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Abstract: Due to their wide potential applications, wirelsgnsor networks have recently
received tremendous attention. The strict energysttaints of sensor nodes result in the
great challenges for energy efficiency. This papeestigates the energy efficiency problem
and proposes an energy-efficient organization ntetivih time series forecasting. The
organization of wireless sensor networks is formadafor target tracking. Target model,
multi-sensor model and energy model are definedrdowly. For the target tracking
application, target localization is achieved bylambrative sensing with multi-sensor fusion.
The historical localization results are utilizedr fadaptive target trajectory forecasting.
Empirical mode decomposition is implemented toamttthe inherent variation modes in the
time series of a target trajectory. Future targesitpn is derived from autoregressive
moving average (ARMA) models, which forecast thecateposition components,
respectively. Moreover, the energy-efficient orgation method is presented to enhance the
energy efficiency of wireless sensor networks. §hasor nodes implement sensing tasks
according to the probability awakening in a disitddl manner. When the sensor nodes
transfer their observations to achieve data fusiba, routing scheme is obtained by ant
colony optimization. Thus, both the operation anchmunication energy consumption can
be minimized. Experimental results verify that g@nbination of the ARMA model and
empirical mode decomposition can estimate the tgrgsition efficiently and energy saving
is achieved by the proposed organization methadneless sensor networks.

Keywords. Wireless sensor networks, energy efficiency, tirages analysis, ant colony
optimization.
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1. Introduction

Ubiquitous computing is emerging as a potentialsoh for wide sensing applications in the
physical world. Thus, wireless sensor networks (WSNave become a growing research field. In
WSNSs, a large number of intelligent sensor nodesirgegrated into the environment to accomplish
complicated sensing tasks. Sensing, processingcamnunication capabilities are enabled on each
sensor node. As sensor nodes usually work in umgigspe areas, the batteries cannot be easily
recharged or replaced. Due to the limited battéey the energy efficiency of a WSN is an important
issue. Sleeping and awakening of sensor nodesuppoded in power-aware hardware design [1]. By
adopting proper energy management methods, theyemensumption of WSNs is scalable [2,3].
However, WSN is application-oriented and so iseitgrgy consumption. As a typical application of
WSN, target tracking should be addressed in theggnefficiency problem. In target tracking
applications, energy-aware methods will be geapatially towards the target motion information.
The prior target position estimation can be useorg@anize the awakening and routing of WSN so that
the energy efficiency can be improved. Traditiotzafyet tracking is usually performed by a Kalman
filter (KF) [4]. However, it is extremely challeng to implement a KF to track a maneuvering taifget
the dynamic model of target is highly nonlinearthdlugh a standard particle filter (PF) [5] can solv
nonlinear non-Gaussian problems, it can not sdie dstimation error cumulating problems when
maneuvering occurs. Furthermore, although someritiigts have been proposed for maneuvering
target tracking, such as the unscented partidier flUPF) [6], these algorithms are computationally
expensive for sensor nodes. Hence, adaptive egtimaan be provided by autoregressive moving
average (ARMA) models. Forecasting with ARMA modeds been utilized in many scenarios as they
are capable of modeling a wide variety of compédatime series by simply adjusting parameters [7].
Because the description of a moving target is hgiaghly nonlinear, improvements should be made
to solve the forecasting problem. Based on thecasted results, energy-efficient organization of
sensor nodes can be performed to optimize the geerggumption of a WSN.

In this paper, an energy-efficient WSN organizatimethod is proposed utilizing time series
forecasting. Equipped with multi-sensors, each @ensode can produce range and bearing
measurements of the target within its sensing raAgethe target is often detected by a number of
sensor nodes, a Fisher information matrix (FIM)if8adopted to evaluate the target localizationrerr
With the known target trajectory, target positiameicasting is implemented by time series analysis.
Here, the time series is processed by empiricalend®mtomposition (EMD) [9]. The components of
decomposition are described by ARMA models adalgtivEhen, the forecasted target position is
acquired by combining the forecasted results oh emmponent. This forecasting task is assigned to a
number of sensor nodes. Thereby, the target ppstimation of the next sensing instant is avialab
The energy-efficient organization approach includessor node awakening and dynamic routing.
According to the energy consumption model of sensmie, a probability awakening approach is
presented to save and scale the operation enengyicgption of sensor nodes. Meanwhile, ant colony
optimization (ACO) [10] is introduced to optimizhet routing scheme for the next sensing period,
where the transmission energy consumption is coecerExperiments analyze the energy efficiency of
the proposed energy-efficient organization methadl @resent the energy saving of WSN.
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The rest of this paper is organized as follows.tiSec2 gives the preliminaries of the energy-
efficient organization for the target tracking ple, where the basic models are introduced. In
Section 3, we present the principle of collabomtensing and adaptive estimation in target trgckin
Section 4 describes the approach of energy-eftiaeganization, including sensor node awakening
and dynamic routing scheme. Experimental resulés paovided by Section 5. Finally, Section 6
presents the conclusions of the paper.

