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Abstract: Due to their wide potential applications, wireless sensor networks have recently 

received tremendous attention. The strict energy constraints of sensor nodes result in the 

great challenges for energy efficiency. This paper investigates the energy efficiency problem 

and proposes an energy-efficient organization method with time series forecasting. The 

organization of wireless sensor networks is formulated for target tracking. Target model, 

multi-sensor model and energy model are defined accordingly. For the target tracking 

application, target localization is achieved by collaborative sensing with multi-sensor fusion. 

The historical localization results are utilized for adaptive target trajectory forecasting. 

Empirical mode decomposition is implemented to extract the inherent variation modes in the 

time series of a target trajectory. Future target position is derived from autoregressive 

moving average (ARMA) models, which forecast the decomposition components, 

respectively. Moreover, the energy-efficient organization method is presented to enhance the 

energy efficiency of wireless sensor networks. The sensor nodes implement sensing tasks 

according to the probability awakening in a distributed manner. When the sensor nodes 

transfer their observations to achieve data fusion, the routing scheme is obtained by ant 

colony optimization. Thus, both the operation and communication energy consumption can 

be minimized. Experimental results verify that the combination of the ARMA model and 

empirical mode decomposition can estimate the target position efficiently and energy saving 

is achieved by the proposed organization method in wireless sensor networks. 

Keywords: Wireless sensor networks, energy efficiency, time series analysis, ant colony 

optimization. 
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1. Introduction 
 

Ubiquitous computing is emerging as a potential solution for wide sensing applications in the 

physical world. Thus, wireless sensor networks (WSNs) have become a growing research field. In 

WSNs, a large number of intelligent sensor nodes are integrated into the environment to accomplish 

complicated sensing tasks. Sensing, processing and communication capabilities are enabled on each 

sensor node. As sensor nodes usually work in unsupervised areas, the batteries cannot be easily 

recharged or replaced. Due to the limited battery life, the energy efficiency of a WSN is an important 

issue. Sleeping and awakening of sensor nodes are supported in power-aware hardware design [1]. By 

adopting proper energy management methods, the energy consumption of WSNs is scalable [2,3]. 

However, WSN is application-oriented and so is its energy consumption. As a typical application of 

WSN, target tracking should be addressed in the energy efficiency problem. In target tracking 

applications, energy-aware methods will be geared specially towards the target motion information. 

The prior target position estimation can be used to organize the awakening and routing of WSN so that 

the energy efficiency can be improved. Traditional target tracking is usually performed by a Kalman 

filter (KF) [4]. However, it is extremely challenging to implement a KF to track a maneuvering target if 

the dynamic model of target is highly nonlinear. Although a standard particle filter (PF) [5] can solve 

nonlinear non-Gaussian problems, it can not solve the estimation error cumulating problems when 

maneuvering occurs. Furthermore, although some algorithms have been proposed for maneuvering 

target tracking, such as the unscented particle filter (UPF) [6], these algorithms are computationally-

expensive for sensor nodes. Hence, adaptive estimation can be provided by autoregressive moving 

average (ARMA) models. Forecasting with ARMA models has been utilized in many scenarios as they 

are capable of modeling a wide variety of complicated time series by simply adjusting parameters [7]. 

Because the description of a moving target is usually highly nonlinear, improvements should be made 

to solve the forecasting problem. Based on the forecasted results, energy-efficient organization of 

sensor nodes can be performed to optimize the energy consumption of a WSN. 

In this paper, an energy-efficient WSN organization method is proposed utilizing time series 

forecasting. Equipped with multi-sensors, each sensor node can produce range and bearing 

measurements of the target within its sensing range. As the target is often detected by a number of 

sensor nodes, a Fisher information matrix (FIM) [8] is adopted to evaluate the target localization error. 

With the known target trajectory, target position forecasting is implemented by time series analysis. 

Here, the time series is processed by empirical mode decomposition (EMD) [9]. The components of 

decomposition are described by ARMA models adaptively. Then, the forecasted target position is 

acquired by combining the forecasted results of each component. This forecasting task is assigned to a 

number of sensor nodes. Thereby, the target position estimation of the next sensing instant is available. 

The energy-efficient organization approach includes sensor node awakening and dynamic routing. 

According to the energy consumption model of sensor node, a probability awakening approach is 

presented to save and scale the operation energy consumption of sensor nodes. Meanwhile, ant colony 

optimization (ACO) [10] is introduced to optimize the routing scheme for the next sensing period, 

where the transmission energy consumption is concerned. Experiments analyze the energy efficiency of 

the proposed energy-efficient organization method and present the energy saving of WSN. 
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The rest of this paper is organized as follows. Section 2 gives the preliminaries of the energy-

efficient organization for the target tracking problem, where the basic models are introduced. In 

Section 3, we present the principle of collaborative sensing and adaptive estimation in target tracking. 

Section 4 describes the approach of energy-efficient organization, including sensor node awakening 

and dynamic routing scheme. Experimental results are provided by Section 5. Finally, Section 6 

presents the conclusions of the paper. 

 

1.1. Related work 

 

We address energy efficiency in target tracking application of WSN. Focusing on the strict energy 

constraints of sensor nodes, some researches have referred to the energy optimization approaches in 

WSN [11,12]. As the lifetime of WSN depends highly on the energy consumption performed at each 

sensor node, the sensor node architecture and related power consumption characteristics have been 

studied [1]. Besides, the authors have proposed in [1] an event-based power management policy. The 

sensor node would update the probability of event generation. Furthermore, [13] presents an 

application-driven mechanism based on power management, where the specified event generation 

model is utilized. However, the energy optimization mechanism should be carefully designed in the 

target tracking applications. In particular, an energy management protocol is proposed in [14]. Sensor 

nodes that are far away from the target are sent to sleep. However, target detection approach with 

multiple sensors should be concerned. More importantly, the prior information of target motion 

contains numerous hints for energy management so that more energy can be saved in WSN. Here, 

sensor nodes will well organized to prevent missing any observation and guarantee energy efficiency.  

