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Abstract: In this study, a comparative analysis of capabgif three sensors for mapping
forest crown closure (CC) and leaf area index (LWd#)s conducted. The three sensors are
Hyperspectral Imager (Hyperion) and Advanced Lantader (ALI) onboard EO-1
satellite and Landsat-7 Enhanced Thematic Mappes FETM+). A total of 38 mixed
coniferous forest CC and 38 LAI measurements welleated at Blodgett Forest Research
Station, University of California at Berkeley, USAl'he analysis method consists of (1)
extracting spectral vegetation indices (VIs), sp@ctexture information and maximum
noise fractions (MNFs), (2) establishing multivégigrediction models, (3) predicting and
mapping pixel-based CC and LAl values, and (4)dalng the mapped CC and LAl
results with field validated photo-interpreted O@ld_Al values. The experimental results
indicate that the Hyperion data are the most aeffedor mapping forest CC and LAI (CC
mapped accuracy (MA) = 76.0%, LAl MA = 74.7%), tolled by ALI data (CC MA =
74.5%, LAl MA = 70.7%), with ETM+ data results bgiteast effective (CC MA = 71.1%,
LAl MA = 63.4%). This analysis demonstrates tha Hyperion sensor outperforms the
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other two sensors: ALl and ETM+. This is becausiéschigh spectral resolution with rich

subtle spectral information, of its short-wave améd data for constructing optimal Vis
that are slightly affected by the atmosphere, dritsanore available MNFs than the other
two sensors to be selected for establishing priedichodels. Compared to ETM+ data,
ALI data are better for mapping forest CC and LAkdo ALl data with more bands and
higher signal-to-noise ratios than those of ETMtada

Keywords: Hyperion, ALI, ETM+, Leaf area index, Crown closu Vegetation index,
Texture information, Maximum noise fraction

1. Introduction

Three revolutionary imagers: Advanced Land Imagel), Atmospheric Corrector (AC) and
Hyperspectral Imager (Hyperion), onboard the EGxElBte have been collecting multispectral and
hyperspectral scenes in coordination with the EobarThematic Mapper Plus (ETMon Landsat 7
[1]. A significant part of the EO-1 program isgerform data comparisons among Hyperion, ALl and
ETM+. Such a comparison is also required by thetddnStates Landsat Data Continuity Mission
(LDCM, [2]) to advance the legacy of the Landsabgram with the intent of serving science and
society. The comparisons are ensured, since @é Brbit matches the Landsat 7 orbit with only
one minute delay. Since launching EO-1, such comsas have been conducted by many researchers
who focused on either absolute radiometric val3eS][or applicabilities of various sensors’ data [6
11].

For example, after comparing the retrieved surfaflectances from ALI with those from ETM+
and Landsat-4, 5 TM and considering the fact thiat i8 a sensor launched for validation of new
sensor technologies, Bryant et al. [5] concludeat tine ALI sensor performed extremely well.
Chander et al. [3] conducted a cross calibratiolof and ETM+ sensors and their results of the
radiometric comparison indicate that the relatigas®r chip assemblies gains agree with the ETM+
visible/near infrared (VNIR) band gains to withi#o2and with the short-wave infrared (SWIR) bands
to within 4%. In discriminating forests with Hypen, ALI and ETM+ images, Goodenough et al. [9]
compared capabilities of the three sensors’ dagd @ forest classification at various classificat
levels. Their experimental results indicated tHgperion (overall accuracy of 90%) outperformed
ALI (85%) and ETM+ (75%) in forest classificatiomdathat ALI classification results were much
better than ETM+. Furthermore, Neuenschwanderl.e{6d demonstrated higher classification
accuracy of mapping flood features in the OkavabDgtia, Botswana when using ALl compared to
ETM+. In our previous work to compare the capébsi of the three sensors (Hyperion, ALl and
ETM+) by the effect of individual bands on estimatiforest crown closure (CC) and leaf area index
(LAI), we found the Hyperion data consistently aerfprmed the ALI and ETM+ data while ALl was
better than ETM+ [7].

In this study, we continue the comparative analgéisapabilities of three sensors: ALI, ETM+ and
Hyperion by mapping forest CC and LAI at Blodgettést Research Station, University of California
at Berkeley, in Northern California. LAl quantiighe amount of live green leaf material present in
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the canopy per unit ground area and is definedhe@satal one-sided area of all leaves in the canopy
within a defined region (Am?) [12] while CC can be defined as percentage of larea covered by
the vertical projection of tree crowns. We basedte following two reasons to conduct this further
comparative analysis. Firstly, in addition to quevious work [7], we conduct mapping forest CC
and LAl and emphasize on spatial analysis of CClakldin the study area, rather than focusing on
correlation analysis of the three sensors’ daté Wotest CC and LAI. Secondly, instead of using
individual bands, various band regions and subselmnds of the three sensors’ data for estimating
forest CC and LAI, Vegetation indices (VIs), spattexture variables (VARs) and maximum noise
fractions (MNFs) are extracted from the sensorta fiar developing pixel-based models of predicting
forest CC and LAI. To do so, mixed coniferous &r€C and LAl measurements were collected at
the study area. Data from Hyperion, ALl and ETMerer used to map the forest CC and LAl
Therefore, the objective for this analysis is tanpare capabilities of ALI, ETM+ and Hyperion for
mapping forest CC and LAI with selected spectratdees and indices extracted from the three
sensors’ data.

