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Abstract: In this study, a comparative analysis of capabilities of three sensors for mapping 

forest crown closure (CC) and leaf area index (LAI) was conducted.  The three sensors are 

Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 

satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).  A total of 38 mixed 

coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research 

Station, University of California at Berkeley, USA.  The analysis method consists of (1) 

extracting spectral vegetation indices (VIs), spectral texture information and maximum 

noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and 

mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI 

results with field validated photo-interpreted CC and LAI values.  The experimental results 

indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC 

mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 

74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, 

LAI MA = 63.4%).  This analysis demonstrates that the Hyperion sensor outperforms the 
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other two sensors: ALI and ETM+.  This is because of its high spectral resolution with rich 

subtle spectral information, of its short-wave infrared data for constructing optimal VIs 

that are slightly affected by the atmosphere, and of its more available MNFs than the other 

two sensors to be selected for establishing prediction models.  Compared to ETM+ data, 

ALI data are better for mapping forest CC and LAI due to ALI data with more bands and 

higher signal-to-noise ratios than those of ETM+ data.  
 

Keywords: Hyperion, ALI, ETM+, Leaf area index, Crown closure, Vegetation index, 

Texture information, Maximum noise fraction 

 

 

1. Introduction 
 

Three revolutionary imagers: Advanced Land Imager (ALI), Atmospheric Corrector (AC) and 

Hyperspectral Imager (Hyperion), onboard the EO-1 satellite have been collecting multispectral and 

hyperspectral scenes in coordination with the Enhanced Thematic Mapper Plus (ETM+) on Landsat 7 

[1].  A significant part of the EO-1 program is to perform data comparisons among Hyperion, ALI and 

ETM+. Such a comparison is also required by the United States Landsat Data Continuity Mission 

(LDCM, [2]) to advance the legacy of the Landsat program with the intent of serving science and 

society.   The comparisons are ensured, since the EO-1 orbit matches the Landsat 7 orbit with only 

one minute delay. Since launching EO-1, such comparisons have been conducted by many researchers 

who focused on either absolute radiometric values [3-5] or applicabilities of various sensors’ data [6-

11].  

For example, after comparing the retrieved surface reflectances from ALI with those from ETM+ 

and Landsat-4, 5 TM and considering the fact that ALI is a sensor launched for validation of new 

sensor technologies, Bryant et al. [5] concluded that the ALI sensor performed extremely well. 

Chander et al. [3] conducted a cross calibration of ALI and ETM+ sensors and their results of the 

radiometric comparison indicate that the relative sensor chip assemblies gains agree with the ETM+ 

visible/near infrared (VNIR) band gains to within 2% and with the short-wave infrared (SWIR) bands 

to within 4%.  In discriminating forests with Hyperion, ALI and ETM+ images, Goodenough et al. [9] 

compared capabilities of the three sensors’ data used for forest classification at various classification 

levels.  Their experimental results indicated that Hyperion (overall accuracy of 90%) outperformed 

ALI (85%) and ETM+ (75%) in forest classification and that ALI classification results were much 

better than ETM+.  Furthermore, Neuenschwander et al. [6] demonstrated higher classification 

accuracy of mapping flood features in the Okavango Delta, Botswana when using ALI compared to 

ETM+.  In our previous work to compare the capabilities of the three sensors (Hyperion, ALI and 

ETM+) by the effect of individual bands on estimating forest crown closure (CC) and leaf area index 

(LAI), we found the Hyperion data consistently outperformed the ALI and ETM+ data while ALI was 

better than ETM+ [7].  

In this study, we continue the comparative analysis of capabilities of three sensors: ALI, ETM+ and 

Hyperion by mapping forest CC and LAI at Blodgett Forest Research Station, University of California 

at Berkeley, in Northern California.  LAI quantifies the amount of live green leaf material present in 



Sensors 2008, 8                            
 

 

3746

the canopy per unit ground area and is defined as the total one-sided area of all leaves in the canopy 

within a defined region (m2/m2) [12] while CC can be defined as percentage of land area covered by 

the vertical projection of tree crowns.  We based on the following two reasons to conduct this further 

comparative analysis.  Firstly, in addition to our previous work [7], we conduct mapping forest CC 

and LAI and emphasize on spatial analysis of CC and LAI in the study area, rather than focusing on 

correlation analysis of the three sensors’ data with forest CC and LAI.  Secondly, instead of using 

individual bands, various band regions and subsets of bands of the three sensors’ data for estimating 

forest CC and LAI, Vegetation indices (VIs), spectral texture variables (VARs) and maximum noise 

fractions (MNFs) are extracted from the sensors’ data for developing pixel-based models of predicting 

forest CC and LAI.  To do so, mixed coniferous forest CC and LAI measurements were collected at 

the study area.  Data from Hyperion, ALI and ETM+ were used to map the forest CC and LAI.  

