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Abstract: This study aims at comparing the capability ofet#nt sensors to detect land
cover materials within an historical urban cenfEne main objective is to evaluate the
added value of hyperspectral sensors in mappirapplex urban context. In this study we
used: (a) the ALI and Hyperion satellite data, tfig LANDSAT ETM+ satellite data, (c)
MIVIS airborne data and (d) the high spatial resolulKONOS imagery as reference. The
Venice city center shows a complex urban land cawer therefore was chosen for testing
the spectral and spatial characteristics of diffesensors in mapping the urban tissue. For
this purpose, an object-oriented approach and rdiffecommon classification methods
were used. Moreover, spectra of the main anthrapogairfaces (i.e. roofing and paving
materials) were collected during the field campaigonducted on the study area. They
were exploited for applying band-depth and sub{paxelyses to subsets of Hyperion and
MIVIS hyperspectral imagery. The results show thatellite data with a 30m spatial
resolution (ALI, LANDSAT ETM+ and HYPERION) are ablto identify only the main
urban land cover materials.

Keywords. urban environmental monitoring; satellite hypersg@cremote sensing;
object-oriented classification; band-depth anajysear spectral unmixing.
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1. Introduction

Urban areas are currently the most rapidly chantyipgs of land covers, even though they represent
only a low percentage of the global land surfacd.[3heir monitoring is one of the most relevant
issues concerning the evaluation of the human impadhe environment. For this purpose, remote
sensing imagery can provide a timely and synopigevvof urban land covers, as well as a tool to
monitor changes in urbanizing landscapes. The mostmon approach for characterizing urban
environments using remote sensing imagery areah@-¢over and land-use classifications [6,13,36].
However, the remote sensing characterization camurnvironments can be complicated for several
reasons:ij urban land-cover classes are not well spectdadinct, resulting in considerable confusion
between classes [36,38-40]) the physical structure of land-use classes véiroes site to site due to
the different roofing and paving materials and diaify typology [8,21,32,34],ii() urban areas are
heterogeneous and most pixels, at the satellitdaspasolution of 30 m/pixel, appear mixed with
varying proportions of different components anavaterials [33].

The potentialities offered by the new generationhgperspectral satellite imagery for urban
applications is a challenging aspect that this paptends to deal with, as it is still not fully
investigated [30,40].

A detailed knowledge of the spectral charactegstit urban surfaces is required for a successful
identification of the surface materials from praszxs hyperspectral imagery. To this aim, spectrascop
studies, laboratory and field investigations hagerbconducted by many authors [2,15-18]. Spectral
library analyses and studies [2,19] revealed that $pectral diversification of the urban surface
materials is an important prerequisite for theentification. Several studies have illustrated lbasic
potential of airborne hyperspectral data and thev mhallenges of such data for the spectral
differentiation of urban surface materials [2,15189. For example, Bokoye and Dionn [5] used
satellite Hyperion data on the Montreal downtownesging a general potential of spaceborne
hyperspectral for urban space characterization.

In order to highlight the present interest on sis@ehyperspectral potential for urban applicatioihs
is noteworthy to recall the initiatives carried mnthe recent years by the National Space Agencies
(e.g., NASA, ESA, ASI and DLR) for the deploymerit an operative hyperspectral spaceborne
mission [12,31]. Within this framework, this stuthkes effort from a proposal submitted to the EO-1
Science Team to evaluate the Hyperion land coveppmg performances in different disciplines
including the urban mapping [31,45,11]. In suchtegh) complementing scenes of LANDSAT-ETM+
(http://landsat.gsfc.nasa.gov/) [47] and IKONOStdiitgeo.arc.nasa.gov/) satellite data and of the
airborne Multispectral Infrared Visible Imaging $pemeter (MIVIS) data as well [1,4] were
collected on the Venice (ltaly) historical centesttsite.

More specific objectives for this study include tbhemparison of the ground-truth IKONOS
imagery with {) the hyperspectral Hyperion datai) (the multispectral satellite data (ALI and
LANDSAT-ETM+), and {ii) the high spatial resolution hyperspectral airkeodata (MIVIS). To this
aim, an object-oriented approach, a clustering segation procedure and a common supervised
classification method were used to classify thegyoeessed datasets. Furthermore, the main spectral
absorption features of the urban land cover oaegrin the study area were analyzed and their
detection limits were assessed. Next, a Band-Dap#tysis was performed on Hyperion and MIVIS
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hyperspectral data taking into account the matrisdtection limit results. Finally, sensors’ ei@iocy
in detecting fractional urban land cover abundaratethe sub-pixel level was assessed through the
application of unmixing algorithms.

2. Study area

Venice, the worldwide known city and relevant ditixentre, lies inside a large lagoon in north-
eastern ltaly. The functional area of Venice is sty populated, with residential and industrial
districts, grassy parks, paved squares and, osepaanals. The historical town is composed of thou
hundred small islands, where buildings arise onsecko the other, separated only by narrow streets
(called “calli”), while the connection between tis&ands is guaranteed by several bridges.