2. Study site and sensors’ data
2.1. Study site

The Blodgett Forest Research Station (120°39'008%83'29"N) of the University of California,
Berkeley, located in the American River watershedhe western slope of the central Sierra Nevada
mountain range, El Dorado County, California (Feya), was selected as the study site. The Blodgett
study area is bounded by a white line in the figuf@e vegetation consists of the normal associatio
of Sierra mixed conifer forest. The major tree spedinclude: Five conifers, Sugar pine ($#us
lambertiang, Ponderosa pine (PPPinus ponderoga White fir (WF, Abies concoloy, Douglas fir
(DF, Pseudotsuga menziesiand Incense cedar (IGalocedrus decurrens and one hardwood,
California black oakQuercus kelloggji A species native to the Sierra Nevada but aohd in the
Blodgett Forest, Giant sequoia (GSequoiadendron gigante(yrhas been planted at the Blodgett
research station since the 1900’s. In this study,measured forest CC and LAI both from mixed
coniferous forests with the six conifer speciemimst compartments at the study site.

2.2. Field data collections

We took a total of 38 forest CC and 38 LAI measwstn in plots on August 10-11, 2001, two
months before the acquisition of the three sensdatd. The measurement plots were typically
located within the mixed coniferous forests. That pize is around 2500-3500°rto ensure that 2-4
pixels (30 m resolution) are included from eaclthaf three sensors. Two cross lines were laid out
with a 50-meter tape in each plot. These linesewadigned along approximately S-N and W-E
directions across the plot center. We then medsanel summed the intercepted lengths vertically
projected by crowns in the overstory. A CC val4® (vas calculated through the formula: CC(%) =
sum of intercepted crown lengths / total line léngA CC measurement taken from a plot was finally
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determined by synthetically considering the resutisasured and visually estimated in forest
compartments and interpreted from true-color a@hatographs.

Figure 1. The location of the study site and the positiohplots where forest CC and
LAl were measured were marked on the pseudo caorposite image of Hyperion

(wavelengths 813/681/548 nm vs. R/G/B) in reddittle symbols. Label L1 and L2 on
the figure present locations of profile analysis @C and LAl maps (see Figures 3 &
4).

120°39'00"W

38°54'29"N 38°54'29"N

120°39'00"W

An LAI-2000 Plant Canopy Analyzer (PCA) was usedatke LAl measurements at the same plots
as for measuring CC values. Each LAl measurem@nésents an average of ten PCA readings. The
locations of PCA readings were selected in each lpdsed on the canopy closure, age of stands,
degree mixed with species and nutrient level stoanake the measurements representative of the
variability within the plot. For plots with LAI 2.0, almost no understory was found while with LAI
lower than 2.0 there exists a varying proportionuoflerstory that may have contributed to LAl
measurement. Because a sensor always respondthtthb understory and overstory within its field-
of-view, the LAl measurement in this study haseaetitd contributions from both understory and
overstory. The LAI measurement taken by the PCfiective’ LAI [12, 13]. Since the effective
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LAl is less variable and easier to measure thame"tLAl, is an intrinsic attribute of plant canopie
[12], and also has a proportional relationship viita “true” LAl [14], we directly use the effective
LAI throughout this analysis and refer to it as LAI

To conduct an atmospheric correction to the ALI dfitiM+ data, we also took reflectance
measurements in the field from targets of roadamerf(asphalt and gravel materials), bare soil and
young tree canopy (DF, GS, IC, PP, SP and WF) uairigeldSpec®Pro FR (Analytical Spectral
Devices, Inc., USA) between 11:30 and 14:30 on Audi8, 2002. The instrument consists of three
separate spectrometers with spectral range frorm8b€ 2500 nm. All spectra were measured at the
nadir direction of the radiometer with a 25° FODepending on the target size, the distance between
the instrument’s fiber head and its target was 20toc 1 m to allow within-target-area radiance
measurement. White reference current was measuesgg 8-10 minutes. Each sample was measured
10 times. To ensure the measurements represdhenigrget, each time we moved the fiber head a
little bit but guaranteed tha situ measurements taken from the within-target-area.