1.1. Related work

We address energy efficiency in target trackingliappon of WSN. Focusing on the strict energy
constraints of sensor nodes, some researches éfereed to the energy optimization approaches in
WSN [11,12]. As the lifetime of WSN depends higbly the energy consumption performed at each
sensor node, the sensor node architecture aneédetetwer consumption characteristics have been
studied [1]. Besides, the authors have proposédil]ian event-based power management policy. The
sensor node would update the probability of eveahegation. Furthermore, [13] presents an
application-driven mechanism based on power manegemvhere the specified event generation
model is utilized. However, the energy optimizatimechanism should be carefully designed in the
target tracking applications. In particular, anrggananagement protocol is proposed in [14]. Sensor
nodes that are far away from the target are sesteep. However, target detection approach with
multiple sensors should be concerned. More imptitathe prior information of target motion
contains numerous hints for energy management aontiore energy can be saved in WSN. Here,
sensor nodes will well organized to prevent missing observation and guarantee energy efficiency.

Our work mainly includes two parts: collaborativensing and adaptive estimation of target;
energy-efficient organization of sensor nodes. Biita target detection and energy optimization
requirements are considered. A novel time seriedysis approach is proposed for target forecasting
while distributed awakening approach is applied sensor nodes. Besides, ACO algorithm is
introduced for routing optimization during dataitus

2. Prdiminaries

The energy-efficient organization framework for theget tracking application of WSNs is shown
in Figure 1. The two-dimension sensing field itetll with randomly deployed sensor nodes, which are
connected by the wireless network. It is assumed tte positions of nodes can be obtained by a
global positioning system (GPS). A sink node isated in the centre of the sensing field, acting as
manager of the whole network. It may provide thabgl target tracking results for the remote users
though Internet or satellite [15,16].

When the target moves into the sensing field, threesponding sensor nodes near the trajectory
implement collaborative sensing with specified semperiodT. For the sensor node equipped with
multi-sensors, if the target is located in its segpsange, it acquires the data for target positod
sends it to the sink node. The sensing resultemméa nodes are merged to localize the targethds t
historical target positions become available, thk siode employs them to construct forecasting
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model, from which the target position of the neghsing period can be obtained. For the energy
efficiency purpose, the energy-efficient organiaatiis performed among the sensor nodes in a
distributed manner. In this way, the sensing pracedf sensor nodes can be optimized to save energy
in WSN. This section will give some basic models tloe target tracking problem, including target
model, multi-sensor model and energy model.

Figure 1. Energy-efficient organization framework for targyetcking in WSN.
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2.1. Target model

Considering the vehicle target which moves thoughdensing field, a “current” statistical model
is discussed here to describe the target motioh [l assumed that when a target is maneuvering
with certain acceleration at present, the rangacoéleration which can be taken in the next ingg&ant
limited and always around the “current” accelematidhis assumption is quite reasonable for practica
vehicle motion. Therefore, it is unnecessary toetall of the acceleration values of targets into
account. The process equation of the target aateleris:

a+aa=+2a0iU (1)

wherea is the current acceleratios; is the derivative of1; a is the current mean of maneuvering
acceleration, which is a constant at a samplerniistda is the maneuver time consta@yoy is the

variance of white noisd; is the intensity of correlation. The probabilitystdibution function of
acceleration is modified Raleigh distribution [17]:

_ £ oy2
= aexp[4——(am;’( Za) ] 0<a<amx

R@={ " - 7

where anax and amnax are the positive and negative limitation of targeteleration, respectively: >0
is a constant. Then acceleration estimation is:
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Amax =712 0<a< amax
E(a)={ 3)

Amax F/TUI2 apx<a<0

Where E represents the expected value.
Here, we assume the maximum target accelerai@n= ama = —ama. Also, the maximum target

velocity is defined a¥/max.

2.2. Multi-sensor model

It is assumed that each sensor node equips twa kihdensors, one pyroelectric infra-red (PIR)
sensor and one omni-microphone sensor. Sensor mddes the bearing observations of the target
with the PIR sensors, while the range observatafribe target are produced by the omni-microphone
sensors. For each sensor node, it is assumedh#brd sensors have the same sensing r&géhen

the sensing function of a single sensor node issho Figure 2.

Figure 2. Sensing function of a single sensor node.
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In Figure 2, the coordinates of the sensor nodetamget are denoted i, yi) and (Xarget, Yearget )
respectively. Then the true bearing angle is catedl as:

Yiarget ~ Vi

[ =arctan—"—> (4)
Xtarget =X
and the true range value is calculated as:
=y Oarge = %)% + (Yeart = 1) 5) (

Both sensors have zero-mean and Gaussian errobdigin. The standard deviation of bearing
and range observations & and o. respectively, which is related to the confidenoeerval of

bearing and range observations. The observatimtiiped by the sensor nodare:
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B=0 +wg (6)
L=r'+w (7)
where thew; andw: are the corresponding Gaussian white noise.

2.3. Energy model

Basic sensor node architecture consists of the @éddaesensors, A/D converter, a processor with
memory and the radio frequency (RF) circuits. Far $calability of energy consumption in WSN, all
the components of sensor node are supposed to fieolt®d by an operation system, such as
microOperating SystenuQS) [1]. Thereby, shutting down or turning on anynponent is enabled by
device drivers in the specified application of WSNere, system-level energy consumption
optimization can be performed according to thedangotion information potentially.