The Venice historical center was chosen as testff@itits dense urban land covers that represent a
suitable area on which verifying the potentialifydd@ferent sensors (i.e., different spectral apdtel
resolution images) in mapping urban land covergixal and where feasible at sub-pixel scale. The
study area (Figure 1) is characterized by a mixtdingrban land cover types and surface materials.

Figure 1. Location of the study area.
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3. Data
3.1. Remote sensing data

For this study, both satellite and airborne rems@nsing data were processed. The main
characteristics of the sensors are summarizedbieTa

The Earth Observing-1 (EO-1) mission is carryinge¢hadvanced technology imaging instruments.
They are the Advanced Land Imager (ALI), the Hyperihyperspectral imager, and the LAC
Atmospheric Corrector.

The ALI is designed to produce images directly camaple to those of the Enhanced Thematic
Mapper Plus (ETM+) of Landsat 7. It employs novablevangle optics and a highly integrated
multispectral and panchromatic spectrometer. Opegrat a push-broom fashion at an orbit of 705 km,
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the ALI provides Landsat type panchromatic and ispdictral bands. With a partially populated focal
plane, the ALI wide-angle optics produces a grosweth image width of 37 km.

Table 1. Characteristics of the sensors used for this study

Spatial Spectral coverage System of Radiometric
Resolution (m) Bands (um) Acquisition calibration
(a) ALI 10-30 10 0.4-2.4 Push-broom L1R
(b) HYPERION 30 220 0.4-2.5 Push-broom L1IR
(c) ETM+ 30 8 0.4-12.5 Push-broom L1R
(d) IKONOS 1 4 0.4-0.7 Push-broom
(e) MIVIS 8 (at 4000m) 102 0.4-12.7 Whisk-broom CNR-LARA
VIS 20 0.4-0.83
VNIR 8 1.15-1.55
SWIR 64 2-2.5
TIR 10 8.2-12.7

The focus of the Hyperion instrument is to providgh quality calibrated data that can support
evaluation of hyperspectral technology for Eartsesking missions. The Hyperion is a “push broom”
instrument. Each image frame taken in this pusle#roconfiguration captures the spectrum of a line
30 m long by 7.5 km wide (perpendicular to the lftgemotion). It has a single telescope and two
spectrometers, one VNIR spectrometer and one SWWéRtometer. The telescope images the Earth
onto a slit that defines the instantaneous fielgieiv which is 0.624° wide (i.e., 7.5 km swath widt
from a 705 km altitude) by 42.55 m radians (30 m®ten the satellite velocity direction. Therefore,
the Hyperion provides Earth imagery at 30 m spag&ablution and with a 7.5 km swath width in 220
contiguous spectral bands at 10 nm spectral resoluBoth ALl and Hyperion data were provided at
Level 1R, i.e. radiometrically corrected with noogeetric correction applied. The image data are
provided in 16-bit radiance values.

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor carried onboard the Landsat 7
satellite and has acquired images of the Earthyneantinuously since July 1999, with a 16-day #pe
cycle. Landsat ETM+ image data consist of eightspebands with a spatial resolution of 30 meters
for bands 1 to 5 and band 7. Resolution for barfthé&mal infrared) is 60 meters and resolution for
band 8 (panchromatic) is 15 meters. The data wgpplied at the Level 1R (L1R) data product that
provides radiometrically corrected data where catibn is applied. Image data are not geometrically
corrected or geographically referenced and areigeeovin 16-bit (radiance) values.

The IKONOS satellite acquires high-resolution pbsbem imagery. IKONOS main characteristics
are as follows: a sun synchronous orbit of 98.Irel=gan altitude of 681 Km; a resolution at Nadir o
0.82 m (panchromatic) and 3.2 m (multispectral)graund resolution at 26° off-nadir of 1.0 m
(panchromatic) and 4.0 m (multispectral); the imag@ath is 11.3 km at nadir and 13.8 Km at 26° off-
nadir; the revisit time is approximately 3 days48f latitude and the dynamic range is 11-bits per
pixel.
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MIVIS hyperspectral sensor is a whisk-broom scanmigh an axe head double mirror, it is a
passive scanning and imaging instrument that ispo@ed of 4 spectrometers which simultaneously
record radiation coming from the Earth's surfacen®ary specifications of MIVIS are as follows: 102
spectral bands from the VNIR to the TIR spectrageand wavelength range between 0.43-uth7
an IFOV of 2 mrad and a digitized FOV of 71.1°; @merisation (ADC) of 12 bits; scan rotational
speed of 25, 16.7, 12.5, 8.3 and 6.25 scan/s;2emte black bodies selectable between 15°C and
45°C; a Position Attitude System composed of a G&&iver for measuring aircraft's position
(accuracy 15-20 m) and speed (accuracy 0.05-0.2@anand a gyroscope for determining aircraft’s
roll and pitch (accuracy +0.2°) with a roll cornect in real time between £10°; a flux gate comdass
finding aircraft's variation around the yaw axig¢aracy +0.56°) and a computer-aided data quality
check for all channels in real time.

The datasets acquired over Venice city consiste@pMIVIS airborne data acquired on July 26,
2001 at 10:45 (GMT), using scan rates of 25 scaatsén altitude of 4000m, corresponding to a 8-m
ground-pixel resolution at the instrument’s IFOY) EO-1 sensors satellite data acquired on June 7,
2001 at 11:56 (GMT); (c) Landsat ETM+ satelliteaatquired on July 2, 2001; and (d) IKONOS
satellite data acquired on July 2001.