2.3. The characteristics of three sensors and intiga acquisition

The detailed descriptions to the characteristictheftwo EO-1 sensors: Hyperion and ALI, and
ETM+ as well as the EO-1 mission had been provigetingar et al. [1] and in Pu et al. [7]. Simple
characteristics of the three sensors and numbebaofds available used for this analysis are
summarized in Table 1. The ALl is a ten-band rspkictral system with multiple linear arrays
embedded in a single sensor chip assembly (SCA) [[Bese bands have been designed to mimic six
Landsat bands with three additional bands cove#i3g-453 nm, 845-895 nm, and 1200-1300 nm
(Table 1). The ALI has 30 m resolution for the tiaplectral pixels and 10 m resolution for the
panchromatic pixels. The instrument can represeat3y km by 100 km land area per image. In this
study, we used 9 multispectral bands for comparngitim the other two sensors. Hyperion is a high-
resolution hyperspectral imager capable of resghd80 spectral bands (from 0.4 to 21&) with a
30 m spatial resolution and a nominal spectrallmi®m of 10 nm. The instrument can represent one
7.5 km by 100 km land area per image and can peadedailed spectral mapping across all 220 bands
with high radiometric accuracy. The Hyperion hae spectrometers, one VNIR spectrometer and one
SWIR spectrometer. Because of low ratio of sigoatdise at both spectral ends, heavy water
absorption centered around 1400 and 1900 nm andpieral overlap of the two spectrometers, 75
bands were dropped from original 242. Thus a tofdl67 bands (effective bands) were used in this
analysis. Operating by a whiskbroom scanning rmhdthnel radiometer, the ETM+ has 6
multispectral VNIR and SWIR bands, one panchrombhtiad and one thermal band with spatial
resolutions of 30 meters for 6 VNIR/SWIR bands,n6éters for 1 thermal band and 15 meters for 1
panchromatic band. The instrument achieves oneki®by 185 km land area per image. In this
study, we used 6 of these multispectral bandsdorparisons purpose.

ALI and Hyperion data covering the study site wacguired on October 09, 2001, around 10:30
a.m. local time. Due to ETM+ data not availabletiom same day as EO-1 data, the ETM+ data were
acquired on October 25, 2001, around 10:30 a.nal iime in this comparative analysis of sensors’
data. A set of true color aerial photographs vaéen on May 25, 2000 at a nominal scale of 1:8,000,
used for validating forest CC and LAI results mappath the three sensors’ data.
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Table 1.Characteristics of the three sensors and a lisanfl numbers and wavelengths
of the three sensors used in this analysis.

Parameters EO-1/Hyperion EO-1/ALI Lansat-7/ETM+
Spectral range (um) 04-25 04-24 04-24
Spatial resolution (m) 30 30 30
Swath width (km) 7.7 37 185
Spectral resolution 10 nm Variable Variable
Spectral coverage Continuous Discrete Discrete
Number of bands 220 10 7
Spectral bands used Band | WL(hm) Band | WL(nm) | Band | WL(nm)
in this analysys 1-90 |430-1341 1 433-453 1 450-520
91-124 |1462-1795 2 450-515 2 530-610
125-167 |1976-2400) 3 525-605 3 630-690
4 630-690 4 780-900
5 775-805 5 1550-1750
6 845-895 7 2090-2350
7 1200-1300
8 1550-1750
9 2080-2350

Note: Band numbers of Hyperion have been re-ordered.
3. Methods
3.1. Retrieving surface reflectance

Atmospheric correction for all the three sensoratadwas first conducted to retrieve surface
reflectance. With the High Accuracy Atmosphericri@otion for Hyperspectral Data (HATCIHf.
[16, 17]), atmospheric correction for hyperspectiala of Hyperion was accomplished at the Center
for the Study of Earth from Space, Department oblGgical Sciences, University of Colorado, USA.
The HATCH aims at retrieving surface reflectancecsfa of high quality with a reasonable speed.
For the ALI and ETM+ data, surface reflectance wesieved using the Simple Atmospheric
Correction method (SAG:f. [18, 19]). In retrieving surface reflectance wWBAC, we first needed
three at-sensor total radiances simulated with MRBN4 [20]. Thereafter, spectral measurements
taken from targets in the study area were usedoudifgnthe preliminary retrieved surface reflectance
All surface reflectance data retrieved from thee¢hisensors are used in following comparative
analysis.

3.2. Extraction of spectral features/indices

To develop multivariate regression models with ctel@ spectral features/indices and ground
measured CC and LAl data for predicting pixel-bak@dst CC and LAI, vegetation indices (VIs),
spectral texture variables (VARs) and maximum ndisetions (MNFs) were first constructed or
extracted from the three sensors’ data. In thidystten VIs were selected and they are Normalized
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Difference Vegetation Index (NDVI), Simple Rationdex (SR), ND Water Index (NDWI), Water
index (WI), Leaf Chlorophyll Index (LCI), Photoch&al Reflectance Index (PRI), Structural
Independent Pigment Index (SIPI), Modified SimpkgiB index (MSR), Non-Linear vegetation Index
(NLI) and Modified Non-Linear vegetation Index (MNL They were constructed using relevant
multispectral bands of ALI and ETM+, but for Hypam we selected relatively effective bands, most
of which are located in NIR and SWIR spectral regiorather than considering the VIS’ original
definitions [19]. Three spectral texture variab(defined in variance) were extracted from red and
NIR bands of the three sensors and blue band aslditional band for Hyperion. The three bands
(only two for ALI and ETM+) used for extracting speal texture information have a higher
correlation with forest CC and LAI than the othants [7]. The first 20 MNFs, 9 MNFs and 6 MNFs
were extracted, respectively, from 167 Hyperiondsar® ALl bands and 6 ETM+ bands. The
characteristics of the plant canopy are relatethéoVls, VARs and MNFs, whose definitions and
citation sources have been summarized in TablEh2 reasons of selecting such variables and indices
are briefly addressed as follows.