Our work mainly includes two parts: collaborative sensing and adaptive estimation of target; 

energy-efficient organization of sensor nodes. Both the target detection and energy optimization 

requirements are considered. A novel time series analysis approach is proposed for target forecasting 

while distributed awakening approach is applied on sensor nodes. Besides, ACO algorithm is 

introduced for routing optimization during data fusion. 

 
2. Preliminaries 
 

The energy-efficient organization framework for the target tracking application of WSNs is shown 

in Figure 1. The two-dimension sensing field is filled with randomly deployed sensor nodes, which are 

connected by the wireless network. It is assumed that the positions of nodes can be obtained by a 

global positioning system (GPS). A sink node is located in the centre of the sensing field, acting as a 

manager of the whole network. It may provide the global target tracking results for the remote users 

though Internet or satellite [15,16].  

When the target moves into the sensing field, the corresponding sensor nodes near the trajectory 

implement collaborative sensing with specified sensing period T. For the sensor node equipped with 

multi-sensors, if the target is located in its sensing range, it acquires the data for target position and 

sends it to the sink node. The sensing results of sensor nodes are merged to localize the target. As the 

historical target positions become available, the sink node employs them to construct forecasting 
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model, from which the target position of the next sensing period can be obtained. For the energy 

efficiency purpose, the energy-efficient organization is performed among the sensor nodes in a 

distributed manner. In this way, the sensing procedure of sensor nodes can be optimized to save energy 

in WSN. This section will give some basic models for the target tracking problem, including target 

model, multi-sensor model and energy model. 

 

Figure 1. Energy-efficient organization framework for target tracking in WSN. 
 

 
 

2.1. Target model 

 

Considering the vehicle target which moves though the sensing field, a “current” statistical model 

is discussed here to describe the target motion [17]. It is assumed that when a target is maneuvering 

with certain acceleration at present, the range of acceleration which can be taken in the next instant is 

limited and always around the “current” acceleration. This assumption is quite reasonable for practical 

vehicle motion. Therefore, it is unnecessary to take all of the acceleration values of targets into 

account. The process equation of the target acceleration is: 

 

              22 aa a Uα ασ+ =&                                                               (1) 

 

where a  is the current acceleration; a&  is the derivative of a ; a  is the current mean of maneuvering 
acceleration, which is a constant at a sample instant; 1/α  is the maneuver time constant; 22 aασ  is the 

variance of white noise; U  is the intensity of correlation. The probability distribution function of 

acceleration is modified Raleigh distribution [17]: 
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where max

+a  and max
−a  are the positive and negative limitation of target acceleration, respectively. 0>µ  

is a constant. Then acceleration estimation is: 
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Where E represents the expected value. 
Here, we assume the maximum target acceleration max max max

+ −= = −a a a . Also, the maximum target 

velocity is defined as maxv . 

2.2. Multi-sensor model 

 

It is assumed that each sensor node equips two kinds of sensors, one pyroelectric infra-red (PIR) 

sensor and one omni-microphone sensor. Sensor nodes obtain the bearing observations of the target 

with the PIR sensors, while the range observations of the target are produced by the omni-microphone 
sensors. For each sensor node, it is assumed that the two sensors have the same sensing range sR . Then 

the sensing function of a single sensor node is shown in Figure 2. 

 

Figure 2. Sensing function of a single sensor node. 
 

 

In Figure 2, the coordinates of the sensor node and target are denoted by ( , )i ix y  and ( , )target targetx y  

respectively. Then the true bearing angle is calculated as: 

 

              arctan target it
i

target i

y y

x x
β −=

−
                                                               (4) 

 

and the true range value is calculated as: 

 

              2 2
arg arg( ) ( )t

i t et i t et ir x x y y= − + −                                                   (5) 

 

Both sensors have zero-mean and Gaussian error distribution. The standard deviation of bearing 
and range observations is βσ  and rσ  respectively, which is related to the confidence interval of 

bearing and range observations. The observations produced by the sensor node i  are: 
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t
i i wββ β= +                                                                 (6) 

 
              t

i i rr r w= +                                                                   (7) 

 
where the wβ  and rw  are the corresponding Gaussian white noise. 

 

2.3. Energy model 

 

Basic sensor node architecture consists of the embedded sensors, A/D converter, a processor with 

memory and the radio frequency (RF) circuits. For the scalability of energy consumption in WSN, all 

the components of sensor node are supposed to be controlled by an operation system, such as 

microOperating System (µOS) [1]. Thereby, shutting down or turning on any component is enabled by 

device drivers in the specified application of WSN. Here, system-level energy consumption 

optimization can be performed according to the target motion information potentially. 

During sensor node operation, four main parts of energy consumption source are considered: 

processing, sensing, reception and transmission. The processing energy is spent by the processor with 

memory. It is assumed that when the processor is active it has constant power consumption. The 

embedded sensors and A/D converter are adopted as there is any sensing task, and the corresponding 

power consumption is a constant. For wireless communication, the reception and transmission energy 

is derived from the RF circuits. As radio signal attenuation in the air is related with the distance of 

propagation, the free space propagation model [18] is adopted, which can be expressed as:  

 
2

4
s

pL
D

λ
π

 =  
 

                                                                  (8) 

 
where pL  is the path loss, D  is the propagation distance, and sλ  is the wavelength of signal.  