As ALI sensor does not cover the entire Venice @ity the western part of the city was out of the
swath) all sensors comparisons were referred téthscene.

For this study, the high spatial resolution IKON@&gery (1m/pixel) of the Venice city was used
as ground truth.

3.2. Image pre-processing

The satellite datasets with a 30m/pixel spatiablgsn (i.e., ALI, ETM+ and Hyperion) were
provided radiometrically calibrated at the sens@mvél 1R). Hyperion data were also corrected by the
“SMILE” distortion effect by applying the method stgibed in Datt et al. [11], and then processed
using a global destriping procedure to reduce peetsal effects of column-to-column noise resulting
from the pushbroom design [11]. The data volume rgdsiced to 157 bands, encompassing the 0.427
to 2.365um spectral region, by excluding noisy bands andchannels of water absorption.

The satellite data were corrected by atmosphefecsf by means of the FLAASH module [29], as
implemented in the ENVI 4.4. [26] software packaghjch incorporates the MODTRAN4 radiation
transfer code [3]. The standard MODTRAN urban aglfbaze type was selected [3] for the aerosol
model as the visibility for all the images was h{gb. greater than 40 km).

As regard MIVIS airborne data, the raw data wetbBoraetrically calibrated to radiance ("W ¢m
st nm™) using the calibration factors measured for ead\I$I channel, on the test bench, on June
2001 by the Italian CNR-LARA researchers [4]. Atmpberic correction procedures were applied to
MIVIS radiance data using the MODTRAN radiativenséer code [3]. The MODTRAN code was
used to calculate look-up tables of standard ragidunctions to compute atmospheric correction
(path radiance, atmospheric transmittance and fablgrwith respect to the variations in viewingdan
illumination angles, to the relative azimuth angétween scan lines, to the solar azimuth and terrai
elevation. In the process, adjacency effects wersidered using the empirical formula described in
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Vermote et al. [47]. The calibration results weralidated using in situ spectral measurements
(vegetation, bare soil, asphalt and different tgpés) collected using the ASD field spectrometer.

In order to obtain a comparable reflectance datatse residual errors occurring in the satellis¢ad
were minimized by applying the empirical line meathas implemented in the ENVI 4.4. [26] software
package, by using the collected ground truth spedthe empirical line calibration forces the image
spectra to match reflectance spectra collected trmfield. This method is capable of producing the
most accurate results possible, but requires grtmuial information.

The obtained reflectance values for Hyperion, Abtld ANDSAT ETM+ data sets were further
geocoded in the UTM (Universal Transverse Mercatemyopean 1950 datum) map projection
reference system, by using 30 Ground Control Pdi@GSPs) extracted from the Regional Technical
Map at a scale of 1:10,000. An RMS error of aba@tfxels, accomplished in one step by means of
the nearest-neighbor re-sampling algorithm, waaiobd for the three sensors.

The IKONOS imagery, which was used as ground tiruthis study, was geometrically corrected to
the same UTM map projection as the other sensoosed¥er, in order to acquire a higher accuracy of
the geocoded image, the rigorous model proposeddugin [44] was applied for the geometric
correction method. A root mean square error apprately of 1-2 pixels (1.5m) was attained.

The geocoding process applied to MIVIS data wadewiht, as the airborne images of a
whiskbroom sensor are affected by geometric distast MIVIS data were geometrically corrected by
using an own code, implemented in the IDL 4.4.vgafe package [26], which is based on the precise
trajectory reconstruction process by using onbdaRE/INS systems and additional ground control
point information. In particular, MIVIS data werearoded using) the sensor trajectory (sampled at
1Hz) and the platform attitude (sampled at 25HZ)orded on board;iij the system whiskbroom
geometry; ifi ) a set of GCPs, extracted from the Regional TeehmMap at a scale of 1:10,000, in the
navigational data processing to reduce the unodéigaiin the trajectory reconstruction. MIVIS image
yielded an RMS error of 0.53 pixels.

At last, it must be considered that the comparisetween the classified imagery and the IKONOS
ground-truth reference can be influenced by their@oy of the pixels location (RMS error) in those
areas where a mixture of urban land cover typdsiseimaterials occurs. The IKONOS ground truth
cover vectorial map was further spatially resampdedording to the sensor’s spatial resolution to
compare the retrieved covering materials abundealces.

3.3. Field campaign

Extensive field campaigns were conducted, from longeptember 2001, using the portable field
spectrometer FieldSpec FR Pro (ASDI Inc., Boul@alorado, USA). The ASD spectrometer samples
a spectral range of 350-2500 nm using one detsptmmning the VNIR and two spanning the SWIR,
with a spectral sampling interval of 1.4 nm andr®respectively for the VNIR and the SWIR.

The spectral analyses in the field were conducietb(distinguish the urban materials spectrum
shape from other materials and backgrouni¥,tq construct a spectral library of urban material
useful for calibrating and validating the remotasseg data andi() to provide urban material samples
for laboratory analysis.
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The field ASD measurements were collected withimadirs of solar noon sets, acquiring 4-5
measures for each target from a height of 1 m usirfgeld of view of 25° to fulfill the target
dimension. Measurements were converted to absokftectance using NIST, calibrated panel
(Spectralon reference standard).