The most commonly used vegetation indices are singbjorithms based on the dissimilar
interaction of red and near-infrared (NIR) electemmetic radiance with vegetation canopies. Among
them, the ratio-based normalized difference vegetaindex (NDVI, [21]), and the simple ratio
vegetation index (SR, [22]) are the most frequentigd to correlate with CC, LAl and other canopy
structure parameters (e.g., [23-25]). Besidesgus#d and NIR bands, Gong et al. [19] also tested
SWIR bands and NIR bands with Hyperion hyperspedasa to construct NDVI and SR VIs and
found the VIs constructed with SWIR and NIR bandtdy than these constructed using red and NIR
bands only.

The value of WI increases with leaf water contefthis is because the WI compares the leaf
(liquid) water absorption band near 970 nm witheterence band at 900 nm, which does not show
leaf water absorption [26]. The re-ordered Hypetands 47 and 54 are very similar to bands at 970
nm and 900 nm, thus are used to construct the Wiie NDWI is based on leaf (liquid) water
absorption band near 1240 nm and a relative nongti®o reference band near 860 nm [27]. This
index also increases with leaf water content. Aepindex PRI was used as a reliable water-stress
index [28]. Given the relationship between canemter content and canopy CC or LAl the three
water indices should be useful for estimating cgn©@ and LAI. The LCI, developed by Datt [29],
was found to be a sensitive indicator of chloroplrgntent in leaves and was less affected by
scattering from the leaf surface and internal stmécvariation. In consideration of the relatioipsh
between canopy CC & LAI and total chlorophyll cartand available Hyperion bands for the index,
it was also selected as a potential VI. The simecindependent pigment index (SIPI) is correlated
with the carotenoid : chlorophyll a ratio [30]. rGtenoids exhibit a well-known absorption peak at
445 nm. Since the three sensors all provide dailbands to calculate the index, in considerirgg th
carotenoids absorption feature, we hope the indetuliin describing the variation of canopy CC and
LA
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Table 2. Summary of spectral variables/indices potentiafigle for establishing multivariate regression meftal predicting pixel-based
forest CC and LAl in this analysis

Spectral variable/index

Characteristic of the plant canopy
related with the variable/index

Definition

Described by

NDVI, Normalized Difference
Vegetation Index

Photosynthetic area; NIR region: cell
structure multi-reflected spectra; SWIR
region: water, cellulose, starch and
lianin absorption

(Rnir-RRr)/(RyrTRR) for ALI and ETM+;
(R1245-Rg25)/(R1245+Rg2s) for Hyperion;

Rouse et al. [21]
Gong et al. [19]

SR, Simple Ratio

Same as NDVI

RN|R/RRf0I’ ALl and ETM+, R1245/R825 fOr
Hyperion;

Jordan [22]
Gong et al. [19]

NDWI, ND Water Index

Water status

(Rgs0-R1240)/(RgsotR1240) for Hyperion and
ALI.

Gao [27]

WI, Water Index

Water status

Rgoo/Rg70 for Hyperion only.

Pefiuelas et al.[26]

LCI, Leaf Chlorophyll Index

Chlorophyll content

(Rss0-R710)/(Rgso+Reso) for Hyperion only.

Datt [29]

PRI, Photochemical
Reflectance Index

Water stress

(Rs31-Rs70)/(Rs31+Rs70) for Hyperion only.

Thenot et al.[28]

SIPI, Structural Independent
Pigment Index

Carotenoids: chlorophyll a ratio

(Ras5-Rg00)/(Rego-Rsoo) for all three sensors.

Pefiuelas and Filella [30]

MSR, Modified Simple Ratio

Biophysical parameters.

(Rur/Rr-1)/((Ryr/Rr)?+1) for ALI and
ETM+; (R2s5/Re24-1)/((R255/Rg24) *+1) for
Hyperion.

Chen [31]
Gong et al.[19]

NLI, Non-Linear vegetation
Index

Biophysical parameters

(R%r-RR)/(R*\r+RR) for ALl and ETM+;
(R21200'R821)/(R21200+R821) for Hyperion;,

Goel and Qin [32]
Gong et al.[19]

MNLI, Modified Non-linear
vegetation Index.

Biophysical parameters.

((R21760‘R824)*1-5)/ (R21760+R824+0-5) for
Hyperion;

Gong et al.[19]
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Because of possible non-linear relationship betw&&n and canopy structure parameters, three
nonlinear VIs: MSR [31], NLI [32] and MNLI [19] werconsidered in the prediction models of CC and
LAI. The MSR and MLI non-linear vegetation indicatempt to linearize relationships with surface
parameters that tend to be nonlinear. In ordeadopt merits from the two VIs to improve their
performance correlating with canopy LAI, Gong et [4B9] also tested MNLI by modifying NLI and
considering merits of Soil Adjust Vegetation Indmupled with NLI and proved that MNLI had a higher
correlation with LAI than either NLI or MSR. Whilusing red and NIR bands for ALI and ETM+ data
to construct NLI and MSR, Hyperion bands locate@WIR and NIR (Table 2) were used. The MNLI is
only for Hyperion sensor.