When the reception portion is turned on, the sensor node keeps listening to the wireless channel or 

receiving data. Thus, the power consumption of reception portion is assumed to be constant. For the 

transmission portion of RF circuits, the transmission amplifier has to achieve an acceptable 
magnification. Therefore, when sensor nodes i  transmits data to sensor node j , the power consumed 

by transmission portion is calculated as [19]:  

 
2

1 2 ,tx d i j dP r d rα α= +                                                              (9) 

 
where dr  denotes the data rate, 1α  denotes the electronics energy expended in transmitting one bit of 
data, 2 0>α  is a constant related to the transmission amplifier energy consumption, ,i jd  is the 

Euclidean distance between the two sensor nodes. As the operation system can manage the components 

of sensor node, the energy consumption is adjustable according to different sensing situations. 

With the stated basic models, collaborative sensing and adaptive estimation approaches will be 

exploited for the target tracking problem.  
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3. Collaborative Sensing and Adaptive Estimation in Target Tracking Problem 
 

As mentioned in Section 2.2, each sensor node has a sensing range for target detection. Due to the 

redundancy of sensor node deployment in WSNs, the target can be detected by a group of sensor nodes 

simultaneously. Thus, the observations of these sensor nodes are merged for higher detection accuracy. 

The data from multiple sensor nodes, including bearing and range observations, is utilized to localize 

the target. In this way, collaborative sensing is achieved by maximum likelihood estimation. Moreover, 

the sink node constructs the forecasting model with the historical target trajectory. Time series analysis 

is employed for adaptive estimation of target position. Here, a differencing operation and the EMD 

approach represent the time series of target position by stationary components, which are forecasted by 

ARMA model respectively. 

 

3.1. Target localization with multi-sensor fusion 

 
It is assumed that the coordinates of target is ( , )target targetx y  at one sensing instant of WSN. 

Meanwhile, the target can be detected by sN  sensor nodes, of which the coordinates are 
{( , ) | 1,2, , }= Li i sx y i N . According to Section 2.2, these sensor node can produce the bearing 

observations iβ  and range observations ir , where 1,2, ,= L si N . For sensor node i , the matrix 

representation of observation equation can be derived from Equation (6) and (7): 

 
( ) ,  ~ N(0, )i i i iH X W WΓ = + Ψ                                                 (10) 

 
where [ , ]= T

target targetX x y  is the true target position, [ , ]Γ = T
i i irβ  is the observation vector, the 

observation matrix is denoted as: 

 
1

2 2

tan ( ) /( )

( ) ( )

− − −
=  

− + −  

target i target i

i

target i target i

y y x x
H

x x y y
                                               (11) 

 

iW  is the observation error vector, N  means the normal distribution function, and 

 
2

2

0

0

 
Ψ =  

 r

βσ
σ

                                                              (12) 

 

With the observation of the sensor node i , the likelihood function of the true target position X  is 

calculated as: 

 
11 1

p( | ) exp{ [ ( )] [ ( )]}
22

T
i i i i i i

r

X H X H X
βπ σ σ

−Γ = − Γ − Ψ Γ −
⋅

                     (13) 
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A suitable measure for the information contained in the observations can be derived from the 

Fisher information matrix (FIM) [20]. The FIM for the observations of sensor node i  is calculated as: 

 

E{[ ln p( | )][ ln p( | )] }T
i i iJ X X

X X

∂ ∂= Γ Γ
∂ ∂

                                    (14) 

 

where E represents the expected value. 

According to Equation (13), we have: 

 

,1 ,1 ,2 ,22 2

1 1
[ ( )][ ( )] [ ( )][ ( )]

∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂

T T
i i i i i

r

J h X h X h X h X
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                     (15) 

 
where 1

,1 arg argtan (( ) /( ))−= − −i t et i t et ih y y x x , 2 2 1/ 2
,2 arg arg[( ) ( ) ]= − + −i t et i t et ih x x y y . Then,  
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 ∆ + ∆ ∆ ∆ −
=  ∆ ∆ − ∆ + ∆ 

                         (16) 

 
where ∆ = −i target ix x x , ∆ = −i target iy y y  and t

ir  is the Euclidean distance between the true target 

position and sensor node i  as presented in Equation (5). 
1−

iJ  is the estimation error covariance matrix, which defines the Cramer-Rao lower bound (CRLB). 

To localize the target with higher accuracy, we should extract the information from the all the 
observations { | 1,2, , }Γ = Li si N . The FIM for all the observations is calculated as: 

 

1=
=∑

sN

i

i

J J                                                                   (17) 

 
According to the estimation error covariance matrix 1−J , the root mean square error (RMSE) eL  is 

taken as the target location error, which is calculated as: 

 
1trace( )−=eL J                                                             (18) 

 

where trace is a function computing the sum of matrix diagonal elements. 

In this way, the target can be localized by maximum likelihood estimation after gathering the 
observations from the sensor nodes. The location accuracy is reflected by eL . 

 

3.2. Time series analysis for target position forecasting 

 
It is assumed that the sink node keeps tN  points of the historical target trajectory 

{ | 1,2, , }= Lk tY k N . ARMA model is a widely-used model for the forecasting of future values. ARMA 

model is adopted here to forecast the target position 1+tNY  due to its outstanding performance in model 
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fitting and lightweight computational cost. Here, one direction of the target motion { | 1,2, , }= Lk ty k N  

is taken for discussion. 

The ARMA model contains two terms, the autoregressive (AR) term and the moving average (MA) 
term [21]. In the AR process, the current value of the time series ky  is expressed linearly in terms of its 

previous values 1 2{ , , , }− − −Lk k k py y y  and a random noise ka . This model is defined as a AR process of 

order p , AR( )p , which can be presented as: 

 
1 1 2 2− − −= + + + +Lk k k p k p ky y y y aφ φ φ                                               (19) 

 
where { | 1,2, , }= Li i pφ  are the coefficients of AR model. In the MA process, the current value of the 

time series ky  is expressed linearly in terms of current and previous values of a white noise series 

1{ , , , }− −Lk k k qa a a . This noise series is constructed from the forecasting errors. This model is defined as 

a MA process of order q , MA( )q , which can be presented as: 

 
1 1 2 2k k k k q k qy a a a aθ θ θ− − −= − − − −L                                                (20) 

 
where { | 1,2, , }Li i qθ =  are the coefficients of MA model. 