On the basis of the field campaigns, six main neemwere identified in the Venice historical
center (Figure 2). They were: (a) the limestonenfog from the quarries of Pietra d’Istria, Ital\3ad
for decoration in the urban paving; (b) the asppaharily used in the western site of the city amd
the harbor areas; (c) the trachyte rock (comingnftbe quarry of the Colli Euganei, Italy) used for
paving the pedestrian streets; (d,e) both newt(ligtl color) and old (i.e., weathered and sometimes
moss and lichen covered with dark red color) latetiles; (f) lead tiles used as covering matefaal
the public buildings and domes. Each urban buildiraderial was measured in different sites in order
to sample the natural spectral variability (dewatstandard of the collected measures) so detargini
a reflectance range of variability. Spectral measwents of the samples were also repeated in our
laboratory for a better assessment of the spdetires of the material of interest.

The six main spectra of the material samples daltecluring the field campaigns are shown in
Figure 2.

Figure 2. (a) ASD field spectra of limestone, asphalt amdhyte paving materials. (b)
Spectra of new and weathered lateritic tiles aratldetiles (roofing materials). All
spectra are plotted with the relatiwestandard deviation.
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4. Methods

To verify the potentialities of the high spatialsoéution and multi/hyperspectral sensors in
distinguishing different surfacing materials in@rgplex urban environment, the following processing
methodology was applied to the whole multi-sensdasket. The procedure, illustrated in Figure 3, was
implemented in the five steps detailed in the folloy section.

The information content of the Venice urban conteas retrieved at the pixel level by applying: (a)
an object-oriented approach and the ISODATA clusgeprocedure for the imagery segmentation and
(b) the Spectral Angle Mapper (SAM) supervisedsifasation method for classifying the land cover.

The high spectral resolution datasets (i.e., MI¥i8 Hyperion) were further investigated to extract
the fractional land cover information at the sukepilevel. A preliminary (c) Band and Material
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Detection Limit (BDL, MDL) analyses [22,23] of tleEcurring urban materials were assessed in order
to apply (d) a Band-Depth analysis. Finally, on #@me areas, (e) a Linear Spectral Unmixing
procedure was applied to both MIVIS and Hyperiotada

Figure 3. Flow diagram indicating the steps followed in thethods.

| MULTI-SPECTRAL DATA | | HYPER-SPECTRAL DATA |
ﬁj
Land cover classification at Spectral analyses at the
the pixel level pixel and sub-pixel levels
Image segmentation % Material Detection Limit ‘
-Object-oriented
~ approach % Band-Depth analysis ‘
'ISOD:\TA clustering Linear Spectral Unmixing
procedure (sub-pixel analysis)

- SAM classification |

The thematic outputs from the different classifmatprocedures were compared with respect to the
vector ground truth derived by visual interpretthg multispectral IKONOS pansharpened imagery (1
m/pixel) obtained by applying the Intensity-Hue+8ation (IHS) sharpening method, as implemented
in the ENVI 4.4. [26] software package.

IKONOS imagery interpretation allowed to identifg the study area the following urban covering
material percentages: limestone (0.64%), tractiy8e08%), asphalt (6.71%), lateritic tiles (indistiy
new and weathered) (45.30%), lead tiles roofs @)3%egetation (14.77%) and other minor materials
(19.2%).

4.1. Image segmentation

The image segmentation procedure was performeddier @o verify if its application can improve
the results obtained by conventional pixel-basetrtgues, which consider only the specific spectral
features of a given pixel without taking into acebuhe spatial context of an object or an area
[20,27,28,42].

A two-fold approach for the image segmentation feilewed: (i) an object-oriented approach, and
(i) a clustering segmentation procedure, i.e. the ar@NdSODATA unsupervised classification
method, which is based on the spectral informatiberent to the sensor data.

4.1.1. Object-Oriented approach

Since the spatial information is very importantlassification processes to produce reliable maps
[20,28,42], for this study we used an object-oreenapproach with a segmentation procedure followed
by classification as implemented in the Featuradetion module of the ENVI 4.4 software package
[26]. In more detail, the procedure consists ofombined process of segmenting the image into
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regions of pixels, computing attributes for eadjior to create objects, and last classifying theaib.

To identify only urban land covers within the chostudy area, a workflow consisting of two main
tasks was adopted.) (The ‘find objects task (i.e., segmentation, [20]) that was dividedjts turn,
into four steps: “segment”, “merge”, “refine”, afidompute attributes”. The “segment” and “merge”
steps of this task were applied to divide the insagé segments corresponding to real-world objects
and to solve over-segmentation problems the adjasegments were merged on the basis of their
brightness valuesii] The rule-based classificatidritask (i.e., classification; [20]) was used toraxt
only the urban land covers objects which were teeported onto raster images. For this task, the
following criteria were usedi)(color contrast with a weight of 0.5i)(band ratio with a weight of 0.2
and (ii) spatial criterion with a weight of 0.3. The NesrBleighbors algorithm was selected for the
classification task. These parameters were detednirsing a systematic trial and error approach
validated, on test areas, by comparing the outpage objects with the IKONOS ground truth [48].