Therefore, the objective for this analysis is to compare capabilities of ALI, ETM+ and Hyperion for 

mapping forest CC and LAI with selected spectral features and indices extracted from the three 

sensors’ data.  

 

2. Study site and sensors’ data 
 

2.1. Study site 

 

The Blodgett Forest Research Station (120°39’00’W/38°54’29”N) of the University of California, 

Berkeley, located in the American River watershed on the western slope of the central Sierra Nevada 

mountain range, El Dorado County, California (Figure 1), was selected as the study site.  The Blodgett 

study area is bounded by a white line in the figure.  The vegetation consists of the normal associations 

of Sierra mixed conifer forest. The major tree species include: Five conifers, Sugar pine (SP, Pinus 

lambertiana), Ponderosa pine (PP, Pinus ponderosa), White fir (WF, Abies concolor), Douglas fir 

(DF, Pseudotsuga menziesii) and Incense cedar (IC, Calocedrus decurrens); and one hardwood, 

California black oak (Quercus kelloggii).  A species native to the Sierra Nevada but not found in the 

Blodgett Forest, Giant sequoia (GS, Sequoiadendron giganteum), has been planted at the Blodgett 

research station since the 1900’s.  In this study, we measured forest CC and LAI both from mixed 

coniferous forests with the six conifer species in most compartments at the study site. 

 

2.2. Field data collections 

 

We took a total of 38 forest CC and 38 LAI measurements in plots on August 10-11, 2001, two 

months before the acquisition of the three sensors’ data.  The measurement plots were typically 

located within the mixed coniferous forests.  The plot size is around 2500-3500 m2 to ensure that 2-4 

pixels (30 m resolution) are included from each of the three sensors.  Two cross lines were laid out 

with a 50-meter tape in each plot.  These lines were aligned along approximately S-N and W-E 

directions across the plot center.  We then measured and summed the intercepted lengths vertically 

projected by crowns in the overstory.  A CC value (%) was calculated through the formula: CC(%) = 

sum of intercepted crown lengths / total line length.  A CC measurement taken from a plot was finally 
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determined by synthetically considering the results measured and visually estimated in forest 

compartments and interpreted from true-color aerial photographs. 

Figure 1. The location of the study site and the positions of plots where forest CC and 

LAI were measured were marked on the pseudo color composite image of Hyperion 

(wavelengths 813/681/548 nm vs. R/G/B) in red-fill circle symbols. Label L1 and L2 on 

the figure present locations of profile analysis for CC and LAI maps (see Figures 3 & 

4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An LAI-2000 Plant Canopy Analyzer (PCA) was used to take LAI measurements at the same plots 

as for measuring CC values. Each LAI measurement represents an average of ten PCA readings.   The 

locations of PCA readings were selected in each plot based on the canopy closure, age of stands, 

degree mixed with species and nutrient level so as to make the measurements representative of the 

variability within the plot.  For plots with LAI > 2.0, almost no understory was found while with LAI 

lower than 2.0 there exists a varying proportion of understory that may have contributed to LAI 

measurement.  Because a sensor always responds to both the understory and overstory within its field-

of-view, the LAI measurement in this study has reflected contributions from both understory and 

overstory.  The LAI measurement taken by the PCA is ‘effective’ LAI [12, 13]. Since the effective 
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LAI is less variable and easier to measure than “true” LAI, is an intrinsic attribute of plant canopies 

[12], and also has a proportional relationship with the “true” LAI [14], we directly use the effective 

LAI throughout this analysis and refer to it as LAI. 

To conduct an atmospheric correction to the ALI and ETM+ data, we also took reflectance 

measurements in the field from targets of road surface (asphalt and gravel materials), bare soil and 

young tree canopy (DF, GS, IC, PP, SP and WF) using a FieldSpec®Pro FR (Analytical Spectral 

Devices, Inc., USA) between 11:30 and 14:30 on August 18, 2002.  The instrument consists of three 

separate spectrometers with spectral range from 350 nm to 2500 nm. All spectra were measured at the 

nadir direction of the radiometer with a 25° FOV.  Depending on the target size, the distance between 

the instrument’s fiber head and its target was 20 cm to 1 m to allow within-target-area radiance 

measurement. White reference current was measured every 5-10 minutes. Each sample was measured 

10 times.  To ensure the measurements representing the target, each time we moved the fiber head a 

little bit but guaranteed the in situ measurements taken from the within-target-area.   