During sensor node operation, four main parts afrgy consumption source are considered:
processing, sensing, reception and transmissioa.pfbcessing energy is spent by the processor with
memory. It is assumed that when the processor tigeait has constant power consumption. The
embedded sensors and A/D converter are adoptdteees i any sensing task, and the corresponding
power consumption is a constant. For wireless comcation, the reception and transmission energy
is derived from the RF circuits. As radio signakatation in the air is related with the distan€ée o
propagation, the free space propagation modeligl&flopted, which can be expressed as:

A Y
L, = 8
() ®
whereL, is the path lossD is the propagation distance, aAdis the wavelength of signal.
When the reception portion is turned on, the sensde keeps listening to the wireless channel or

receiving data. Thus, the power consumption of remepportion is assumed to be constant. For the

transmission portion of RF circuits, the transnmamsiamplifier has to achieve an acceptable
magnification. Therefore, when sensor nodeésansmits data to sensor no@lethe power consumed

by transmission portion is calculated as [19]:
Pc=arq + azdi,jzrd 9)

wherery denotes the data rate, denotes the electronics energy expended in tratisgnone bit of
data, a, >0 is a constant related to the transmission ampliéeergy consumptiond; ; is the
Euclidean distance between the two sensor nodetheAgperation system can manage the components
of sensor node, the energy consumption is adjestadaording to different sensing situations.

With the stated basic models, collaborative sensing adaptive estimation approaches will be
exploited for the target tracking problem.
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3. Collaborative Sensing and Adaptive Estimation in Target Tracking Problem

As mentioned in Section 2.2, each sensor node Bagssing range for target detection. Due to the
redundancy of sensor node deployment in WSNs aifget can be detected by a group of sensor nodes
simultaneously. Thus, the observations of theseoserles are merged for higher detection accuracy.
The data from multiple sensor nodes, including Inggand range observations, is utilized to localize
the target. In this way, collaborative sensingdsiaved by maximum likelihood estimation. Moreover,
the sink node constructs the forecasting model thighhistorical target trajectory. Time series asialy
is employed for adaptive estimation of target positHere, a differencing operation and the EMD
approach represent the time series of target padily stationary components, which are forecasyed b
ARMA model respectively.

3.1. Target localization with multi-sensor fusion

It is assumed that the coordinates of targef{Xisq, Yirge) at One sensing instant of WSN.

Meanwhile, the target can be detected Ny sensor nodes, of which the coordinates are
{(%, y)]i=12,--,Ns}. According to Section 2.2, these sensor node camluge the bearing
observationsf and range observations, wherei=1,2;-- ,Ns. For sensor node, the matrix

representation of observation equation can be e@ifirom Equation (6) and (7):
M =Hi(X)+W, W ~N(O,W) J10

where X =[Xag, Yirge]' iS the true target positior;; =[3,r]" is the observation vector, the
observation matrix is denoted as:

tan™ (Viarger = Vi ) /(arger — %
H, = Vearget = Vi ) /(Kearger ) (11)
 (Karger = %)% + (Viarger = 1)
W is the observation error vectdd, means the normal distribution function, and
o; O
Y= 12
{ 0 UE} (12

With the observation of the sensor nadehe likelihood function of the true target pasitiX is
calculated as:

1

= b et —H 00T W, —H,
p(ri|Xi)_\/§T|]Tﬂ0} expf 2[r' Hi OO W = Hi(X)1} (13)
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A suitable measure for the information containedtha observations can be derived from the
Fisher information matrix (FIM) [20]. The FIM for ¢hobservations of sensor nodeés calculated as:

3= E{[%In o(r | X)][%In o(F1 1 X)T'} (14)

where E represents the expected value.
According to Equation (13), we have:

U I B v 3
Ji = o2 (55 OIS R AT+

0 T
o2 ax h.£ X1 &h (%] (15)

whereh, =tan™ (Vrarge = ¥ )% arr =% )y N2 =[(Xarge -%)2+(W argt yi)z]llz- Then,
(16)

1 [ oi+oyied MY Pof - o]
(1) 00’ | IAYI(R)2 0%~ 07 YA 04 + X0

where AX = Xage =% , AY: = Yirge —Yi @and ri' is the Euclidean distance between the true target

position and sensor nodeas presented in Equation (5).
Ji " is the estimation error covariance matrix, whieffimes the Cramer-Rao lower bound (CRLB).

To localize the target with higher accuracy, we wtioextract the information from the all the
observationgl'i| i =1,2,---,Ns}. The FIM for all the observations is calculated as

According to the estimation error covariance matfix, the root mean square error (RMSE)is
taken as the target location error, which is caltad as:

L. =+/traceg ™) (18)

wheretrace is a function computing the sum of matrix diagosleiments.
In this way, the target can be localized by maximiikelihood estimation after gathering the
observations from the sensor nodes. The locatioaracy is reflected by .

3.2. Time series analysis for target position forecasting

It is assumed that the sink node keeps points of the historical target trajectory
{Y| k=1,2,---,N;}. ARMA model is a widely-used model for the foretoas of future values. ARMA
model is adopted here to forecast the target posii... due to its outstanding performance in model
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fitting and lightweight computational cost. Hereeadirection of the target motidryk| k =1,2,--- ,N;}

is taken for discussion.