The backshift operator B  is introduced here, which is defined as: 

 
1 1,  k k k ky By a Ba− −= =                                                          (21) 

 

and consequently 

 
,  i i

k i k k i ky B y a B a− −= =                                                         (22) 

 

The backshift operator is not a number, but rather a symbol that denotes shifting of the time subscript.  

Then, the AR process can be written as: 

 
( )Φ =k kB y a                                                               (23) 

 

while the MA process can be written as: 

 
( )= Θk ky B a                                                              (24) 

 

where 
2

1 2( ) 1Φ = − − − −L
p

pB B B Bφ φ φ                                                (25) 

 
2

1 2( ) 1Θ = − − − −L
q

qB B B Bθ θ θ                                                 (26) 

 
In the autoregressive moving average process, the current value of the time series ky  is expressed 

linearly in terms of its values at previous periods 1 2{ , , , }− − −Lk k k py y y  and in terms of current and 
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previous values of a white noise 1{ , , , }− −Lk k k qa a a . The order of the ARMA process is selected by both 

the oldest previous value of the series and the oldest white noise value at which ky  is regressed on. For 

this ARMA of order p  and q , ARMA( , )p q , it can be written as: 

 
( ) ( )Φ = Θk kB y B a                                                            (27) 

 

There is an assumption for ARMA process that the time series for analysis should be stationary, 

that is, the mean of the time series and the covariance among its observations are not time-varied. 

According to the target model, the process is non-stationary, so the series should be transformed to a 

stationary process be the model construction. This can be often achieved by a differentiation process. 

The first-order differencing of the original time series is defined as: 

 
1

1 (1 )−= − = − = −k k k k k ky y y y By B y                                             (28) 

 

For the high-order differentiation, we have: 

 
(1 )= −d d

k ky B y                                                              (29) 

 
After the d -order differentiation of ky , the autoregressive integrated moving average (ARIMA), 

ARIMA( , , )p d q , can be constructed as: 

 
( ) ( )Φ = Θd

k kB y B a                                                            (30) 

 

For instance, time series is simulated for one direction of target trajectory. As shown in Figure 3, 

the time series is generated according to Section 2.1, where the sensing period T  is assumed to be 0.5 

s. In Figure 3(a), there are 200 historical points of the target trajectory. The lost information of the 

original time series will be larger when the order of differencing increases. Therefore, the 

differentiation order d  is set as 2. Then the time series after differentiation is shown in Figure 3(b). It 

can be seen that this series is basically stationary. 

However, further processing of the time series is performed in order to obtain more stationary time 

series for forecasting. Here, EMD is introduced to decompose the time series into a set of stationary 

time series, called intrinsic mode functions (IMFs). More importantly, the IMFs can reflect the inherent 

variation mode in the time series, including stochastic components and a trend component. 

EMD is a general nonlinear, non-stationary signal processing method, first proposed by Huang 

[22]. The major advantage of EMD is that the basis functions are derived directly from the signal itself. 

Hence, the analysis procedure is adaptive. 

For each IMF, there are two definitive requirements: (1) the numbers of its extrema and zero-

crossings are equal or differ at most by one; (2) it is symmetric with respect to local zero mean. The 

decomposition process is performed as follow: 
a) Identify all the maxima and minima of dky . 

b) Generate its upper and lower envelopes up
ky  and low

ky  with cubic spline interpolation. 



Sensors 2007, 7                            

 

 

1776

c) Calculate the point-by-point mean from upper and lower envelopes as: 

 

2

up low
kk

k
y y

b
+=                                                               (31) 

 

d) Extract the detail as: 

 
d

k k ke y b= −                                                                  (32) 

 
e) Check the properties of ke . If it meets the definitive requirements, an IMF is derived and the 

residual is:  

 
= −d

k k ky eε                                                                   (33) 

 
Otherwise, replace dky  with ke . 

f) Repeat Steps a) to e) until the residual satisfies the stopping criterion. 

At the end of this process, the time series can be expressed as: 

 

( )
,

m
d m
k k i k

i

y c ε= +∑                                                               (34) 

 
where m  is the number of IMFs and ( )m

kε  denotes the final residue series. ,{ | 1,2, , }Lk ic i m=  denotes 

the set of IMFs, which are stationary and nearly orthogonal to each other. 

Here, the number of IMFs m  is specified as the stopping criterion. In WSN, the EMD process is 

started on the sink node. After the first IMF is extracted, the residue series is transferred to a sensor 

node with available computation resource, where the sensor node is selected randomly. Also, this 

sensor node forwards the residue series the nearest sensor node with available computation resource 

when the next IMF is obtained. Repeat this process until the decomposition is accomplished. In this 

way, the IMF and the final residue series are assigned among the sink node and a group of sensor 

nodes. 

For the time series in Figure 3(b), the EMD process is implemented. To reduce computation cost 

and the decomposition error, the number of IMFs is set as 4. The decomposition results are shown in 

Figure 4, where the 4 IMFs and one final residue series is presented. Each IMF reflects different 

variation mode of the time series, so corresponding models are constructed separately. To determine 

the order of ARMA model, the patterns of autocorrelation function (ACF) and partial autocorrelation 

function (PACF) are analyzed. 
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Figure 3. Simulated time series of target trajectory: (a) Before differentiation; (b) After 

differentiation. 
 

 
(a) 

 
(b) 

 

Figure 4. Decomposition results for the time series after differentiation. 
 