 

2.3. The characteristics of three sensors and image data acquisition  

 

The detailed descriptions to the characteristics of the two EO-1 sensors: Hyperion and ALI, and 

ETM+ as well as the EO-1 mission had been provided by Ungar et al. [1] and in Pu et al. [7].  Simple 

characteristics of the three sensors and number of bands available used for this analysis are 

summarized in Table 1.  The ALI is a ten-band multispectral system with multiple linear arrays 

embedded in a single sensor chip assembly (SCA) [15].  These bands have been designed to mimic six 

Landsat bands with three additional bands covering 433-453 nm, 845-895 nm, and 1200-1300 nm 

(Table 1).  The ALI has 30 m resolution for the multispectral pixels and 10 m resolution for the 

panchromatic pixels. The instrument can represent one 37 km by 100 km land area per image.  In this 

study, we used 9 multispectral bands for comparison with the other two sensors.  Hyperion is a high-

resolution hyperspectral imager capable of resolving 220 spectral bands (from 0.4 to 2.5 �m) with a 

30 m spatial resolution and a nominal spectral resolution of 10 nm.  The instrument can represent one 

7.5 km by 100 km land area per image and can provide detailed spectral mapping across all 220 bands 

with high radiometric accuracy. The Hyperion has two spectrometers, one VNIR spectrometer and one 

SWIR spectrometer. Because of low ratio of signal-to-noise at both spectral ends, heavy water 

absorption centered around 1400 and 1900 nm and the spectral overlap of the two spectrometers, 75 

bands were dropped from original 242.  Thus a total of 167 bands (effective bands) were used in this 

analysis.  Operating by a whiskbroom scanning multichannel radiometer, the ETM+ has 6 

multispectral VNIR and SWIR bands, one panchromatic band and one thermal band with spatial 

resolutions of 30 meters for 6 VNIR/SWIR bands, 60 meters for 1 thermal band and 15 meters for 1 

panchromatic band.  The instrument achieves one 185 km by 185 km land area per image.  In this 

study, we used 6 of these multispectral bands for comparisons purpose. 

ALI and Hyperion data covering the study site were acquired on October 09, 2001, around 10:30 

a.m. local time.  Due to ETM+ data not available on the same day as EO-1 data, the ETM+ data were 

acquired on October 25, 2001, around 10:30 a.m. local time in this comparative analysis of sensors’ 

data.  A set of true color aerial photographs was taken on May 25, 2000 at a nominal scale of 1:8,000, 

used for validating forest CC and LAI results mapped with the three sensors’ data. 
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Table 1. Characteristics of the three sensors and a list of band numbers and wavelengths 

of the three sensors used in this analysis. 

 

Parameters
Spectral range (µm)
Spatial resolution (m)
Swath width (km)
Spectral resolution
Spectral coverage
Number of bands
Spectral bands used Band WL(nm) Band WL(nm) Band WL(nm)
in this analysys 1-90 430-1341 1 433-453 1 450-520

91-124 1462-1795 2 450-515 2 530-610
125-167 1976-2400 3 525-605 3 630-690

4 630-690 4 780-900
5 775-805 5 1550-1750
6 845-895 7 2090-2350
7 1200-1300
8 1550-1750
9 2080-2350

Note: Band numbers of Hyperion have been re-ordered.

EO-1/Hyperion EO-1/ALI Lansat-7/ETM+

Variable

30
185

Variable

0.4 - 2.5 0.4 - 2.4 0.4 - 2.4 

220 10 7
Continuous Discrete Discrete

30
7.7

30
37

10 nm

 
 

3. Methods 
 

3.1. Retrieving surface reflectance 

 

Atmospheric correction for all the three sensors’ data was first conducted to retrieve surface 

reflectance.  With the High Accuracy Atmospheric Correction for Hyperspectral Data (HATCH, cf. 

[16, 17]), atmospheric correction for hyperspectral data of Hyperion was accomplished at the Center 

for the Study of Earth from Space, Department of Geological Sciences, University of Colorado, USA.  

The HATCH aims at retrieving surface reflectance spectra of high quality with a reasonable speed.  

For the ALI and ETM+ data, surface reflectance was retrieved using the Simple Atmospheric 

Correction method (SAC, cf. [18, 19]).  In retrieving surface reflectance with SAC, we first needed 

three at-sensor total radiances simulated with MODTRAN4 [20].  Thereafter, spectral measurements 

taken from targets in the study area were used to modify the preliminary retrieved surface reflectance. 

All surface reflectance data retrieved from the three sensors are used in following comparative 

analysis. 

 

3.2. Extraction of spectral features/indices 

 

To develop multivariate regression models with selected spectral features/indices and ground 

measured CC and LAI data for predicting pixel-based forest CC and LAI,  vegetation indices (VIs), 

spectral texture variables (VARs) and maximum noise fractions (MNFs) were first constructed or 

extracted from the three sensors’ data. In this study, ten VIs were selected and they are Normalized 
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Difference Vegetation Index (NDVI), Simple Ration Index (SR), ND Water Index (NDWI), Water 

index (WI), Leaf Chlorophyll Index (LCI), Photochemical Reflectance Index (PRI), Structural 

Independent Pigment Index (SIPI), Modified Simple Ratio index (MSR), Non-Linear vegetation Index 

(NLI) and Modified Non-Linear vegetation Index (MNLI).  They were constructed using relevant 

multispectral bands of ALI and ETM+, but for Hyperion, we selected relatively effective bands, most 

of which are located in NIR and SWIR spectral regions, rather than considering the VIs’ original 

definitions [19]. Three spectral texture variables (defined in variance) were extracted from red and 

NIR bands of the three sensors and blue band as an additional band for Hyperion.  The three bands 

(only two for ALI and ETM+) used for extracting spectral texture information have a higher 

correlation with forest CC and LAI than the other bands [7].  The first 20 MNFs, 9 MNFs and 6 MNFs 

were extracted, respectively, from 167 Hyperion bands, 9 ALI bands and 6 ETM+ bands.  The 

characteristics of the plant canopy are related to the VIs, VARs and MNFs, whose definitions and 

citation sources have been summarized in Table 2.  The reasons of selecting such variables and indices 

are briefly addressed as follows. 