The ARMA model contains two terms, the autoregrkes§éhR) term and the moving average (MA)
term [21]. In the AR process, the current valugheftime seriesy is expressed linearly in terms of its

previous value$ Yk, Yk-2 -+, Yk-p} @and a random noisa . This model is defined as a AR process of
order p, AR(p), which can be presented as:

Yk = @Y1t @Ykt + B Yi-p +a (19)
where{@|i=1,2,---,p} are the coefficients of AR model. In the MA pragethe current value of the
time seriesyi is expressed linearly in terms of current and ey values of a white noise series

{a, &, -+, &-q} . This noise series is constructed from the fotaogerrors. This model is defined as
a MA process of ordeq, MA(Q) , which can be presented as:

Vi = & — By — By~ — Byaq (20)

where{@8|i =1,2,---,q} are the coefficients of MA model.
The backshift operatoB is introduced here, which is defined as:

Yk = Byk, ak-1 = Bax (21)
and consequently
Yi-i = B Yy - = Biak (22)

The backshift operator is not a number, but rath&ymbol that denotes shifting of the time subscrip
Then, the AR process can be written as:

D(B) yk = & (23)
while the MA process can be written as:
Y = O(B)ax (24)
where
®(B)=1-@B-@B*----—@B" (25)
o(B)=1-6B-6,B°-----4,B" 126

In the autoregressive moving average process,ufrert value of the time serigg is expressed
linearly in terms of its values at previous perig@s.s, Yc-» -+, Yk-p} and in terms of current and
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previous values of a white noi§ey, a4, :--, &-q} . The order of the ARMA process is selected by both
the oldest previous value of the series and thesbiehite noise value at which is regressed on. For
this ARMA of order p andq, ARMA( p, q), it can be written as:

®(B)yi =O(B)a (27)

There is an assumption for ARMA process that theetseries for analysis should be stationary,
that is, the mean of the time series and the canee among its observations are not time-varied.
According to the target model, the process is natiemary, so the series should be transformed to a
stationary process be the model construction. aisbe often achieved by a differentiation process.
The first-order differencing of the original timerges is defined as:

Yk = Yk = Yea = Yk — By = (1-B)yk (28)
For the high-order differentiation, we have:
Yk =(1-B)" vk (29)

After the d -order differentiation ofyy, the autoregressive integrated moving average N¥R|
ARIMA( p d, g) , can be constructed as:

®(B)yk =0O(B)a (30)

For instance, time series is simulated for onectiva of target trajectory. As shown in Figure 3,
the time series is generated according to Sectibrwhere the sensing periddis assumed to be 0.5
s. In Figure 3(a), there are 200 historical poiitghe target trajectory. The lost information bkt
original time series will be larger when the ordef differencing increases. Therefore, the
differentiation orderd is set as 2. Then the time series after diffeatioth is shown in Figure 3(b). It
can be seen that this series is basically statyonar

However, further processing of the time serieseisggmed in order to obtain more stationary time
series for forecasting. Here, EMD is introducedlé@zompose the time series into a set of stationary
time series, called intrinsic mode functions (IMRdpre importantly, the IMFs can reflect the inhgre
variation mode in the time series, including statitacomponents and a trend component.

EMD is a general nonlinear, non-stationary signalcpssing method, first proposed by Huang
[22]. The major advantage of EMD is that the basitions are derived directly from the signal litse
Hence, the analysis procedure is adaptive.

For each IMF, there are two definitive requiremerily the numbers of its extrema and zero-
crossings are equal or differ at most by one; {2 symmetric with respect to local zero mean. The
decomposition process is performed as follow:

a) ldentify all the maxima and minima of .

b) Generate its upper and lower envelogfsand yi* with cubic spline interpolation.
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c) Calculate the point-by-point mean from upper weer envelopes as:

up low
b, =20 (31)

d) Extract the detail as:
a = yk —h (32)

e) Check the properties @f. If it meets the definitive requirements, an IMi~derived and the
residual is:

& = YS —& (33)

Otherwise, replacgy with &.
f) Repeat Steps a) to e) until the residual satdine stopping criterion.
At the end of this process, the time series caexipeessed as:

Y =) cata™ (34)

wherem is the number of IMFs ang™ denotes the final residue serigs.|i =1,2,---,m} denotes

the set of IMFs, which are stationary and nearlg@gonal to each other.

Here, the number of IMFm is specified as the stopping criterion. In WSNe #MD process is
started on the sink node. After the first IMF idraexted, the residue series is transferred to acsen
node with available computation resource, where swesor node is selected randomly. Also, this
sensor node forwards the residue series the nesersbr node with available computation resource
when the next IMF is obtained. Repeat this procegs the decomposition is accomplished. In this
way, the IMF and the final residue series are assigamong the sink node and a group of sensor
nodes.

For the time series in Figure 3(b), the EMD prodsssnplemented. To reduce computation cost
and the decomposition error, the number of IMFseisas 4. The decomposition results are shown in
Figure 4, where the 4 IMFs and one final residugeseis presented. Each IMF reflects different
variation mode of the time series, so correspondioglels are constructed separately. To determine
the order of ARMA model, the patterns of autocatieh function (ACF) and partial autocorrelation
function (PACF) are analyzed.
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Figure 3. Simulated time series of target trajectory: (a)defdifferentiation; (b) After
differentiation.
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Figure 4. Decomposition results for the time series aftefledéntiation.
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For time serie§z} , ACF is defined as:
ACF() = E[zz- ] (35)
where iISE means the expected value dndenotes the number of lags. PACF can be obtaiged b

Yule-Walker equation [23]. Table 1 represents tlatguns in the theoretical ACF and PACF of
stationary time series, which is utilized to deter@the order of model.
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Table 1. Patterns in the theoretical ACF and PACF of steiyg time series.