Spectral texture is one of the important charagties used to identify objects (e.g., forest CC bAd
in this analysis) of interest in an image. Unlilgestral features (e.g., VIs), which describe therage
tonal variation in the various bands of an imagetural features contain information about the igpat
distribution of tonal variations within individuaknds [33]. In this practice of mapping CC and Lé
assumed the spatial distribution of tonal variagioha band image correlated with the spatial iBistion
of variation of canopy CC or LAI. Blue, red andRNbands were used for extracting texture infornmatio
in variance.

One of the most common measures of image qualtteisignal-to-noise ratio. Because the principal
components transform (PCT) does not always prodoages that show steadily decreasing image
quality with increasing component number, Greenakt [34] suggested that choosing principal
components is based on maximizing the signal-tsenoatio instead of choosing new components to
maximize variance, as traditional PCT does. Theeetbey developed one transform method called
Maximum Noise Fraction (MNF) transform to maximitlee signal-to-noise ratio when choosing
principal components with increasing component neimbWe adopted the MNF to transform ALI (9
bands), ETM+(6 bands) and Hyperion (167 bands) datgroduce low-dimensional and possible
predictors for mapping forest CC and LAl

3.3. Prediction models

To compare capabilities of the three sensors’ ttatanapping forest CC and LAI, we developed six
multivariate regression models with inputs of 10ested spectral features, variables and indicds (al
called spectral predictors) and either CC or LAlasw@wements. All candidate predictors for estaligsh
both CC and LAI prediction models with ALI, Hypenipand ETM+ data were listed in Table 3. The 10
spectral predictors included in the prediction medeere selected from all candidate variables by a
stepwise regression procedure.

3.4. Validation

For validating forest CC and LAI results mappedhwihage data, we first visually interpreted CC
values from a set of natural color aerial photogsapith a stereoscope, then modified the CC inédepl
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values with actually measured CC values and catailaAl from the modified CC values interpreted
from aerial photographs. We followed the followimgcedure to conduct the validation.

» Step 1. Locate interpretation plots on three psexador composite of ALI, ETM+ and Hyperion and
the aerial photographs. Plot size was set at 2pk@&s (3600 ), and plots were selected based on two
conditions: Being easy to locate on images/phofdggaand being as homogenous as possible on
composite images. A total of 144 plots were sekbttased on the two conditions.

» Step 2. Interpret forest CC values from the 14édel plots on aerial photographs after trainirrg fo
this interpretation with CC ground measured plots.

» Step 3. Modify each interpreted CC value using latimmship established between 38 ground
measured CC values and the corresponding intethvetiees. Then the modified CC interpreted values
are used directly to verify CC results mapped whinthree sensors’ data in this analysis.

» Step 4. Calculate 144 LAI values from the 144 teted CC values in step 3 based on a relationship
set up between 38 ground-measured CCs and 38 I3&ls [The 144 calculated LAI values (hereatfter,
they also be referred to as interpreted LAI valuwas) now be used to validate LAl maps.

» Step 5. Extract CC and LAl mapped values from thé dorresponding plots on the CC and LAI
maps whose values are predicted with the 6 predic{multivariate regression) models.

» Step 6. Calculate root mean squared error (RMS&nzap accuracy for the 144 mapped values. Plot
scatterplots of interpreted CC and LAl values agfamapped CC and LAI values based on the results
derived at steps 3 — 5.

4. Results and Analysis
4.1. Prediction models

Table 3 summarizes the 6 prediction models, indgdielected VIs, VARs and MNFs and a multiple
correlation coefficient (B for each prediction model. From the table, NDMére almost included in
every model except HYP-CC that was replaced withAND This indicates that the NDVI is a robustic
and very useful VI to describe variations of for€& and LAI. The spectral texture variables asm al
important since four modes include the variablelsl{lBAl, ETM-CC and both Hyperion models). By the
table, it is apparent that all three CC relevandet® had produced highef Ralues than the three LAI
models when all models used 10 input predictorkis s because the CC value reflects real areaathat
sensor can “see”; it responds directly to spectnaracteristics of a forest stand, and to speeftacted
from tree crowns (canopies) and underlying soirelt reflectance directly depends on the propoio
these different components (e.g., crown, understad/bare soil) in the elementary surface viewea by
sensor [36]. Although LAl relates to CC, they da have a linear relationship [35]. Moreover, LAI
generally reaches spectral saturation after LAl et & [37]. Thus, it is reasonable that thevRlues
from the three CC related models are higher thasetirom the three LAI related models. Comparirgg th
R? values among the 6 prediction models, Hyperiongraduced the highestRalues for predicting CC
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and LAIl, ALI was medium and the lowest was produtsdETM+ although the ALI-LAI was just
slightly better than ETM-LAI.