4.1.2. ISODATA Clustering

The lIterative Self-Organizing Data Analysis Techu@q(ISODATA) unsupervised classification
method is (a) Iterative in that it repeatedly perfe an entire classification (outputting a thematic
raster layer) and recalculates statistics, andS@}-Organizing as it locates clusters with minimum
user input [7,35,43]. The ISODATA clustering wapkgd to the 30m satellite data and to the MIVIS
airborne data to verify if an unsupervised clasation like ISODATA is able to cluster the threeima
urban units (i.e. vegetation, roofing and pavindgemals) occurring in the Venice city.

The ISODATA classifier was configured by imposingamge of output classes between 5 and 10
with at maximum 1000 iterations, setting a chartyeghold in the classes’ aggregation process of
90%. The classification output classes were group#a the three main urban units by using the
classes’ distribution of the IKONOS ground-trutheige.

4.2. SAM classification

The Spectral Angle Mapper (SAM) supervised clasaifon algorithm has been used for several
studies, both working in multispectral and hypecsfz data spaces, providing appreciable results
[7,25]. This algorithm allows performing a quicksteon the spectral orthogonality of the urban
material spectral classes [35]. SAM input spectrarewderived from both Regions of Interest
(vegetation spectra, not acquired during field caigms), drawn directly on the images, and the ASD
field measurements. The water occurring in the ystaicka was masked by thresholding the Near-
Infrared bands or whenever not accurate by diggjzi on the natural color composite of the imagery
The SAM algorithm was applied to the entire mas#tathset by using seven spectral signatures of the
main urban land covers identified for the Venicstdiical center: vegetation, new and weathered
lateritic roof tiles, lead roof tiles, asphalt,dhgte, and limestone paving materials.

4.3. Spectral analyses

For this study, MIVIS and Hyperion hyperspectratadats were further investigated to extract,
whenever possible, fractional land cover informatad the sub-pixel level. To this aim, Band and
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Material Detection Limit (BDL and MDL) analyses tife urban materials field spectra (collected by
the ASD spectrometer) were assessed. Next, baséldeoMDL results, a Band Depth analyses was
performed for both MIVIS and Hyperion reflectanchtoreover, a Linear Spectral Unmixing (LSU)
procedure was applied to both hyperspectral dasa se

4.3.1. Band and Material Detection Limit analyses

To investigate the opportunity of taking advantafenaterials specific spectral features, the BDL
was assessed. This parameter is defined, accdaliigkland et al. [22], as follow:

BDL = CF (1)
SNFi/ BandFWHM

Samplinglterval

Where, BDL [22,23] is the minimum band depth regdifor the detection of a given band width
and center; SNR is the signal to noise ratio; Cénfldence Factor) is the contrast relative to the&RS
level that a feature should exhibit to be distisgpedd from background; Band FWHM is the full-width
target band at the half maximum of the band depth$ampling Interval represents the instrumental
spectral sampling interval related to the givendban

Lower numbers for the BDL indicate that lower spaictontrast is required for detection. The CF
influences the BDL such that a higher CF requiresigr band contrast for acceptance (i.e., aCF =1
represents a signal level comparable with noise).

The BDL values were calculated by assuming thaatnmospheric attenuation influenced the data.
To accomplish the BDL analysis, it is necessargriow the SNR of the analyzed sensor [14,41]. As
this information cannot be modeled without spedidinowledge of the instrument characteristics, the
signal level was calculated on the mean spectialkesaobtained from the masks of the materials of
interest. Thus, the SNR was so obtained by dividmmgeach masked material the signal by the
corresponding standard deviation, on the basiseftethod proposed by Smith and Curran [41].

Once the BDL was calculated, the minimum fractioalalndancefg;,) of the covering material,
which has to be present in the pixel to be deteuwt#d the desired confidence, was calculated as
follows:

o _d, @)

where,d, is the spectral contrast of the material (i.e. LB the image andl is the spectral contrast
shown by the pure material measured in laboratory.

4.3.2. Band-Depth Analysis

The detectable urban surface materials were assessthe hyperspectral images using the Band-
Depth (BD) analysis. The BD measures the spectratrast of the absorption features with respect of
its continuum. The application of the continuum osal process consists of: (a) fitting a straigheli
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hull to represent the reflectance background uswm continuum tie points on either sides of the
absorption feature [9,24] and (b) dividing the d¢peun by this fitted continuum line. The absorption
band-depth (D) is calculated from the followingrfarda [9]:

D = 1-Rb/Rc (3)

where,Rcis the reflectance of the continuum at the bamdezeandRbis the reflectance at the band
center.

4.3.3. Linear Spectral Unmixing

The sub-pixel analysis procedure, applied to MIdi®l Hyperion hyperspectral data sets to extract
fractional abundance images of the main surfachb@mu materials, was the Linear Spectral Unmixing
(LSU) procedure. The LSU is a widely used methoddé&termine the proportion of constituent
materials within a pixel based on the material€ctmal characteristics [39]. The LSU is analytigall
expressed as follows [37]:

r=Mf, +¢& (4)

where,r is the column vector of the measured spectrum Wwispectral bandgyl is theN * L
endmember spectra matriX (s the numbers of pure endmembef$3;the concentration vector whose
components represent the endmember fraction fdn eadmembers is the residual error. In this
modelM is the known, while the unknown to be retrievethes concentratiofy.