M odel AR(p) MA(Q) ARMA(p,q)

Exponential or sinusoidalSpikes cut off to zero afterExponential or sinusoidal
decay to zero lagq decay to zero after lagy

ACF

Spikes cut off to zero afterExponential or sinusoidalExponential or sinusoidal

PACF
lagp decay to zero decay to zero after lgy

Figure5. Analysis of ACF and PACF patterns: (a) ACF; (b) FAC
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Taking the IMF1 in Figure 4 for example, its ACFRJaRACF are presented in Figure 5. According
to Table 1, we choose the mod&R(6). In the same way, models are chosen for all thieslind the
final residue series. It is found that each compboran be described by an AR model.

As mentioned earlier, the sink node and a groupeokor nodes maintain the components. Then,
the AR(p) models can be constructed in a distributed manner.

For any time serie$z| k=1,2,---,N}, the method of least square estimation is adopbed
determine the coefficients &R(p) [24]. A linear equation can be acquired as follow:
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Z =Z.B+A (36)
whereZy =[zps1  Zp+2 -+ zu]', and
Zy  Zpa 2}
z= " T @)
zN._l ZN._z ' zN._p
BesidesB=[@ @ --- @] isthe coefficient vectorA=[a, a,> -~ ay]' is the noise vector.

Here,{@|i=1,2,---,p} are the coefficients of AR model afd|i=p+1, p+2,--,N} are previous

values of a white noise series.
Then the least square estimation of coefficients is

B=(Z12,)"Z}Z, (38)

With the constructedAR(p) model, forecasting can be performed on the sindkenand sensor
nodes. The estimation value is calculated as:

Elzval =@z + @zy-1+ -+ G Zn-pe1 (39)

where iSE means the expected value. The forecasted resultiseosensor nodes are forwarded back
along the former path to the sink node, where tit@ result is obtained by calculating the sumIbf a
the component results. Because the data amountiisd and the sensor nodes are close to each, other
this part of energy consumption for communicat®ignored.

In this way, both directions of the target positaan be forecasted adaptively. Since the forecasted
target position for the next sensing period is lakdeé, related energy-efficient organization wi# b
implemented in WSN.

4. Ener gy-efficient or ganization method

With the forecasted target position, sensor nodesbe set to sleep when there is no sensing task.
Due to the redundancy of sensor node deploymeat\WISN performs probability awakening in a
distributed manner to enhance the scalability efdhergy consumption. Moreover, the routing scheme
of data reporting is optimized by ACO for energffaééncy.

4.1. Distributed sensor node awakening

According to Section 2.3, sensor nodes can shuhdtsacomponents if necessary. Thereby, sensor
node awakening is considered with the forecastegbtaosition. To prolong the lifetime of WSN, we
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exploit a sensor node awakening approach, wherentite transition of sensor node is scheduled and
probability awakening is considered.

First, five operation modes of sensor node is @effias follow:

(1) Seep. It has the lowest power consumption as all themanents are inactive. Only the timer-
driven awakening is supported, that is, the praressmponent can be awakened by its own timer.

(2) Idle. Only the processor component is active in thislendll the other components can be
controlled by the operation system.

(3) Sense. The processor and sensor components are actitlisiImode, sensor nodes can acquire
the target observations.

(4) Rx. The processor is working and the reception poioRF circuits is turned on. Sensor nodes
can receive request or data.

(5) Rx & tx. The processor is active while both the receptiod ansmission portions of RF
circuits are turned on. Sensor nodes can recedéransmit information.

Then, sensor node awakening strategy can be eagblaitcording to the defined operation modes.
Figure 6 illustrates the operation mode transitiondistributed sensor node awakening approach
according to the forecasted target position. Eadls@ node controls its operation modes separately.

For a sensor node idle mode, if there is no target in its sensing rarigeijll get into rx mode.
Thus, the broadcasting information of the targedipmn can be obtained from the sink node. Noté tha
this target position is the target position estioratforecasted in the last sensing period. That is
because the target localization is not accomplisie¢avhile the sensor node should go to sleep @s so
as possible. Then sensor node goessep mode with the estimated sleep period number efsénsor
node inidle mode detects any target, it gets istose mode for data acquisition. After that, the data is
transmitted for data fusion in thi& & tx mode. Then, the forecasted target position is isedjuAlso,
the sensor node which finishes the sensing task @sbeep mode adopting the estimated sleep period
number.

Figure 6. Operation mode transition in distributed sensorenasvakening approach

according to the forecasted target position.
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Here, the estimation approach of sleep period numlile be discussed. For each sensor nodes,
define the shortest distance to the WSN boundadkas Then, the sleep time can be estimated as:

T dmin < VmaxT + Rs
tsep = ‘dtar\g,a "R AL dyin > Voo R and T, < expEjat) (40)
Girge R Omin > Vmax + Rs @and r, = expE)At)
Vmax

whereT denotes the sensing peridd, is the sensing range of sensor nades a random number in
the interval(0,1], vmax is the maximum target velocity, add is the prolonged sleep time which is a

random numbery is a parameter for adjusting the probability afegl time prolonging. When any
target gets into the sensing field, the Euclideiatadce between the forecasted target positiorttzand
sensor node is denoted Oyge . If Qiarget’ < dmin, the€N Qiarger = Crarget’ ; Otherwise,diarger = Armin -

Thereby, WSN maintain standby for any new targétirge into it. When there is a target in the
sensing field, the sensor nodes which are far dveay the target will go to sleep. The sleeping sens
nodes are awakened on time when there is poteetising task.