Table 3.Summary of six 10-variable regression mobiesed for predicting pixel-based CC and LAl

Model Band (wavelength, nm) or features R2 Remarks
included in a model

ALI-CC  NDVI, NDWI, MSR, NLI, MNF1, MNF3, 0.7712 Selected from all 17 variables: NDVI, SR, NDWI, SIPI, MSR, NLI, 2 VARs
MNF5 - MNF8 (from red and NIR bands), and 9 MNFs

ALI-LAI  NDVI, SIPI, MNF1, MNF4, MNF5 MNF7 -0.5069 Selected from all 17 variables: NDVI, SR, NDWI, SIPI, MSR, NLI, 2 VARs
MNF9, VAR1, VAR2 (from red and NIR bands), and 9 MNFs

ETM-CC NDVI, SR, SIPI, MSR, NLI, MNF1 - 0.6620 Selected from all 13 variables: NDVI, SR, SIPI, MSR, NLI, 2 VARs (from
MNF4, VAR1 red and NIR bands), and 6 MNFs

ETM-LAI NDVI, SR, SIPI, MSR, NLI, MNF1, 0.5033 Selected from all 13 variables: NDVI, SR, SIPI, MSR, NLI, 2 VARs (from
MNF2, MNF4 - MNF6 red and NIR bands), and 6 MNFs

HYP-CC NDWI, WI, SIPI, MNF3 - MNF5, MNF10, 0.8737 Selected from all 33 variables: NDVI, SR, NDWI, WI, LCI, PRI, SIPI, MSR,
MNF14, MNF20, VAR2 NLI, MNLI, 3 VARs (from blue, red and NIR bands), and 20 MNFs

HYP-LAI NDVI, WI, PRI, MNLI, MNF10, MNF12, 0.6687 Selected from all 33 variables: NDVI, SR, NDWI, WI, LCI, PRI, SIPI, MSR,

MNF16, MNF17, MNF20, VAR3

NLI, MNLI, 3 VARSs (from blue, red and NIR bands), and 20 MNFs

2 All six regression models simulated with 38 CC & LAl measurements.

4.2. CC and LAI maps

We input pixel-based 10 predictor values to theesibablished prediction models (Table 3) and cceate
six corresponding CC and LAI maps (Figure 2). Fegu2a — 2c are three CC maps (ALI-CC, ETM-CC
and HYP-CC) created with 10 selected predictordraeted from ALI, ETM+ and Hyperion data,
respectively. Figures 2d — 2f are three correspantdAl maps (ALI-LAI, ETM-LAI and HYP-LAI).
The Blodgett study area is bounded by a white ilinie figure. After taking a close look at thesaps
and comparing them with the pseudo-color compasigge (Figure 1), it is evident that the three CC
maps are better than the corresponding three LAdsntlue to the same reason explained for Table 3;
both CC and LAl maps created with Hyperion databatter than those created with either ALI or ETM+
data, especially for Hyperion data used for mappiaAd Visually, there is a little bit of difficulf to
judge which CC and LAl are better, created by ALIEOrM+. However, based on validation results,
addressed as below, ALI results are better thasetmoth ETM+ data. The three white straight liies
ALI-CC and ALI-LAI were caused by three bad detestof ALI band 8.

Figures 3 and 4 present CC and LAI profiles, respely, along with corresponding NDVI (created
using Hyperion NIR and red bands) profile alonglihes L1 and L2 in Figure 1. Both figures show a
generally spatial consistency among the three GQlte or three LAI results mapped with the three
sensors’ data and NDVI. It is apparent that CA.AF mapped with Hyperion data is more consistent
with NDVI than those mapped with ALI and ETM+ ddtee the enlarged profiles for CC from Figures
3b and 3d and for LAI from Figures 4b and 4d). sTimight be due to NDVI constructed with Hyperion
data, but it could be believed that Hyperion sems® had a greater capability to map CC and LAN tha
ALl and ETM+ sensors. Generally speaking, the if@sfindicate that the forest CC and LAl results
mapped with the three sensors’ data tend consistent
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Figure 2. Forest CC and LAl maps produced with the threesees’ data. CC maps
produced with ALI (a), ETM+ (b), and Hyperion (ctd; LAl maps produced with ALI
(d), ETM+ (e), and Hyperion (f) data. The Blodgstiidy area is bounded in a white
line in the six CC and LAI maps. In the figuregttarker the image pixels show, the
higher the forest CC or LAl values.

(a) ALI-CC (b) ETM-CC

(c) HYP-CC

0.0-0.5
0.5-1.0
1.0-15
1.5-2.0
2.0-2.5
2.5-3.0
3.0-3.5
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Figure 3. (a) CC profile (see Figure 1 for L1 location) sksowariations of three CC
maps: ALI-CC, ETM-CC and HYP-CC, and correspondiHgperion” NDVI; (b) four
enlarged profiles of (a) for part of distance stépstep = 30 m) from 100 to 140; (c) and
(d) are similar to (a) and (b) but the profile veeisanged along L2 (see Figure 1).
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Figure 3. cont.
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LAI mapped with image data

3758

Figure 4. (a) LAI profile (see Figure 1 for L1 location)®hs variations of three LAI
maps: ALI-LAI, ETM-LAI and HYP-LAI, and corresponag “Hyperion” NDVI; (b)
four enlarged profiles of (a) for part of distarsteps (1 step = 30 m) from 100 to 140; (c)
and (d) are similar to (a) and (b) but the profiles arranged along L2 (see Figure 1).