The most commonly used vegetation indices are simple algorithms based on the dissimilar 

interaction of red and near-infrared (NIR) electromagnetic radiance with vegetation canopies. Among 

them, the ratio-based normalized difference vegetation index (NDVI, [21]), and the simple ratio 

vegetation index (SR, [22]) are the most frequently used to correlate with CC, LAI and other canopy 

structure parameters (e.g., [23-25]).  Besides using red and NIR bands, Gong et al. [19] also tested 

SWIR bands and NIR bands with Hyperion hyperspectral data to construct NDVI and SR VIs and 

found the VIs constructed with SWIR and NIR bands better than these constructed using red and NIR 

bands only. 

The value of WI increases with leaf water content.  This is because the WI compares the leaf 

(liquid) water absorption band near 970 nm with a reference band at 900 nm, which does not show 

leaf water absorption [26].  The re-ordered Hyperion bands 47 and 54 are very similar to bands at 970 

nm and 900 nm, thus are used to construct the WI.  The NDWI is based on leaf (liquid) water 

absorption band near 1240 nm and a relative nonabsorption reference band near 860 nm [27].  This 

index also increases with leaf water content.  Another index PRI was used as a reliable water-stress 

index [28].  Given the relationship between canopy water content and canopy CC or LAI, the three 

water indices should be useful for estimating canopy CC and LAI.  The LCI, developed by Datt [29], 

was found to be a sensitive indicator of chlorophyll content in leaves and was less affected by 

scattering from the leaf surface and internal structure variation.  In consideration of the relationship 

between canopy CC & LAI and total chlorophyll content and available Hyperion bands for the index, 

it was also selected as a potential VI.  The structure-independent pigment index (SIPI) is correlated 

with the carotenoid : chlorophyll a ratio [30].  Carotenoids exhibit a well-known absorption peak at 

445 nm.  Since the three sensors all provide available bands to calculate the index, in considering the 

carotenoids absorption feature, we hope the index useful in describing the variation of canopy CC and 

LAI.  
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Spectral variable/index Characteristic of the plant canopy 
related with the variable/index

Definition Described by

NDVI, Normalized Difference 
Vegetation Index

Photosynthetic area; NIR region: cell 
structure multi-reflected spectra; SWIR 
region: water, cellulose, starch and 
lignin absorption.

(RNIR-RR)/(RNIR+RR) for ALI and ETM+; 
(R1245-R825)/(R1245+R825) for Hyperion;

Rouse et al. [21]                    
Gong et al. [19]

SR, Simple Ratio Same as NDVI RNIR/RR for ALI and ETM+; R1245/R825 for 
Hyperion;

Jordan [22]                            
Gong et al. [19]

NDWI, ND Water Index Water status (R860-R1240)/(R860+R1240) for Hyperion and 
ALI.

Gao [27]

WI, Water Index Water status R900/R970 for Hyperion only. Peñuelas et al.[26]

LCI, Leaf Chlorophyll Index Chlorophyll content (R850-R710)/(R850+R680) for Hyperion only. Datt [29]

PRI, Photochemical 
Reflectance Index

Water stress (R531-R570)/(R531+R570) for Hyperion only. Thenot et al.[28]

SIPI, Structural Independent 
Pigment Index

Carotenoids: chlorophyll a ratio (R445-R800)/(R680-R800) for all three sensors. Peñuelas and Filella [30]

MSR, Modified Simple Ratio Biophysical parameters. (RNIR/RR-1)/((RNIR/RR)1/2+1) for ALI and 

ETM+; (R1255/R824-1)/((R1255/R824)
1/2+1) for 

Hyperion.

Chen [31]                             
Gong et al.[19]

NLI, Non-Linear vegetation 
Index

Biophysical parameters  (R2
NIR-RR)/(R2

NIR+RR) for ALI and ETM+; 

(R2
1200-R821)/(R

2
1200+R821) for Hyperion;

Goel and Qin [32]                      
Gong et al.[19]

MNLI, Modified Non-linear 
vegetation Index.