In addition, the redundancy of sensor node deploynseutilized to prolong the sleep time. For the

sensor nodes, the probability of prolonging theegléme obeys exponential distribution, which is
determined by the probability awakening parameteifhe sleep period number can be calculate as

fl(tyeen/ T) , wherefl is the rounding operation.

The sensor node awakening situation around thettasghat illustrated in Figure 7. The sensor
nodes which are farther from the target ought t&emap in a later sensing period. The potential task
range in thek -th period is the circle with radiui +kvna While the potential task range in the
(k +1)-th period is the circle with radiuBs + (k +LvinaxI . Here,k is the sensing period index from
the current sensing period. Instead of awakenihghal sensor nodes between the two circles, the
probability awakening approach selects a set cs@emode randomly.

With the estimated sleep period number, sensor radego tosleep mode to save the operation
energy. Meanwhile, the awakening probability fortgmial task is adjustable to reduce redundancy
observations.

Figure7. Sensor node awakening when there is a target in W&Ning field.
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4.2. Dynamic routing with ant colony optimization

When there is a target in the sensing field, aga@iisensor nodes goes into #ease mode at each
sensing instant. The observations produced by thessor nodes should be transferred to the sink
node for collaborative sensing. As these sensoesa@ie close to each other, data transmission is
enabled in one pair of sensor nodes at a time ¢adasollisions in the communication. Therefore, a
routing problem is considered as follows:

(1) The index of sensor nodes with observatiomeisoted byl, 2,---,n,};
(2) The cost measure of edge between sensorinadd j is defined according to Equation (9):

P :O'1+O'2di1j2, i Z J (41)

(3) A optimal path{A(Q), A(2),---,A(n,)} should be found, wherd(i){L,2,---,n,} . At the
beginning, sensor nod&1) transmits its observations to sensor ndd2). Then the data is forwarded
and integrated along the path. The sensor nt{dg) can localize the target by data fusion in the end.
If i #),thenA(i)# A(j). The minimization objective function is:

na—1

F= Z PAi).AG+1) (42)

In this way, the observations of sensor nodes eamérged step by step on the path and the last
sensor node will obtain the final target locali@atresult. This result is then reported to the sioke.
As it only includes the coordinates of the tar¢fe®, communication cost is ignored.

It is assumed that the sink nhode maintains the emiag information of sensor nodes. Therefore,
the optimization of routing scheme can be perforragdhe sink node. ACO is adopted to find the
optimal path, where a society of artificial antamedeled [25]. In addition to the cost measureheac
edge has also a desirability measnorg called pheromone, which is updated at run timettificial
ants. Each ant generates a complete tour by chpptsnsensor nodes according to a probabilistie sta
transition rule. Ants prefer to move to sensor soddich are connected by short edges with a high
amount of pheromone. Once all the ants have coetl#ieir tours a global pheromone updating rule
is applied. A fraction of the pheromone evaporaiesall the edges, and then each ant deposits an
amount of pheromone on edges which belong to us ito proportion to how short its tour was. The
process is then iterated. The state transition ugkxl by ant system is called a random-proportional
rule. It gives the probability with which ait in sensor nodé chooses to move to the sensor ngde

as follow [26]:

6i(d)° LAk
~- > J0Q
iy = ") (43)

0 joQ
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wherer, ; is the pheromonej ; is the inverse of the cost measyrg, QX is the set of sensor nodes
that remain to be visited by ant positioned on semodei, andg (g >0) is a parameter which
determines the relative importance of pheromonsugedistance. In Equation (43), the pheromone on
edge(i, j) is multiplied by the corresponding heuristic valdig. In this way, the choice of edges
which have a greater amount of pheromone is pexfeifhe global updating rule is implemented as
follows. Once all ants have built their tours, pivaone is updated on all edges according to

M
Tij :(1—0})1],] +ZATik,j (44)

k=1

where

1 . .
— if antk hast ‘
ATk =1 TF if an as toured edge | (45)

0 otherwise

0<a, <1is a pheromone decay parametér,is the length of the tour performed by &ntandm, is

the number of ants. Pheromone updating is interideallocate a greater amount of pheromone to
shorter tours. New pheromone is deposited by amtb® visited edges. Meanwhile, the pheromone is
evaporated. The pheromone updating formula simulétés procedure. Finally, the edge which
receives the greatest amount of pheromone is redarsl the optimal path.

5. Experimental Results

In this section, the efficiency of collaborativenseng, adaptive estimation and energy-efficient
organization will be analyzed with simulation expents.