MIVIS and Hyperion pixels’ unmixing was performesliing two or more spectral endmembers with
fractions ranging from 0 to 100%. All the endmensbeere used in the “constrain” LSU procedure
[37]. The images of the coefficients for each & #tmdmembers obtained by the inversion procedure
were normalized in order to obtain fractional abamuk images for each material of interest.

5. Resultsand discussion
5.1. Image segmentation results

The segmentation approach usually allows to: (@ntfy the spatial heterogeneity within the data
at different scale levels; (b) delineate unifornicpas; (c) implement a hierarchal structure between
segments at different spatial scales. For this tisdy, however, the satellite spatial resolutions
(30m/pixel) appear too low with respect to the arbexture and results of the object-oriented apgroa
are extremely poor for all the satellite data. Gaedults, instead, were observed for the MIVIS
(8m/pixel) airborne classification, for which it e&ven possible to discriminate different vegetatio
cover types, i.e. conifers, broad leaves and dfagsre 4).
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Figure 4. Object-oriented approach results of MIVIS data /f@rel).
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In Table 2 are shown the land cover percentageesalbtained for MIVIS data by using the Object-
Oriented approach as they are the only comparalletlKONOS ground truth.

Table 2. Percentages of covering materials as derived ftbm object-oriented
segmentation procedure applied to MIVIS data.

Lateritic Lead Asphalt Trachyte Other
Conifers Broadleaves Grass Limestone .
Tiles Tiles pavements | pavements| materials
MIVIS 13.9 2.3 2.3 53.9 1.6 14 7.7 104 6.6
IKONOS
17.8 52.4 1.9 1.0 54 12.3 9.2
ground truth

The unsupervised ISODATA output classes were grdupt® three urban units (i.e. vegetation,
roofing tiles and paving materials) by interpretitng classes’ distribution on the imagery using as
reference the IKONOS ground-truth image. Table 8wshthe percentage values attained from the
ISODATA clustering for all the sensors. The vegetatclass was identified with about the same
percentage in each data set; in particular, MIVit8 &lyperion show the percentages closest to the
values retrieved by the IKONOS interpretation. Tite roof unit is overestimated in the 30m/pixel
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multispectral data, while it is quite well idendéifl in the hyperspectral datasets. The paving natgeri
are markedly underestimated by the satellite npétifral data sets because of the spatial complekity
the study area. However both multispectral and fsgextral imagery appear not reliable for the
assessment of this unit. In fact, the buildingstara large extent contiguous thus shadowing dften
streets (only a few meters wide).

Table 3. Retrieved ISODATA percentages of the covering mialte

Vegetation Roofing Tiles Paving materials Other materials %
% % %
ALI 22.5 71.7 3 2.8

ETM+ 22.3 71.12 4.22 2.36
Hyperion 18.72 60.3 15.16 5.82

MIVIS 20.31 51.23 26.27 2.19
IKONOS

17.8 52.4 20.6 9.2

Ground truth

5.2. SAM classification results

The paving materials were trained using the spept@daining to the asphalt, trachyte and
limestone, the roofing materials were trained usirgnew and old lateritic and lead tiles specira)
the vegetation was trained with the grass, condasbroad leaves classes.

Figure 5 and Table 4 show the results of the SAd&sification attained for all the sensors. SAM
results show that ALI and LANDSAT ETM+ satellitetdavere not able to discriminate the different
paving materials.

As regards the roofing materials, the retrieved @amof lateritic roofs, as combination of old and
new lateritic tiles, for all the sensors is closehie IKONOS percentage; while, the lead tilesslias
overestimated only by the ETM+ sensor (a percentayigee of 8.0; Table 4), because too complex to
be mapped at the ETM+ spectral resolution.

SAM results for ALI and LANDSAT ETM+ satellite dateere not able to spectrally discriminate
the paving materials. Moreover, MIVIS and Hyperi®8AM classification of the asphalt and trachyte
paving materials are not reliable as the specigalasure of the asphalt and the trachyte mateagds
both characterized by a very low reflectance (0@ SNR) and the lack of peculiar spectral features
strongly affects their spectral separability, ibeir detection. The only consistent results fer plaving
materials were achieved by MIVIS and Hyperion sensor the limestone material, i.e. respectively a
percentage value of 1.6 and 0.7 (Table 4).
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Figure 5. SAM classification results.
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Table 4. Percentages of covering materials as derived then8AM classification procedure.