Biophysical parameters. ((R2
1760-R824)*1.5)/(R2

1760+R824+0.5) for 
Hyperion;

Gong et al.[19]

Table 2. Summary of spectral variables/indices potentially usde for establishing multivariate regression models for predicting pixel-based 
forest CC and LAI in this analysis
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Because of possible non-linear relationship between VIs and canopy structure parameters, three 

nonlinear VIs: MSR [31], NLI [32] and MNLI [19] were considered in the prediction models of CC and 

LAI.  The MSR and MLI non-linear vegetation indices attempt to linearize relationships with surface 

parameters that tend to be nonlinear.  In order to adopt merits from the two VIs to improve their 

performance correlating with canopy LAI, Gong et al. [19] also tested MNLI by modifying NLI and 

considering merits of Soil Adjust Vegetation Index coupled with NLI and proved that MNLI had a higher 

correlation with LAI than either NLI or MSR.   While using red and NIR bands for ALI and ETM+ data 

to construct NLI and MSR, Hyperion bands located in SWIR and NIR (Table 2) were used.  The MNLI is 

only for Hyperion sensor. 

Spectral texture is one of the important characteristics used to identify objects (e.g., forest CC and LAI 

in this analysis) of interest in an image. Unlike spectral features (e.g., VIs), which describe the average 

tonal variation in the various bands of an image, textural features contain information about the spatial 

distribution of tonal variations within individual bands [33].  In this practice of mapping CC and LAI, we 

assumed the spatial distribution of tonal variations of a band image correlated with the spatial distribution 

of variation of canopy CC or LAI.  Blue, red and NIR bands were used for extracting texture information 

in variance.   

One of the most common measures of image quality is the signal-to-noise ratio.  Because the principal 

components transform (PCT) does not always produce images that show steadily decreasing image 

quality with increasing component number, Green et al. [34] suggested that choosing principal 

components is based on maximizing the signal-to-noise ratio instead of choosing new components to 

maximize variance, as traditional PCT does. Therefore they developed one transform method called 

Maximum Noise Fraction (MNF) transform to maximize the signal-to-noise ratio when choosing 

principal components with increasing component number.  We adopted the MNF to transform ALI (9 

bands), ETM+(6 bands) and Hyperion (167 bands) data to produce low-dimensional and possible 

predictors for mapping forest CC and LAI. 

 

3.3. Prediction models 

 

To compare capabilities of the three sensors’ data for mapping forest CC and LAI, we developed six 

multivariate regression models with inputs of 10 selected spectral features, variables and indices (all 

called spectral predictors) and either CC or LAI measurements.  All candidate predictors for establishing 

both CC and LAI prediction models with ALI, Hyperion, and ETM+ data were listed in Table 3.  The 10 

spectral predictors included in the prediction models were selected from all candidate variables by a 

stepwise regression procedure. 

 

3.4. Validation 

 

For validating forest CC and LAI results mapped with image data, we first visually interpreted CC 

values from a set of natural color aerial photographs with a stereoscope, then modified the CC interpreted 
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values with actually measured CC values and calculated LAI from the modified CC values interpreted 

from aerial photographs. We followed the following procedure to conduct the validation. 

 

• Step 1.  Locate interpretation plots on three pseudo-color composite of ALI, ETM+ and Hyperion and 

the aerial photographs.  Plot size was set at 2 X 2 pixels (3600 m2), and plots were selected based on two 

conditions: Being easy to locate on images/photographs and being as homogenous as possible on 

composite images.  A total of 144 plots were selected based on the two conditions. 

• Step 2. Interpret forest CC values from the 144 selected plots on aerial photographs after training for 

this interpretation with CC ground measured plots.   

• Step 3. Modify each interpreted CC value using a relationship established between 38 ground 

measured CC values and the corresponding interpreted values. Then the modified CC interpreted values 

are used directly to verify CC results mapped with the three sensors’ data in this analysis. 

• Step 4. Calculate 144 LAI values from the 144 interpreted CC values in step 3 based on a relationship 

set up between 38 ground-measured CCs and 38 LAIs [35].  The 144 calculated LAI values (hereafter, 

they also be referred to as interpreted LAI values) can now be used to validate LAI maps. 

• Step 5. Extract CC and LAI mapped values from the 144 corresponding plots on the CC and LAI 

maps whose values are predicted with the 6 prediction  (multivariate regression) models. 

• Step 6. Calculate root mean squared error (RMSE) and map accuracy for the 144 mapped values.  Plot 

scatterplots of interpreted CC and LAI values against mapped CC and LAI values based on the results 

derived at steps 3 – 5. 