5 . 1.0
] ALILAI : I
1 ﬂ ------- ETM-LAI| (@)}
4] | s HYP-LAI|__i ; [ o8
] NDVI : I
3 N AV AN 1 {os
] AL g v A ; fF VLY 3
] 1SR S Ji \IHE 1R I
2 WAL A 1 AR B L) :g: . PR 04
| M i F h" L - \[J ‘ M& {i ,
1 el L : 3 L VPV (Uit 0.2
L/'“F w | v ‘ : U | I'Z\\‘“‘ 7
1 9 . H
‘ - 1 i
| ' [ ' "
1 : Do A IBK i
0 ~ ' ' e ' 0.0
0 20 40 60 100 120 180
Nictanra ctanc (1 ctan = 2N M)\
1.0
/\ AIT-LAI (b)
"""" ETM-LAI 0.8
©
= HYP-LAI
©
Gé NDVI
© i
E \ 106
= s
E 2
3 0.4
g 1o.
o
[+
£
<
= L 0.2
— ‘ — — ‘ ‘ ‘ ~1{ 00
100 105 110 115 120 125 130 135 140

Distance steps (1step =30m)



Sensor008 8 3759

Figure 4. cont.
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4.3. Validation

Due to the time difference between the three sshdata acquisition (October 9 and 25, 2001), &eria
photographs (May 25, 2000), and CC/LAI measuremghigust 10-11, 2001), actual CC and LAI over
the time period may have changed significantly,eesly for LAl parameters. In addition, photo
interpretation is dependent on the experience @f pinoto interpreter [38] who may make an
interpretation error (usually a systematic erroin order to make the CC photo interpreted values
comparable with the CC mapped values from the themsors’ data, all 144 interpreted CC values were
modified according to the relationship R 0.923) established between CC interpreted vahres
ground CC measured values [35]. An exponentiatigiship (Al = 0.595°°7*°¢ R? =0.586) [35]

between CC and LAl was developed from the 38 groomehsured samples. The relationship was
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employed to calculate 144 LAl values from 144 miedif CC interpreted values. Both CC and LAI
values of photo interpretation were used to vaida€C and LAI mapped values from the three sensors’
data.

Table 4 presents some simple statistics derivad fiee validation results, used to judge CC and LAl
map quality through comparison with the CC and hAlues derived by photo interpretation. Statistics
include root mean squared error (RMSE) and mappedracy (MA) for each prediction model. By
comparing statistical results in the table amoritgint prediction models and between mapped esult
and interpreted results, it is worth noting thathbmapped CC and LAl results with the lowest RM$®H a
highest MA values were produced by Hyperion datairggfollowed by ALl data, and the worst for
ETM+ data.

Table 4. Simple accuracy statistics of CC and LAI mappethwnage data
against aerial photo interpretation (n = 144)

Model RMSE® Mapped accuracy (MA"%)
ALI-CC 13.79% 7451
ALI-LAI 0.486 70.71
ETM-CC 15.63% 7111
ETM-LAI 0.608 63.35
HYP-CC 13.01% 75.95
HYP-LAI 0.419 74.74

1 ) where,
& RMSE= —Z( X— Ax) Xiis interpreted CC or LAl value while
Ni= Xiis corresponding CC or LAI mapped value,

Figure 5 illustrates the agreement degree andbifjabetween mapped and interpreted CC and LAI
values. The 144 CC points were plotted in Figur@,5c and e) for the three CC maps produced with
ALI, ETM+ and Hyperion, respectively, and the 14Allpoints were plotted in Figure 5 (b, d and f) for
the three LAl maps. The more closely the scatbentp distribute along the diagonal line (1:1 dasé),
the better the mapped results are, thus the htgbeagreement degree and reliability between thgpet
and interpreted results (also the higher the caticel coefficient R of the linear relationship between
mapped and interpreted values). In addition, basethe degree of closeness of a regression lol&l (s
fine lines in the scatter plots) to its diagonakliand on how close the two lines are to beingllpbrave
can judge which sensor’s data is best for mappi@go€CLAI. Based on these criteria, it is cleart ttiee
Hyperion data again produced the better CC and mApped results, again followed by the ALI data
except Figure 5e that seems is not better thanr€&iga (CC mapped with the ETM+ data). However,
from the distribution tendency of scattering pojnitss apparent that the CC mapped with Hyperiatad
is much better than that with ETM+ data.
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Figure 5. Scatter plots showing the agreement degree almbitidy between the
interpreted values and corresponding mapped va(a@<CC and (b) LAI interpreted
values vs. corresponding mapped values with ALaddt) CC and (d) LAI interpreted
values vs. corresponding mapped values with ETMta;da(e) CC and (f) LAl
interpreted values vs. corresponding mapped valitbsHyperion data;
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4.4. Performance of the three sensors for mappiGd-ail