5.1. Experimentation platform

It is assumed that the sensing field of WSN is AD® 400 m, in which 300 wireless sensor nodes
are deployed randomly. The sensing perfodgs set as 0.5 s. Deployment of WSN and the target
trajectory is given in Figure 8. The acceleratidntarget is modeled according to Section 2.1. The
trajectory involves different moving situations, #os scenario can represent the generalization of
tracking problem. For the target trajectory, thare 150 points, the maximum accelerat@p, is set
as8 m/s and the maximum velocitym., is set as30 m/s.
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Figure 8. Deployment of WSN and the target trajectory.
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According to Section 2.2, each sensor node hassémsing rangds = 40 m. The standard
deviation of bearing observationsas =2 while that of range observationsas =1 m. In Section
2.3, the power consumption of sensor node compengset as typical value. The power consumption
of the processor i25 mW; the power consumption of the embedded sensorsAdndconverter
15 mW; the power consumption of reception portior2& mW. Besides, the parameters in Equation
(9) are set asr, =500 nJ/bit, a, =5 nJ/(bitdnT ) andry =1 Mbit/s. The basic power consumption for
inactive processor componentdsmW. According to Section 4.1, the power consumptibthe five
modes is presented in Table 2. As mentioned ini®@e®.3, R« is the energy consumed by

transmission portion.

Table 2. Power consumption of the five operation modegHersensor node

Mode Power consumption (mW)

Seep 5
Idle 25
Sense 40
RX 45
RX & tx 45+,

During each sensing period, it is assumed that tihee for staying in each mode is
ot =20 ms.Then, the power consumption of WSN in the eaclsisgmeriod can be calculated as:

300

Rusn (k) = %Z P(i, k) (46)
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where T is the sensing period ankl is the sensing period indeX(i,k) denotes the power

consumption of sensor noddn the k -th sensing period. Moreover, the total energy aomsion of
WSN aftern: sensing periods can be calculated as:

Eosy =T Rusu (K) (47)

Among the total energy consumption, the energy woresl by transmission portion is related with the
propagation distance of radio signal. For WSN, th&t of energy consumption is defined as
transmission cost, while the other part of ene@ysamption is defined as operation cost. Simulation
of communication network will be performed with @prModeler, which is a simulation platform for
communication network and distribution systemslagssumed that the data amount of observations is
1 KB for each sensor node. Three kinds of models asptad in simulations: mobile target, wireless
sensor node and sink node.

5.2. Target tracking experiments

The target tracking procedure with energy-efficienganization is simulated. As presented in
Equation (40), the probability of prolonging theegb time is determined by the probability awakening
parametery. Here, it is assumed that approaches positive infinity so that sleep timelqging is
disabled in the distributed sensor node awakertihgep time prolonging by probability awakening
will be studied separately later. Thus, all theseemodes that have potential sensing task willengk
on time.

Utilizing the target trajectory in Figure 8, thenser nodes with the target in the sensing range
acquire the bearing and range observations in sanhking period. The sink node finds the optimal
routing scheme by ACO. Thereby, the observatiorsfarwarded and fused hop by hop. The last
sensor node on the path reports the final targeflilation result to the sink node. With the histak
target positions, the sink node performs time seaiealysis. EMD and ARIMA model is adopted to
forecast the target position in the next sensistamt. Hence, sensor node can estimate the sleieg pe
number in a distributed manner based on the foreddarget position during the next sensing period.
This process is repeated in the target trackingguore.

First, the efficiency of collaborative sensing isalissed. For sensing performance comparison, we
consider the situation that only the closest sensde for the target acquires the observationghifn
situation, the bearing and range observationsrgflsisensor node is available and the relatedttarge
location error can be derived from Equation (16guFe 9 compares the target location error with
collaborative sensing and single sensor node. it lba seen that the target location error of
collaborative is much lower than that of singlessemode. Thus, the sensing performance is enhanced
by the collaborative sensing, which provides maiable results for the target position estimation
stage. Then, the target position forecasting perémce of time series analysis is studied. In each
sensing period, the known target trajectory inxrend y directions forms two set of time seriess It
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assumed that target localization in the beginrirggcan be guaranteed by boundary sensor node. As
stated in Section 3.2, differentiation and EMD ased to process the original time series.

After experimental analysis, the differentiatiom@rd is set as 2 while the IMF numbar is set
as 4. The ordep of AR model for IMF1, IMF2, IMF3, IMF4 and the fahresidue series is set as 5, 4,
3, 4 and 3 respectively. This forecasting taskistributed among the sink node and 4 sensor nodes.
Also, another situation is considered for comparjso which the target position is forecasted witho
EMD. In other words, the time series after diffdration is forecasted by AR model in this situation
The order of AR model is set as 6. The way of selgthese parameters has been described in Section
3.2.

Figure 9. Comparison of target localization error with cobtiasitive sensing and single
sensor node.
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For the time series after differentiation, the &@®ting error with and without EMD is compared in
Figure 10. In x and y direction, the forecastingbers smaller utilizing the times series analysith
EMD. That is because the components obtained by EvEDmore stationary and can reflect the
inherent modes of target motion better. Then, Hrget position forecasted results are presented in
Figure 11. Here, the error from target localizatisnnvolved in the total target position forecagti
error. It can be seen that the time series analysis EMD approximate the true trajectory of target
better. The accuracy of target position forecasting affect the following organization so thatig
related with the sensing performance and energyiaity.

With the distributed target position forecastinge tenergy efficiency of the energy-efficient
organization can be investigated. The sensor nestamate the sleep period number and go to sleep in
a distributed manner according to Section 4.1. dherthe operation cost of WSN is optimized. In
each sensing period, all the sensor nodes whicldegact the target wake up. In order to minimize th
transmission cost, ACO algorithm is utilized foutiog.
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Figure 10. Comparison of forecasting error with and without BENbr time series after
differentiation: (a) X direction; (b) Y direction.