 
4. Results and Analysis 
 

4.1. Prediction models 

 

Table 3 summarizes the 6 prediction models, including selected VIs, VARs and MNFs and a multiple 

correlation coefficient (R2) for each prediction model.  From the table, NDVI were almost included in 

every model except HYP-CC that was replaced with NDWI.  This indicates that the NDVI is a robustic 

and very useful VI to describe variations of forest CC and LAI.  The spectral texture variables are also 

important since four modes include the variables (ALI-LAI, ETM-CC and both Hyperion models). By the 

table, it is apparent that all three CC relevant models had produced higher R2 values than the three LAI 

models when all models used 10 input predictors.  This is because the CC value reflects real area that a 

sensor can “see”; it responds directly to spectral characteristics of a forest stand, and to spectra reflected 

from tree crowns (canopies) and underlying soil.  Forest reflectance directly depends on the proportion of 

these different components (e.g., crown, understory and bare soil) in the elementary surface viewed by a 

sensor [36]. Although LAI relates to CC, they do not have a linear relationship [35].  Moreover, LAI 

generally reaches spectral saturation after LAI = 6 or 7 [37].  Thus, it is reasonable that the R2 values 

from the three CC related models are higher than those from the three LAI related models. Comparing the 

R2 values among the 6 prediction models, Hyperion had produced the highest R2 values for predicting CC 
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and LAI, ALI was medium and the lowest was produced by ETM+ although the ALI-LAI was just 

slightly better than ETM-LAI. 

 
Table 3. Summary of six 10-variable regression modelsa used for predicting pixel-based CC and LAI

Model Band (wavelength, nm) or features 
included in a model

R2 Remarks

ALI-CC NDVI, NDWI, MSR, NLI, MNF1, MNF3, 
MNF5 - MNF8

0.7712 Selected from all 17 variables: NDVI, SR, NDWI, SIPI, MSR, NLI, 2 VARs 
(from red and NIR bands), and 9 MNFs 

ALI-LAI NDVI, SIPI, MNF1, MNF4, MNF5 MNF7 - 
MNF9, VAR1, VAR2

0.5069 Selected from all 17 variables: NDVI, SR, NDWI, SIPI, MSR, NLI, 2 VARs 
(from red and NIR bands), and 9 MNFs 

ETM-CC NDVI, SR, SIPI, MSR, NLI, MNF1 - 
MNF4, VAR1

0.6620 Selected from all 13 variables: NDVI, SR, SIPI, MSR, NLI, 2 VARs (from 
red and NIR bands), and 6 MNFs

ETM-LAI NDVI, SR, SIPI, MSR, NLI, MNF1, 
MNF2, MNF4 - MNF6

0.5033 Selected from all 13 variables: NDVI, SR, SIPI, MSR, NLI, 2 VARs (from 
red and NIR bands), and 6 MNFs

HYP-CC NDWI, WI, SIPI, MNF3 - MNF5, MNF10, 
MNF14, MNF20, VAR2

0.8737 Selected from all 33 variables: NDVI, SR, NDWI, WI, LCI, PRI, SIPI, MSR, 
NLI, MNLI, 3 VARs (from blue, red and NIR bands), and 20 MNFs

HYP-LAI NDVI, WI, PRI, MNLI, MNF10, MNF12, 
MNF16, MNF17, MNF20, VAR3

0.6687 Selected from all 33 variables: NDVI, SR, NDWI, WI, LCI, PRI, SIPI, MSR, 
NLI, MNLI, 3 VARs (from blue, red and NIR bands), and 20 MNFs

a: All six regression models simulated with 38 CC & LAI measurements.

 

4.2. CC and LAI maps 

 

We input pixel-based 10 predictor values to the six established prediction models (Table 3) and created 

six corresponding CC and LAI maps (Figure 2).  Figures 2a – 2c are three CC maps (ALI-CC, ETM-CC 

and HYP-CC) created with 10 selected predictors, extracted from ALI, ETM+ and Hyperion data, 

respectively.  Figures 2d – 2f are three corresponding LAI maps (ALI-LAI, ETM-LAI and HYP-LAI).  

The Blodgett study area is bounded by a white line in the figure.  After taking a close look at these maps 

and comparing them with the pseudo-color composite image (Figure 1), it is evident that the three CC 

maps are better than the corresponding three LAI maps due to the same reason explained for Table 3; 

both CC and LAI maps created with Hyperion data are better than those created with either ALI or ETM+ 

data, especially for Hyperion data used for mapping LAI.  Visually, there is a little bit of difficulty to 

judge which CC and LAI are better, created by ALI or ETM+. However, based on validation results, 

addressed as below, ALI results are better than those with ETM+ data.  The three white straight lines in 

ALI-CC and ALI-LAI were caused by three bad detectors of ALI band 8.  