ROOFING OTHER
VEGETATION PAVING MATERIALS
MATERIALS MATERIALS
Lateritic Lead Asphalt Trachyte
Conifers | Broadleave Grass Limestone
Tiles Tiles pavements | pavements
ALI 10.3 11.3 3.2 54.2 2.2 16.7 2.1
ETM+ 7.8 2.8 7.9 51.0 8.0 11.1 114
Hyperion 7.7 17.6 35 48.2 15 0.7 7.1 7.9 5.8
MIVIS 12.3 4.9 4.0 49.7 1.7 1.6 7.1 8.5 10.2
IKONOS
17.8 52.4 1.9 1.0 5.4 12.3 9.2

ground-truth
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5.3. Spectral Analyses results

The spectra of the samples collected on the fiewtewanalyzed (Figure 2) to improve the
discrimination of the urban units taking advantafeheir spectral features characteristics. It ban
observed that: (a) the limestone paving materigheracterized by absorption features in the 158-2.
pum region, with a strong absorption feature centarte?l34um and three weaker absorption bands at
1.85-1.97um, 1.97-2.0Qum and 2.12-2.1fm [46]; (b)the trachyte paving material does not show any
peculiar absorption feature; (c) the asphalt pavesnare characterized by slight absorptions cedhtere
at 2.3Qum and 2.3am; (d) the lateritic tiles show an high in the Regjion (0.63-0.7Qum) of the
reflectance spectrum and have a peculiar peak reghtt about 2.221m, which is typical of the
silicates present in the lateritic compound; andtlie lead oxide of the roofing tiles does not show
characteristic spectral absorption features exfmpthe peaks in the Blue (0.45-0.48n) and Green
(0.50-0.56um) regions of the reflectance spectra.

In conclusion, (a) the asphalt and trachyte pawviragerials could be spectrally confused to each
other; (b) the main absorption features of the aighaving correspond to the peculiar absorption
feature of the limestone present as cobblestongsnwhe asphalt paving material; (c) the weattgerin
effects on the lateritic tiles are well discernilohethe Red spectral region (old tiles show a pake
color) and in the SWIR spectral region, where ghsly deeper absorption feature at 12Roccurs for
the new tiles.

MIVIS and Hyperion datasets were further invesggatat the sub-pixel level, in order to retrieve
the real potential of the hyperspectral data ineeihg urban land cover in complex sites.

5.3.1. Material Detection Limit results

Table 5 shows, for each material of interest,dihalues (i.e. the spectral contrast shown by thie pu
material as measured by ASD in laboratory), the Bidld thef, values, and the minimum area
required for the material to be detected by these(MDA) within the pixel area (i.e. 49rfor MIVIS
and 900rf for Hyperion).

Table 5. Values ofd, BDL, fmin and MDA calculated for the measured spectrum ef th
limestone and the asphalt paving materials anchée lateritic tile roofing material by
using their peculiar spectral absorption features

Limestone New Lateritic Tiles Asphalt
d=048 d=0,02 d =0,08
MIVIS Hyperion MIVIS Hyperion MIVIS Hyperion
BDL % 10,47 5,17 3,64 3,63 17,98 8,17
fmin % 21,99 10,85 > 100 > 100 > 100 > 100
MDA (mz) 14 98 > pixel > pixel > pixel > pixel

The results shown in Table 5 highlight that onlg timestone material main absorption peak
centered at 2.3(im can be detected for both Hyperion and MIVIS sensbhe 2.34um absorption
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feature is detectable if the surfacing area isdrighan 14rhfor the MIVIS and 98rfor the Hyperion
sensors. However, by analyzing the study areapmiesite where this result could be checked is the
cemetery island (located North to the city), aslimestone is relatively abundant and it is deteleta

by both sensors’ characteristics. Moreover, Taldddwvs that both sensors do not have the spectral o
spatial characteristics to detect the spectralrgisn features peculiar for identifying the neveldtic

tiles and the asphalt material.

5.3.2. Band-Depth and Linear Spectral Unmixing ltssu

Following the Hyperion and MIVIS MDL results, theDBanalysis was only used to detect the
presence of limestone on the area of the monumeetaétery of the “San Michele” island. The main
material occurring on this test area and the rélgrcentage abundances as derived from IKONOS
ground truth were: limestone (25%), cypress (8%@sg (13.5%) and lateritic roof tiles (2%).

The BD results attained for the cemetery islandsam@vn in Figure 6. Three ranges were identified
as low (red), medium (yellow) and high (blue) peteges of surfacing limestone. The red color
represents the BD values ranging from 0.01 to (@8 yellow color from 0.03 to 0.06 and the blue
color from 0.06 to 0.09. The black color referghose pixels where the limestone peak at 2.34 did n
occur. A BD value of 0.1 was calculated for the gke® of pure limestone acquired by the ASD
measurements.

As the BD method allowed detecting only the limastanaterial, in order to verify if other
materials were distinguishable on the basis ofwthele spectral information, a LSU procedure was
applied on the same area (i.e. the cemetery island)

Figure 6. Images (a) and (c) show respectively Hyperion iizd@x) and MIVIS (zoom
5x) false color composite (Red=1520nm, Green=820Blme=680nm) images of the
cemetery island north to Venice. Images (b) andsfd)w respectively Hyperion and
MIVIS limestone band-depth analysis (at 2.84) results.