 
For time series { }kz , ACF is defined as: 

 
ACF( ) E[ ]k k ll z z −=                                                             (35) 

 

where is E means the expected value and l  denotes the number of lags. PACF can be obtained by 

Yule-Walker equation [23]. Table 1 represents the patterns in the theoretical ACF and PACF of 

stationary time series, which is utilized to determine the order of model. 
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Table 1. Patterns in the theoretical ACF and PACF of stationary time series. 

Model AR(p) MA(q) ARMA(p,q) 

ACF 
Exponential or sinusoidal 

decay to zero 

Spikes cut off to zero after 

lag q 

Exponential or sinusoidal 

decay to zero after lag q 

PACF 
Spikes cut off to zero after 

lag p 

Exponential or sinusoidal 

decay to zero 

Exponential or sinusoidal 

decay to zero after lag p 

 

Figure 5. Analysis of ACF and PACF patterns: (a) ACF; (b) PACF. 
 

 
(a) 

 
(b) 

Taking the IMF1 in Figure 4 for example, its ACF and PACF are presented in Figure 5. According 
to Table 1, we choose the model AR(6). In the same way, models are chosen for all the IMFs and the 

final residue series. It is found that each component can be described by an AR model.  

As mentioned earlier, the sink node and a group of sensor nodes maintain the components. Then, 
the AR( )p  models can be constructed in a distributed manner. 

For any time series { | 1,2, , }= Lkz k N , the method of least square estimation is adopted to 

determine the coefficients of AR( )p  [24]. A linear equation can be acquired as follow: 
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1 2= +Z Z B A                                                                     (36) 

 
where 1 1 2[ ]+ += L

T
p p NZ z z z , and 

 
1 1

1 2
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L
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M M O M

L

p p
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N N N p

z z z

z z z
Z

z z z

                                                         (37) 

 
Besides, 1 2[ ]= L

T
pB φ φ φ  is the coefficient vector, 1 2[ ]T

p p NA a a a+ += L  is the noise vector. 

Here, { | 1,2, , }= Li i pφ  are the coefficients of AR model and { | 1, 2, , }ia i p p N= + + L  are previous 

values of a white noise series. 

Then the least square estimation of coefficients is: 

 
1

2 2 2 1( )−=
)

T TB Z Z Z Z                                                             (38) 

 
With the constructed AR( )p  model, forecasting can be performed on the sink node and sensor 

nodes. The estimation value is calculated as: 

 
1 1 2 1 1E[ ]N N N p N pz z z zφ φ φ+ − − += + + +L                                             (39) 

 

where is E means the expected value. The forecasted results on the sensor nodes are forwarded back 

along the former path to the sink node, where the total result is obtained by calculating the sum of all 

the component results. Because the data amount is limited and the sensor nodes are close to each other, 

this part of energy consumption for communication is ignored.  

In this way, both directions of the target position can be forecasted adaptively. Since the forecasted 

target position for the next sensing period is available, related energy-efficient organization will be 

implemented in WSN. 

 

4. Energy-efficient organization method 
 

With the forecasted target position, sensor nodes can be set to sleep when there is no sensing task. 

Due to the redundancy of sensor node deployment, the WSN performs probability awakening in a 

distributed manner to enhance the scalability of the energy consumption. Moreover, the routing scheme 

of data reporting is optimized by ACO for energy efficiency. 

 

4.1. Distributed sensor node awakening 

 

According to Section 2.3, sensor nodes can shut down its components if necessary. Thereby, sensor 

node awakening is considered with the forecasted target position. To prolong the lifetime of WSN, we 
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exploit a sensor node awakening approach, where the mode transition of sensor node is scheduled and 

probability awakening is considered. 

First, five operation modes of sensor node is defined as follow:  

(1) Sleep. It has the lowest power consumption as all the components are inactive. Only the timer-

driven awakening is supported, that is, the processor component can be awakened by its own timer. 

(2) Idle. Only the processor component is active in this mode. All the other components can be 

controlled by the operation system. 

(3) Sense. The processor and sensor components are active. In this mode, sensor nodes can acquire 

the target observations. 

(4) Rx. The processor is working and the reception portion of RF circuits is turned on. Sensor nodes 

can receive request or data. 

(5) Rx & tx. The processor is active while both the reception and transmission portions of RF 

circuits are turned on. Sensor nodes can receive and transmit information. 

Then, sensor node awakening strategy can be exploited according to the defined operation modes. 

Figure 6 illustrates the operation mode transition in distributed sensor node awakening approach 

according to the forecasted target position. Each sensor node controls its operation modes separately.  

For a sensor node in idle mode, if there is no target in its sensing range, it will get into rx mode. 

Thus, the broadcasting information of the target position can be obtained from the sink node. Note that 

this target position is the target position estimation forecasted in the last sensing period. That is 

because the target localization is not accomplished yet while the sensor node should go to sleep as soon 

as possible. Then sensor node goes to sleep mode with the estimated sleep period number. If the sensor 

node in idle mode detects any target, it gets into sense mode for data acquisition. After that, the data is 

transmitted for data fusion in the rx & tx mode. Then, the forecasted target position is acquired. Also, 

the sensor node which finishes the sensing task goes to sleep mode adopting the estimated sleep period 

number. 

Figure 6. Operation mode transition in distributed sensor node awakening approach 

according to the forecasted target position. 
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Here, the estimation approach of sleep period number will be discussed. For each sensor nodes, 
define the shortest distance to the WSN boundary as mind . Then, the sleep time can be estimated as: 

min max

min max
max

min max
max

  exp( )

  exp( )

s

target s
sleep s a

target s
s a

T d v T R

d R
t t d v T R and r t

v

d R
d v T R and r t

v

γ

γ


 ≤ +


−= + ∆ > + < − ∆

 − > + ≥ − ∆


                            (40) 

 
where T  denotes the sensing period, sR  is the sensing range of sensor node, ar  is a random number in 
the interval (0,1], maxv  is the maximum target velocity, and ∆t  is the prolonged sleep time which is a 

random number. γ  is a parameter for adjusting the probability of sleep time prolonging. When any 

target gets into the sensing field, the Euclidean distance between the forecasted target position and the 

sensor node is denoted by targetd ′ . If mintargetd d′ < , then target targetd d ′= ; otherwise, min=targetd d . 