Figures 3 and 4 present CC and LAI profiles, respectively, along with corresponding NDVI (created 

using Hyperion NIR and red bands) profile along the lines L1 and L2 in Figure 1.  Both figures show a 

generally spatial consistency among the three CC results or three LAI results mapped with the three 

sensors’ data and NDVI.  It is apparent that CC or LAI mapped with Hyperion data is more consistent 

with NDVI than those mapped with ALI and ETM+ data (see the enlarged profiles for CC from Figures 

3b and 3d and for LAI from Figures 4b and 4d).  This might be due to NDVI constructed with Hyperion 

data, but it could be believed that Hyperion sensor has had a greater capability to map CC and LAI than 

ALI and ETM+ sensors.  Generally speaking, the profiles indicate that the forest CC and LAI results 

mapped with the three sensors’ data tend consistent. 
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Figure 2. Forest CC and LAI maps produced with the three sensors’ data. CC maps 

produced with ALI (a), ETM+ (b), and Hyperion (c) data; LAI maps produced with ALI 

(d), ETM+ (e), and Hyperion (f) data. The Blodgett study area is bounded in a white 

line in the six CC and LAI maps.  In the figure, the darker the image pixels show, the 

higher the forest CC or LAI values. 
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Figure 3. (a) CC profile (see Figure 1 for L1 location) shows variations of three CC 

maps: ALI-CC, ETM-CC and HYP-CC, and corresponding “Hyperion” NDVI; (b) four 

enlarged profiles of (a) for part of distance steps (1 step = 30 m) from 100 to 140; (c) and 

(d) are similar to (a) and (b) but the profile was arranged along L2 (see Figure 1). 
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Figure 3. cont. 
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Figure 4. (a) LAI profile (see Figure 1 for L1 location) shows variations of three LAI 

maps: ALI-LAI, ETM-LAI and HYP-LAI, and corresponding “Hyperion” NDVI; (b) 

four enlarged profiles of (a) for part of distance steps (1 step = 30 m) from 100 to 140; (c) 

and (d) are similar to (a) and (b) but the profile was arranged along L2 (see Figure 1). 
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Figure 4. cont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Validation  

 

Due to the time difference between the three sensors’ data acquisition (October 9 and 25, 2001), aerial 

photographs (May 25, 2000), and CC/LAI measurements (August 10-11, 2001), actual CC and LAI over 

the time period may have changed significantly, especially for LAI parameters.  In addition, photo 

interpretation is dependent on the experience of the photo interpreter [38] who may make an 

interpretation error (usually a systematic error).  In order to make the CC photo interpreted values 

comparable with the CC mapped values from the three sensors’ data, all 144 interpreted CC values were 

modified according to the relationship (R2 = 0.923) established between CC interpreted values and 
ground CC measured values [35].  An exponential relationship ( 586.0,595.0 20174.0 == • ReLAI CC ) [35] 

between CC and LAI was developed from the 38 ground measured samples.  The relationship was 
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employed to calculate 144 LAI values from 144 modified CC interpreted values.  Both CC and LAI 

values of photo interpretation were used to validate CC and LAI mapped values from the three sensors’ 

data. 

Table 4 presents some simple statistics derived from the validation results, used to judge CC and LAI 

map quality through comparison with the CC and LAI values derived by photo interpretation. Statistics 

include root mean squared error (RMSE) and mapped accuracy (MA) for each prediction model. By 

comparing statistical results in the table among different prediction models and between mapped results 

and interpreted results, it is worth noting that both mapped CC and LAI results with the lowest RMSE and 

highest MA values were produced by Hyperion data again, followed by ALI data, and the worst for 

ETM+ data. 

 

Table 4. Simple accuracy statistics of CC and LAI mapped with image data 
against aerial photo interpretation (n = 144)

Model RMSEa Mapped accuracy (MAb%)
ALI-CC 13.79% 74.51
ALI-LAI 0.486 70.71
ETM-CC 15.63% 71.11
ETM-LAI 0.608 63.35
HYP-CC 13.01% 75.95
HYP-LAI 0.419 74.74

where, 
a:    is interpreted CC or LAI value while 

   is corresponding CC or LAI mapped value, 
( )2

1

1
ˆ

n

i i
i

RMSE x x
n =

= −∑ ix

ˆix  
 

Figure 5 illustrates the agreement degree and reliability between mapped and interpreted CC and LAI 

values.  The 144 CC points were plotted in Figure 5 (a, c and e) for the three CC maps produced with 

ALI, ETM+ and Hyperion, respectively, and the 144 LAI points were plotted in Figure 5 (b, d and f) for 

the three LAI maps.  The more closely the scatter points distribute along the diagonal line (1:1 dash line), 

the better the mapped results are, thus the higher the agreement degree and reliability between the mapped 

and interpreted results (also the higher the correlation coefficient R2 of the linear relationship between 

mapped and interpreted values).  In addition, based on the degree of closeness of a regression line (solid 

fine lines in the scatter plots) to its diagonal line and on how close the two lines are to being parallel, we 

can judge which sensor’s data is best for mapping CC or LAI.  Based on these criteria, it is clear that the 

Hyperion data again produced the better CC and LAI mapped results, again followed by the ALI data 

except Figure 5e that seems is not better than Figure 5c (CC mapped with the ETM+ data). However, 

from the distribution tendency of scattering points, it is apparent that the CC mapped with Hyperion data 

is much better than that with ETM+ data.  
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Figure 5. Scatter plots showing the agreement degree and reliability between the 

interpreted values and corresponding mapped values. (a) CC and (b) LAI interpreted 

values vs. corresponding mapped values with ALI data;  (c) CC and (d) LAI interpreted 

values vs. corresponding mapped values with ETM+ data;  (e) CC and (f) LAI 

interpreted values vs. corresponding mapped values with Hyperion data;   
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4.4. Performance of the three sensors for mapping CC/LAI 

