solution need be established only once for a series of 

images. The triangle method also has the virtue of requiring no ancillary atmospheric or surface data or 

any special land surface model and it is relatively insensitive to atmospheric correction or the choice of 

ambient atmospheric and surface parameters in whatever land surface model is used. This is because 

the pixel distribution itself is used to set a set of conditions required to produce a solution for surface 

soil wetness and evapotranspiration fraction.  By creating a ‘universal’ triangle, in which the model 

triangle is effectively stretched over the measured one, the triangle can accommodate a succession of 

images, thus adding the dimension of time. Plotting the trajectories of pixel points from a succession of 

images within the triangle as a function of time illuminates the nature of land use change, either from 

seasonal variations or as the result of urbanization. 

In general the triangle method is able to achieve an accuracy comparable to other methods in that 

the errors in estimating EF are typically ±0.1- 0.2. As shown by Jiang et al., (2004), such errors may be 

close to the minimum practically achievable by remote sensing. 

The main weakness of the triangle method is that it requires some subjectivity in identifying the 

warm edge and the dense vegetation and bare soil extremes. Identification is more easily obtained from 

high resolution imagery or at least images with a sufficient numbers of pixels such that they define a 

range in land surface wetness and vegetation cover or, at least, the vegetation and wetness extremes.  
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