Thereby, WSN maintain standby for any new target getting into it. When there is a target in the 

sensing field, the sensor nodes which are far away from the target will go to sleep. The sleeping sensor 

nodes are awakened on time when there is potential sensing task.  

In addition, the redundancy of sensor node deployment is utilized to prolong the sleep time. For the 

sensor nodes, the probability of prolonging the sleep time obeys exponential distribution, which is 
determined by the probability awakening parameter γ . The sleep period number can be calculate as 

fl( / )sleept T , where fl  is the rounding operation. 

The sensor node awakening situation around the target is that illustrated in Figure 7. The sensor 

nodes which are farther from the target ought to wake up in a later sensing period. The potential task 
range in the k -th period is the circle with radius maxsR kv T+  while the potential task range in the 
( 1)k + -th period is the circle with radius max( 1)sR k v T+ + . Here, k  is the sensing period index from 

the current sensing period. Instead of awakening all the sensor nodes between the two circles, the 

probability awakening approach selects a set of sensor node randomly.  

With the estimated sleep period number, sensor node can go to sleep mode to save the operation 

energy. Meanwhile, the awakening probability for potential task is adjustable to reduce redundancy 

observations. 

 

Figure 7.  Sensor node awakening when there is a target in WSN sensing field. 

 



Sensors 2007, 7                            

 

 

1782

4.2. Dynamic routing with ant colony optimization 

 

When there is a target in the sensing field, a group of sensor nodes goes into the sense mode at each 

sensing instant. The observations produced by these sensor nodes should be transferred to the sink 

node for collaborative sensing. As these sensor nodes are close to each other, data transmission is 

enabled in one pair of sensor nodes at a time to avoid collisions in the communication. Therefore, a 

routing problem is considered as follows:  

(1) The index of sensor nodes with observations is denoted by {1,2, , }anL ; 

(2) The cost measure of edge between sensor node i  and j  is defined according to Equation (9):  

 
2

, 1 2 , ,  = + ≠i j i jd i jρ α α                                                         (41) 

 
(3) A optimal path { (1), (2), , ( )}anλ λ λL  should be found, where ( ) {1,2, , }ai nλ ∈ L . At the 

beginning, sensor node (1)λ  transmits its observations to sensor node (2)λ . Then the data is forwarded 

and integrated along the path. The sensor node ( )anλ  can localize the target by data fusion in the end. 

If ≠i j , then ( ) ( )≠i jλ λ . The minimization objective function is: 

 
1

( ), ( 1)

1

an

i i

i

F λ λρ
−

+
=

=∑                                                              (42) 

 

In this way, the observations of sensor nodes can be merged step by step on the path and the last 

sensor node will obtain the final target localization result. This result is then reported to the sink node. 

As it only includes the coordinates of the target, the communication cost is ignored. 

It is assumed that the sink node maintains the awakening information of sensor nodes. Therefore, 

the optimization of routing scheme can be performed by the sink node. ACO is adopted to find the 

optimal path, where a society of artificial ants is modeled [25]. In addition to the cost measure, each 
edge has also a desirability measure ,i jτ , called pheromone, which is updated at run time by artificial 

ants. Each ant generates a complete tour by choosing the sensor nodes according to a probabilistic state 

transition rule. Ants prefer to move to sensor nodes which are connected by short edges with a high 

amount of pheromone. Once all the ants have completed their tours a global pheromone updating rule 

is applied. A fraction of the pheromone evaporates on all the edges, and then each ant deposits an 

amount of pheromone on edges which belong to its tour in proportion to how short its tour was. The 

process is then iterated. The state transition rule used by ant system is called a random-proportional 
rule. It gives the probability with which ant k  in sensor node i  chooses to move to the sensor node j  

as follow [26]: 
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, ,
,
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where ,i jτ  is the pheromone, ,i jδ  is the inverse of the cost measure ,i jρ , k
iQ  is the set of sensor nodes 

that remain to be visited by ant positioned on sensor node i , and  ( 0)g g >  is a parameter which 

determines the relative importance of pheromone versus distance. In Equation (43), the pheromone on 
edge ( , )i j  is multiplied by the corresponding heuristic value ,i jδ . In this way, the choice of edges 

which have a greater amount of pheromone is preferred. The global updating rule is implemented as 

follows. Once all ants have built their tours, pheromone is updated on all edges according to 

 

, , ,

1

(1 )
am

k
i j t i j i j

k

τ α τ τ
=

= − + ∆∑                                                         (44) 

 

where  

 

,

1
 ant  has toured edge ( , )

0


∆ = 


k k
i j

if k i j
L

otherwise
τ                                         (45) 

 
0 1tα< <  is a pheromone decay parameter, kL  is the length of the tour performed by ant k , and am  is 

the number of ants. Pheromone updating is intended to allocate a greater amount of pheromone to 

shorter tours. New pheromone is deposited by ants on the visited edges. Meanwhile, the pheromone is 

evaporated. The pheromone updating formula simulates this procedure. Finally, the edge which 

receives the greatest amount of pheromone is regarded as the optimal path. 

 
5. Experimental Results 
 

In this section, the efficiency of collaborative sensing, adaptive estimation and energy-efficient 

organization will be analyzed with simulation experiments.  