 

Based on the experimental results, it is definite that the Hyperion data outperform the other two 

sensors’ data for mapping forest CC and LAI.  This is attributed to the properties of hyperspectral data 

that contain rich subtle spectral information from 167 Hyperion bands.  Such subtle spectral information 

is able to describe the slight variation of forest CC and LAI, thus it is beneficial to establish high quality 

prediction models.  The second reason of the good performance of Hyperion data for mapping CC and 

LAI is the availability of those optimal VIs.   The VIs extracted from Hyperion data are those constructed 

with these better bands (most located in SWIR and NIR regions) that have proved to have a high 

correlation with LAI [19]. There do exist many absorption features in SWIR and NIR, including those 

caused by water contents and other biochemicals [39, 40], which might relate to variations of forest 

canopy structure parameters, such as CC and LAI.  Therefore it is highly possible that such VIs used as 

predictors are better than those constructed using NIR and red bands only.  In fact, all VIs selected into 

the two prediction models with Hyperion data were constructed with those better Hyperion bands indeed 

except SIPI that can also be constructed with other two sensors’ data.  Another advantage for Hyperion 

sensor is its SWIR bands that are slightly affected by the atmosphere (mainly absorption) except two 

major water absorption bands.  Therefore, the best spectral region for Hyperion is SWIR, but for ALI and 

ETM+, the visible region should be considered for use instead [7].  The final cause might be related to 

more available MNFs being selected from Hyperion data than MNFs derived from either ALI data or 

ETM+ data.  Although the 6 MNFs and 5 MNFs selected in HYP-CC and in HYP-LAI models, 

respectively, do not include the first two MNFs, we believe they can be optimal combination synthesizing 

with other VIs and spectral texture variable.  For Hyperion data, we have 20 MNFs to be selected, 

significantly being beneficial for establishing better prediction models than either ALI data (9 MNFs) or 

ETM+ data (6 MNFs), at least from the angle of mathematics. 

Compared to mapping results of CC and LAI with ETM+ data, based on the validation results (Table 

4, Figure 5), ALI data are better than ETM+ data although lowering the quality of LAI map (Figure 2d) 

produced with ALI data due to three bad detectors of ALI band 8.  This is because, besides three 

additional bands (ALI bands 1, 6 and 7 in Table 1), ALI bands have a higher signal-to-noise ratio 

compared to ETM+ bands.  Lencioni et al. [41] demonstrated that at 5 percent of maximum radiance, the 

ALI signal-to-noise ratios (SNRs) range from 100-300, while the ETM+ only manages SNRs of 15-50. 

The ALI push-broom system also offers greater dwelling time and significant radiometric improvement 

over ETM+ [2].  For the relative poor CC and LAI mapped results with ETM+ data, besides the relative 

low SNRs of 15-50 [41], the other possible factor is smaller number of possible predictors (13) to be 

selected for developing the two prediction models with ETM+ data than with other two sensors.  We tried 

to combine with original ETM+ bands, but the mapping results were not improved. 

 

5. Conclusions 
 

In this study, a comparative analysis of performance of the three sensors for mapping forest crown 

closure (CC) and leaf area index (LAI) was conducted.  The three sensors are Hyperspectral Imager 
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(Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat Enhanced Thematic 

Mapper Plus (ETM+) and their data were acquired on October 9 and 25, 2001, respectively.  A total of 38 

mixed coniferous forest CC and 38 LAI measurements were collected on August 10-11, 2001, at Blodgett 

Forest Research Station, University of California at Berkeley, USA. The comparative results of the forest 

CC and LAI maps produced with image data and the CC and LAI measurements were used for evaluating 

capabilities of the three sensors for mapping forest CC and LAI. 

The experimental results indicate that the Hyperion data are the most effective for mapping forest CC 

and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 

74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 

63.4%).  The analysis results prove that the Hyperion sensor outperforms the other two sensors: ALI and 

ETM+.  This is because of its high spectral resolution that can record subtle spectral information, of its 

SWIR data for constructing optimal vegetation indices (VIs) that are slightly affected by the atmosphere 

(mainly absorption) except two major water absorption bands, and of its more available Maximum Noise 

Fractions (MNFs) than the other two sensors to be selected for establishing prediction models.  Compared 

to ETM+ data for mapping forest CC and LAI, ALI data are better due to ALI data with more bands and 

higher signal-to-noise ratios than those of ETM+ data.  From this experiment of the three sensors’ 

comparison for mapping forest CC and LAI, the Hyperion data have demonstrated their potential of 

applying in forest management and ecosystem studies and the ALI sensor is proved to be a better sensor 

for Landsat data continuity.  

ping biophysical parameters such as CC and LAI. 
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