Based on the experimental results, it is definitat tthe Hyperion data outperform the other two
sensors’ data for mapping forest CC and LAl Tikiattributed to the properties of hyperspectrahda
that contain rich subtle spectral information fra@7 Hyperion bands. Such subtle spectral inforonati
is able to describe the slight variation of for€& and LAI, thus it is beneficial to establish higtality
prediction models. The second reason of the gastbpnance of Hyperion data for mapping CC and
LAl is the availability of those optimal ViIs. TRhés extracted from Hyperion data are those costdl
with these better bands (most located in SWIR atid Mgions) that have proved to have a high
correlation with LAI [19]. There do exist many alpstion features in SWIR and NIR, including those
caused by water contents and other biochemicals 48R which might relate to variations of forest
canopy structure parameters, such as CC and LAkrefore it is highly possible that such Vis used a
predictors are better than those constructed usiRgand red bands only. In fact, all VIs selecieid
the two prediction models with Hyperion data weoastructed with those better Hyperion bands indeed
except SIPI that can also be constructed with dtlversensors’ data. Another advantage for Hyperion
sensor is its SWIR bands that are slightly affedtgdthe atmosphere (mainly absorption) except two
major water absorption bands. Therefore, the §@sttral region for Hyperion is SWIR, but for Alidh
ETM+, the visible region should be considered fee instead [7]. The final cause might be related t
more available MNFs being selected from Hyperiotadhan MNFs derived from either ALl data or
ETM+ data. Although the 6 MNFs and 5 MNFs selectiedHYP-CC and in HYP-LAI models,
respectively, do not include the first two MNFs, balieve they can be optimal combination synthagizi
with other VIs and spectral texture variable. Fyperion data, we have 20 MNFs to be selected,
significantly being beneficial for establishing tegtprediction models than either ALI data (9 MNBs)
ETM+ data (6 MNFs), at least from the angle of reathtics.

Compared to mapping results of CC and LAI with ETH&ta, based on the validation results (Table
4, Figure 5), ALI data are better than ETM+ dataalgh lowering the quality of LAl map (Figure 2d)
produced with ALl data due to three bad detectdrld band 8. This is because, besides three
additional bands (ALl bands 1, 6 and 7 in Table A)] bands have a higher signal-to-noise ratio
compared to ETM+ bands. Lencioni et al. [41] destated that at 5 percent of maximum radiance, the
ALI signal-to-noise ratios (SNRs) range from 10®@3®&hile the ETM+ only manages SNRs of 15-50.
The ALI push-broom system also offers greater dngltime and significant radiometric improvement
over ETM+ [2]. For the relative poor CC and LAI ppeed results with ETM+ data, besides the relative
low SNRs of 15-50 [41], the other possible fact®rsmaller number of possible predictors (13) to be
selected for developing the two prediction moddth \ETM+ data than with other two sensors. Wedtrie
to combine with original ETM+ bands, but the mapgpiasults were not improved.

5. Conclusions

In this study, a comparative analysis of perforneant the three sensors for mapping forest crown
closure (CC) and leaf area index (LAl) was conddicteThe three sensors are Hyperspectral Imager
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(Hyperion) and Advanced Land Imager (ALI) onboam@-E satellite and Landsat Enhanced Thematic
Mapper Plus (ETM+) and their data were acquire@otober 9 and 25, 2001, respectively. A total®f 3
mixed coniferous forest CC and 38 LAl measuremesi®e collected on August 10-11, 2001, at Blodgett
Forest Research Station, University of Califorrti8arkeley, USA. The comparative results of thesébr
CC and LAl maps produced with image data and the@ LAl measurements were used for evaluating
capabilities of the three sensors for mapping to@&€3 and LAI.

The experimental results indicate that the Hypedata are the most effective for mapping forest CC
and LAI (CC mapped accuracy (MA) = 76.0%, LAl MA.7%), followed by ALI data (CC MA =
74.5%, LAl MA = 70.7%), with ETM+ data results bgiteast effective (CC MA = 71.1%, LAl MA =
63.4%). The analysis results prove that the Hgpesiensor outperforms the other two sensors: Atl an
ETM+. This is because of its high spectral resofuthat can record subtle spectral informationit®f
SWIR data for constructing optimal vegetation iedi¢VIs) that are slightly affected by the atmosphe
(mainly absorption) except two major water absorptbands, and of its more available Maximum Noise
Fractions (MNFs) than the other two sensors toebected for establishing prediction models. Coragar
to ETM+ data for mapping forest CC and LAI, ALI daire better due to ALI data with more bands and
higher signal-to-noise ratios than those of ETM+ada From this experiment of the three sensors’
comparison for mapping forest CC and LAl, the Hyperdata have demonstrated their potential of
applying in forest management and ecosystem stadieghe ALI sensor is proved to be a better sensor
for Landsat data continuity.
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