 

5.1. Experimentation platform 

 

It is assumed that the sensing field of WSN is 400 m x 400 m, in which 300 wireless sensor nodes 

are deployed randomly. The sensing period T  is set as 0.5 s. Deployment of WSN and the target 

trajectory is given in Figure 8. The acceleration of target is modeled according to Section 2.1. The 

trajectory involves different moving situations, so this scenario can represent the generalization of 
tracking problem. For the target trajectory, there are 150 points, the maximum acceleration maxa  is set 

as 28 m/s  and the maximum velocity maxv  is set as 30 m/s. 
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Figure 8. Deployment of WSN and the target trajectory. 
 

 

According to Section 2.2, each sensor node has the sensing range Rs = 40 m. The standard 
deviation of bearing observations is 2= o

βσ  while that of range observations is 1 m=rσ . In Section 

2.3, the power consumption of sensor node components is set as typical value. The power consumption 

of the processor is 25 mW; the power consumption of the embedded sensors and A/D converter 

15 mW; the power consumption of reception portion is 20 mW. Besides, the parameters in Equation 
(9) are set as: 1 500 nJ/bit=α , 2

2 5 nJ/(bit m )= ⋅α  and 1 Mbit/s=dr . The basic power consumption for 

inactive processor component is 5 mW. According to Section 4.1, the power consumption of the five 
modes is presented in Table 2. As mentioned in Section 2.3, txP  is the energy consumed by 

transmission portion.  

 

Table 2. Power consumption of the five operation modes for the sensor node 

Mode Power consumption (mW) 

Sleep 5 

Idle 25 

Sense 40 

Rx 45 

Rx & tx 45+Ptx 

 

During each sensing period, it is assumed that the time for staying in each mode is 

20 mstδ = .Then, the power consumption of WSN in the each sensing period can be calculated as: 

 
300

1

( ) ( , )WSN

i

t
P k P i k

T

δ
=

= ∑                                                       (46) 
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where T  is the sensing period and k  is the sensing period index. ( , )P i k  denotes the power 

consumption of sensor node i  in the k -th sensing period. Moreover, the total energy consumption of 
WSN after Tn  sensing periods can be calculated as: 

 

1

( )
Tn

WSN WSN

k

E T P k
=

= ∑                                                        (47) 

 

Among the total energy consumption, the energy consumed by transmission portion is related with the 

propagation distance of radio signal. For WSN, this part of energy consumption is defined as 

transmission cost, while the other part of energy consumption is defined as operation cost. Simulations 

of communication network will be performed with Opnet Modeler, which is a simulation platform for 

communication network and distribution system. It is assumed that the data amount of observations is 

1 KB for each sensor node. Three kinds of models are adopted in simulations: mobile target, wireless 

sensor node and sink node. 

 

5.2. Target tracking experiments 

 

The target tracking procedure with energy-efficient organization is simulated. As presented in 

Equation (40), the probability of prolonging the sleep time is determined by the probability awakening 
parameter γ . Here, it is assumed that γ  approaches positive infinity so that sleep time prolonging is 

disabled in the distributed sensor node awakening. Sleep time prolonging by probability awakening 

will be studied separately later. Thus, all the sensor nodes that have potential sensing task will wake up 

on time.  

Utilizing the target trajectory in Figure 8, the sensor nodes with the target in the sensing range 

acquire the bearing and range observations in each sensing period. The sink node finds the optimal 

routing scheme by ACO. Thereby, the observations are forwarded and fused hop by hop. The last 

sensor node on the path reports the final target localization result to the sink node. With the historical 

target positions, the sink node performs time series analysis. EMD and ARIMA model is adopted to 

forecast the target position in the next sensing instant. Hence, sensor node can estimate the sleep period 

number in a distributed manner based on the forecasted target position during the next sensing period. 

This process is repeated in the target tracking procedure. 

First, the efficiency of collaborative sensing is discussed. For sensing performance comparison, we 

consider the situation that only the closest sensor node for the target acquires the observations. In this 

situation, the bearing and range observations of single sensor node is available and the related target 

location error can be derived from Equation (16). Figure 9 compares the target location error with 

collaborative sensing and single sensor node. It can be seen that the target location error of 

collaborative is much lower than that of single sensor node. Thus, the sensing performance is enhanced 

by the collaborative sensing, which provides more reliable results for the target position estimation 

stage. Then, the target position forecasting performance of time series analysis is studied. In each 

sensing period, the known target trajectory in the x and y directions forms two set of time series. It is 



Sensors 2007, 7                            

 

 

1786

assumed that target localization in the beginning 5 s can be guaranteed by boundary sensor node. As 

stated in Section 3.2, differentiation and EMD are used to process the original time series.  

After experimental analysis, the differentiation order d  is set as 2 while the IMF number m  is set 
as 4. The order p  of AR model for IMF1, IMF2, IMF3, IMF4 and the final residue series is set as 5, 4, 

3, 4 and 3 respectively. This forecasting task is distributed among the sink node and 4 sensor nodes. 

Also, another situation is considered for comparison, in which the target position is forecasted without 

EMD. In other words, the time series after differentiation is forecasted by AR model in this situation. 

The order of AR model is set as 6. The way of selecting these parameters has been described in Section 

3.2. 

 

Figure 9. Comparison of target localization error with collaborative sensing and single 

sensor node. 
 

 

For the time series after differentiation, the forecasting error with and without EMD is compared in 

Figure 10. In x and y direction, the forecasting error is smaller utilizing the times series analysis with 

EMD. That is because the components obtained by EMD are more stationary and can reflect the 

inherent modes of target motion better. Then, the target position forecasted results are presented in 

Figure 11. Here, the error from target localization is involved in the total target position forecasting 

error. It can be seen that the time series analysis with EMD approximate the true trajectory of target 

better. The accuracy of target position forecasting will affect the following organization so that it is 

related with the sensing performance and energy efficiency. 