(a) 30m/pixel (b) 30m/pixel

(d) 8m/pixel
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Figure 7 illustrates the results attained by apgjyihe LSU trained with the spectra derived from
the ROIs drawn on the images (i.e. cypress and @@ectra) and measured during the field campaigns
(i.e. limestone and lateritic roof tiles). The fiaoal abundance images of the endmembers weredscal
between 0-1 (a colors scale bar was adopted tetdiyg LSU results) and compared with those of the
IKONOS ground-truth. Looking at Figure 7, the falimg general considerations could be made: (a)
the grass class was retrieved by both sensorsangimilar spatial distribution, identifying the sas
where, according to the IKONOS data, the meadownanly present; (b) the lateritic tiles are
recognized by both sensors in the northern path@fimage, where buildings are characterized by a
large exposure of not weathered lateritic tileg; tfee limestone occurrence within the island was
retrieved by both MIVIS and Hyperion sensors in Hrea where the tombstone and the cemetery
structures are made of the limestone material.

Table 6. Correlation coefficients between the fractional rdances images of MIVIS
(upper table) and Hyperion (lower table) with regge the IKONOS ground truth.

Correlation MIVIS
Coefficient Limestone Grass Cypress Tiles
% Limestone 0.45 0.39 0.02 0.05
- Grass 0.42 0.75 0.22 0.16
é Cypress 0.18 0.30 0.43 0.11
© Tiles 0.00 0.04 0.09 0.42
Correlation Hyperion
Coefficient Limestone Grass Cypress Tiles
% Limestone 0.68 0.32 0.16 0.22
- Grass 0.40 0.56 0.55 0.09
é Cypress 0.30 0.53 0.40 0.10
© Tiles 0.07 0.12 0.00 0.53

In order to evaluate the correctness of the abuwwalistribution of MIVIS and Hyperion LSU
retrieved endmembers with respect to the IKONOSimggidruth, cross correlation coefficient$ Wwere
calculated and the results are reported in Table 6.

By analyzing the LSU results, it can be noticed thay MIVIS retrieved grass abundance shows
the minimum acceptable level of agreement, ri=.75, with respect to the IKONOS distribution.
Slightly lower r values were obtained for Hyperion vegetation endbers due to the 30m spatial
resolution that makes more complex the detectidgh@typress stands.

Moreover, it has to be observed that the limest€i@NOS abundance is better correlated with the
Hyperion ¢=0.68) than MIVIS (=0.45) one, thus validating the BDL analysis resule. the SWIR
Hyperion spectral region shows a loviigr, value for the detection of the limestone mateiidilis fact
stresses that, even for the LSU procedure, thegimbsorption limestone feature centered at @34
is fundamental for the material detection.
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In conclusion, the results of the cross-correlafimndifferent materials, in order to compare the
unmixing accuracy using different datasets, areltoo (taking into account the usual threshold of
0.75); moreover, the aforesaid comparison showsitha difficult to proceed in this way, being the
correlation index in the field of a casualty in th®chastic domain, except for the grass fractional
abundance attained for the MIVIS unmixing.

Figure 7. MIVIS and Hyperion fractional abundance imagestt® cemetery island
north of Venice. IKONOS image is shown as referer@@or scale bar expresses the
percentages of occurrence of the four endmembesinghe LSU analysis.

(b) MIVIS (8m/pixel) | (c) Hyperion (30m/pixel)

Limestone

Cypress

(a) IKONOS image (1m/pixel and oriented to t
north).

0

Grass meadow

LSU fractional abundance color scale bar

Lateritic tiles

6. Conclusions

The paper deals with the analysis of remotely semsta recorded on the heterogeneous Venice
lagoon from satellite and airborne multi/hyper-gpcsensors.
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We have outlined the analysis results of a prelamnjirstudy aimed at verifying the efficiency of
hyperspectral remote sensing data for mapping aexnyban environments and for the production of
accurate land cover maps.

Based on our experimental results, we conclude (hathe imagery segmentation leads to an
appropriate classification only for the three marban land cover (i.e. vegetation, paving and rapfi
materials) for all the sensors; in particular, tigect-oriented approach applied to the ALI, ETMila
Hyperion satellite data is not able to discriminide Venice urban land cover complexity, while &ett
results were observed for the MIVIS (8m/pixel) aime hyperspectral data; (2) more consistent iesult
can be attained by using the SAM supervised spattassification method, as it allows discriminatin
from a minimum of six classes (ALl and Landsat ETIM&-eight classes (Hyperion and MIVIS).

The spectral analyses, i.e. band and material titetmit, highlight that only the limestone
material absorption feature at 2184 is exploitable for the Hyperion and MIVIS hypegspral sensors
band-depth analysis. Furthermore, the sub-pixellteattained for MIVIS and Hyperion hyperspectral
datasets, highlight that only MIVIS characteristize able to retrieve the minimum acceptable lefel
agreement, i.er=0.75, with respect to the IKONOS distribution, iehHyperion achieves similar
results only for the limestone materiet(.68).

The results of the comparison between hyperspeatrdl multispectral remote sensing datasets
highlights that (1) Hyperion hyperspectral satellidata are capable of mapping the complex urban
surface components of the Venice urban land coviéin accuracy similar to the higher spatial
resolution MIVIS airborne data; (2) in a compledan context, such as that of the Venice study area,
it is desirable, at the Hyperion 30m/pixel spatesolution, to decompose pixels into their compémen
as their sizes are smaller than the pixel size.
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