Figure 11. Target position forecasted results utilizing timeriess analysis with

without EMD.
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According to Equation (46), the power consumptidnV@SN is calculated. As mentioned in
Section 5.1, the operation and transmission castsliacussed. Figure 12(a) illustrates the totalgro
consumption curves of WSN, including operation a@rmhsmission cost. Meanwhile, a general
organization approach is considered for comparisorthe general organization procedure, all the
sensor nodes wake up every sensing period. Acapridinthe distance from the sink node, all the
detecting sensor nodes forward their observatioes By step. It starts on farthest sensor node and
ends on the closest sensor node. Accordingly, di& power consumption curves of WSN are
presented in Figure 12(b). The operation and tréssom costs are both lower in the target tracking
with energy-efficient organization.

Figure 12. Power consumption curves of WSN including operatio transmission
cost: (a) Energy-efficient organization; (b) Geherganization.
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With the power consumption curves presented inréidi2, Table 3 gives the energy consumption
of the organization approaches utilizing Equatién) (
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Table 3. Energy consumption comparison of general andggredfficient organization.

Energy consumption (J) Reduction
Cost type . .. L
General organization Energy-efficient organization (%)
Operation 167.4 148. 4 11.4
Transmission 132.4 84.1 36.5
Total 299.8 232.5 22.4

In Table 3, the relative reduction of energy congtiom is calculated as:

1 _ g2
AC = Ews“l—ENs“me% (48)

where Exsy and Exsy denote the energy consumption of WSN with genergénization and energy-

efficient organization, respectively. Compared wittie general organization approach, 11.4%

operation cost and 54.6% transmission cost is shyéle energy-efficient organization approach.
Moreover, the efficiency of the probability sleemlpnging is discussed in the distributed sensor

node awakening. According to Equation (40), thebpholity awakening parametgr can be specified

to prolong the sleep time of sensor nodes. In otfweds, part of the sensor nodes which have paienti

sensing task in the corresponding sensing peritickeep sleeping for the extension time. The sensor
nodes have an extension time with probability exp(-)At). Here,At is a random number in the

interval [0 s,5 s. A group of sensor nodes will be awakened foretadgtection during each sensing
period. Adjusting the probability awakening paraenet , the average number of sensor nodes
available for target detection in one sensing gkisgresented in Figure 13. With smaller paramgter
the average number of detecting sensor nodes tesss Wheny exceeds 0.64, the average sensor
node number becomes a constant. It is the maximumbar of detecting sensor nodes that can be
provided by WSN.

Figure 13. Average number of sensor nodes available for tatgection in one sensing
period with different probability awakening paraerey .

8r

Average sensor node number
B

1 2 4 8 16 32 64 128 o2
Probability awakening parameter ¢



Sensors 2007, 7 1790

Considering the collaborative sensing accuracyc#ses in which the average number of detecting

sensor node exceeds 5 is analyzed. According tatiems (46) and (47), the total energy consumed
during target tracking can be calculated adoptiffgrént probability awakening parametgr Table 4

gives the total energy consumption of WSN wjthset as 0.08, 0.16, 0.32 and 0.64. The power
consumption is lower with smallgr. Thus, additional energy saving of WSN can be iobth by
choosing a propey.

Table 4. Total energy consumption of WSN with different Ipability awakening
parametery .

y 0.08 0.16 0.32 0.64
Energy consumption (J) 189.1 201.6 217.1 229.7

The experiments studied the energy efficiency odettracking. Collaborative sensing enhances
the target localization accuracy. Time series amslgased on EMD approximates the target trajectory
well. Besides, the energy-efficient organizatiohiaces energy saving. Moreover, the probabilistic i
sensor node awakening leads to extra energy saving.

6. Conclusions

Considering the energy constraints of target tragkin WSN, this paper proposes an energy-
efficient organization method based on collaboe®ensing and adaptive target estimation. Sensor
nodes which are equipped with bearing and rangsosgnutilize the maximum likelihood estimation
for data fusion. Hence, targets can be localizeddiaborative sensing while the localization enor
evaluated utilizing FIM. A sink node maintains thistorical target positions, with which the target
position in the next sensing instant is estimaldte time series of target trajectory is processgd b
differentiation and EMD. Thereby, the inherent aian modes can be obtained, which are forecasted
by the ARMA models. The future target position eided from the forecasted results and is adopted
to organize the sensor nodes for sensing. Heregribegy-efficient organization method includes the
distributed sensor node awakening and adaptivengpgtheme. Sensor nodes can go to sleep when
there is no target in its sensing range and it lmarawakened once there is potential sensing task.
Besides, probabilistic awakening is introduced tolgng the sleep time of sensor nodes. ACO
algorithm is employed to optimize the path of dasémsmission. Experiments of target tracking verify
that target localization accuracy is enhanced bhaloorative sensing of the sensor nodes, while the
forecasting performance is improved by combiningMRmodel with EMD. More importantly, the
energy efficiency of WSN is guaranteed by the disted sensor awakening and dynamic routing. In
Section 2, the main contribution of this papethis €nergy-efficient organization framework for &trg
tracking as well as the forecasting and awakenppyaaches. For the future work, we may extend this
method to other applications of WSN, such as tarlgssification and environment surveillance. Also,
the mobility of wireless sensor node could by inigede for further research.
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