With the distributed target position forecasting, the energy efficiency of the energy-efficient 

organization can be investigated. The sensor nodes estimate the sleep period number and go to sleep in 

a distributed manner according to Section 4.1. Thereby, the operation cost of WSN is optimized. In 

each sensing period, all the sensor nodes which can detect the target wake up. In order to minimize the 

transmission cost, ACO algorithm is utilized for routing.  
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Figure 10. Comparison of forecasting error with and without EMD for time series after 

differentiation: (a) X direction; (b) Y direction. 
 

 
(a) 

 
(b) 

 
Figure 11. Target position forecasted results utilizing time series analysis with and 

without EMD. 
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According to Equation (46), the power consumption of WSN is calculated. As mentioned in 

Section 5.1, the operation and transmission costs are discussed. Figure 12(a) illustrates the total power 

consumption curves of WSN, including operation and transmission cost. Meanwhile, a general 

organization approach is considered for comparison. In the general organization procedure, all the 

sensor nodes wake up every sensing period. According to the distance from the sink node, all the 

detecting sensor nodes forward their observations step by step. It starts on farthest sensor node and 

ends on the closest sensor node. Accordingly, the total power consumption curves of WSN are 

presented in Figure 12(b). The operation and transmission costs are both lower in the target tracking 

with energy-efficient organization.  

 

Figure 12. Power consumption curves of WSN including operation and transmission 

cost: (a) Energy-efficient organization; (b) General organization. 
 

 
(a) 

 
(b) 

With the power consumption curves presented in Figure 12, Table 3 gives the energy consumption 

of the organization approaches utilizing Equation (47).  

 

 



Sensors 2007, 7                            

 

 

1789

Table 3.  Energy consumption comparison of general and energy-efficient organization. 

Cost type 
Energy consumption (J) Reduction 

(%) General organization Energy-efficient organization 

Operation 167.4 148. 4 11.4 

Transmission 132.4 84.1 36.5 

Total 299.8 232. 5 22.4 

In Table 3, the relative reduction of energy consumption is calculated as: 

 
1 2

1
100%WSN WSN

WSN

E E
C

E

−∆ = ×                                                       (48) 

 
where 1

WSNE  and 1
WSNE  denote the energy consumption of WSN with general organization and energy-

efficient organization, respectively. Compared with the general organization approach, 11.4% 

operation cost and 54.6% transmission cost is saved by the energy-efficient organization approach.  

Moreover, the efficiency of the probability sleep prolonging is discussed in the distributed sensor 
node awakening. According to Equation (40), the probability awakening parameter γ  can be specified 

to prolong the sleep time of sensor nodes. In other words, part of the sensor nodes which have potential 

sensing task in the corresponding sensing period will keep sleeping for the extension time. The sensor 
nodes have an extension time ∆t  with probability exp( )tγ− ∆ . Here, ∆t  is a random number in the 

interval [0 s,5 s]. A group of sensor nodes will be awakened for target detection during each sensing 

period. Adjusting the probability awakening parameter γ , the average number of sensor nodes 

available for target detection in one sensing period is presented in Figure 13. With smaller parameter γ  

the average number of detecting sensor nodes turns less. When γ  exceeds 0.64, the average sensor 

node number becomes a constant. It is the maximum number of detecting sensor nodes that can be 

provided by WSN.  

 
Figure 13. Average number of sensor nodes available for target detection in one sensing 
period with different probability awakening parameter γ . 
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Considering the collaborative sensing accuracy, the cases in which the average number of detecting 

sensor node exceeds 5 is analyzed. According to Equations (46) and (47), the total energy consumed 
during target tracking can be calculated adopting different probability awakening parameter γ . Table 4 

gives the total energy consumption of WSN with γ  set as 0.08, 0.16, 0.32 and 0.64. The power 

consumption is lower with smaller γ . Thus, additional energy saving of WSN can be obtained by 

choosing a proper γ . 

 

Table 4. Total energy consumption of WSN with different probability awakening 
parameter γ . 

γγγγ  0.08 0.16 0.32 0.64 

Energy consumption (J) 189.1 201.6 217.1 229.7 

 

The experiments studied the energy efficiency of target tracking. Collaborative sensing enhances 

the target localization accuracy. Time series analysis based on EMD approximates the target trajectory 

well. Besides, the energy-efficient organization achieves energy saving. Moreover, the probabilistic in 

sensor node awakening leads to extra energy saving. 

 
6. Conclusions 
 

Considering the energy constraints of target tracking in WSN, this paper proposes an energy-

efficient organization method based on collaborative sensing and adaptive target estimation. Sensor 

nodes which are equipped with bearing and range sensors utilize the maximum likelihood estimation 

for data fusion. Hence, targets can be localized by collaborative sensing while the localization error is 

evaluated utilizing FIM. A sink node maintains the historical target positions, with which the target 

position in the next sensing instant is estimated. The time series of target trajectory is processed by 

differentiation and EMD. Thereby, the inherent variation modes can be obtained, which are forecasted 

by the ARMA models. The future target position is derived from the forecasted results and is adopted 

to organize the sensor nodes for sensing. Here, the energy-efficient organization method includes the 

distributed sensor node awakening and adaptive routing scheme. Sensor nodes can go to sleep when 

there is no target in its sensing range and it can be awakened once there is potential sensing task. 

Besides, probabilistic awakening is introduced to prolong the sleep time of sensor nodes. ACO 

algorithm is employed to optimize the path of data transmission. Experiments of target tracking verify 

that target localization accuracy is enhanced by collaborative sensing of the sensor nodes, while the 

forecasting performance is improved by combining ARMA model with EMD. More importantly, the 

energy efficiency of WSN is guaranteed by the distributed sensor awakening and dynamic routing. In 

Section 2, the main contribution of this paper is the energy-efficient organization framework for target 

tracking as well as the forecasting and awakening approaches. For the future work, we may extend this 

method to other applications of WSN, such as target classification and environment surveillance. Also, 

the mobility of wireless sensor node could by investigate for further research. 
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