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Abstract: In clustered sensor networks, electing CHs (Cluster Heads) in a secure manner 
is very important because they collect data from sensors and send the aggregated data to 
the sink. If a compromised node is elected as a CH, it can illegally acquire data from all the 
members and even send forged data to the sink. Nevertheless, most of the existing CH 
election schemes have not treated the problem of the secure CH election. Recently, random 
value based protocols have been proposed to resolve the secure CH election problem. 
However, these schemes cannot prevent an attacker from suppressing its contribution for 
the change of CH election result and from selectively forwarding its contribution for the 
disagreement of CH election result. In this paper, we propose a modified random value 
scheme to prevent these disturbances. Our scheme dynamically adjusts the forwarding 
order of contributions and discards a received contribution when its signal strength is 
lower than the specified level to prevent these malicious actions. The simulation results 
have shown that our scheme effectively prevents attackers from changing and splitting an 
agreement of CH election result. Also, they have shown that our scheme is relatively 
energy-efficient than other schemes. 

Keywords: secure cluster head election; sensor networks; signal strength estimation; 
ordered transmissions 
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1. Introduction 
 
Currently cluster structures are frequently employed in wireless sensor networks. These cluster 

structures enable the energy conservation in sensors [1,2], load balancing [3], distributed key 
management [4,5], and so on. Generally, transforming a network into a cluster structure is achieved by 
combining some adjacent sensors into a group and electing a group leader within the group. A group 
and the leader are called a cluster and a Cluster Head (CH), respectively. In the clustered sensor 
network, the compromise of CHs is more threatening than that of member sensors, and CHs are also 
located in the unprotected environment like member sensors. Because CHs are the data collection 
points, smart attackers may compromise the network by targeting the CHs rather than the other sensors. 
This is because by compromising all CHs they can gain control of the whole network. A suitable 
example of the assumed threat model is a military surveillance network. In this network, sensors detect 
the movement and invasion of enemy troops, and then notify headquarters of the threats. Compromised 
sensors still obtain the movement or invasion information, but the attackers can forge the information 
to hide the movement or invasion from headquarters. Then they send the forged information to the sink 
indicating that there is no suspicious activity. When all of the CHs are compromised, the control of the 
whole network is given to the enemies and their movement and invasion can go completely undetected. 
In this case, the invasion of the enemies is completely hidden from the headquarters. 

To elect a CH, existing CH election schemes make sensors exchange a criterion such as ID or 
degree or low mobility or residual energy. Then, they compare the criterion among neighbors [1,2,6-9], 
and elect CH role nodes by choosing a node with a highest criterion among all its neighbors. A CH 
role node declares itself as a CH with a broadcast message, and the receivers of the message respond to 
the CH with a unicast message, and the CH and the responders thus form a cluster. The primary 
problem of the existing CH election schemes is that legitimate nodes cannot prevent a malicious node 
from fabricating its criterion and transmitting the fabricated criterion. This gives a malicious node a 
good chance of becoming a CH. 

To resolve this problem, a random value based scheme, called SANE (Secure Aggregator Node 
Election) [10], was proposed recently. In this scheme, because a CH is elected in a random manner, a 
naive attacker can neither easily influence the CH election result nor know which node can become a 
CH in the election. However, an intelligent attacker can manipulate the CH election result as well as 
generate some redundant CHs. This misbehavior partitions the clusters and might even make a 
compromised node a CH. 

In this paper, we propose a CH election scheme which is resilient to this misbehavior. First, our 
scheme settles the broadcast order of contributions for random value agreement and forces all sensors 
to follow the order. If a sensor keeps violating this order, this sensor is considered as a malicious node 
which is trying to manipulate the CH election result and it is evicted from the contributor list. An 
attacker may reduce the power level of a contribution message to make receivers have a different set of 
contributions. It increases the number of CHs in the network and reduces the size of clusters. As a 
result, energy consumption of sensors increases due to frequent transmission of sensor readings. To 
prevent this misbehavior, all receivers of a contribution measure the signal strength power of the 
contribution and infer the approximately reachable distance of the contribution. That is, the receivers 
discard the contribution whose power level is too weak to reach all sensors in the cluster. 
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This paper is organized as follows. Section 2 overviews the related work concerning CH election. In 
Section 3, we describe the network and threat model. Section 4 deals with the preparations for our CH 
election scheme, and the details of our CH election scheme are described in Section 5. Section 6 
compares our scheme with other schemes through experiments, and Section 7 shows how our scheme 
satisfied the requirements for CH election. Lastly, Section 8 concludes this paper. 
 
2. Related Work 
 

Eschenauer and Gilgor were the first to propose a scheme for establishing a communication key 
using key pre-distribution [11]. In this scheme, any two neighbor sensors establish a pairwise key 
using common pre-distributed keys. If they have no common keys, then they establish the pairwise key 
indirectly through proxy nodes. Here, proxy nodes refer to the sensors that share at least one common 
key with the two nodes. The problem with this scheme is that any two sensors that share only one 
common key can establish a pairwise key. Therefore, it is very vulnerable to the compromise of 
sensors. Chan et al. resolved this problem by fixing the minimum number of common keys required 
for pairwise key establishment to q (> 1) [12].  

Representative schemes which use weights for CH election are LIDCP (Lowest ID Clustering 
Protocol) [7] and HCCP (Highest Connectivity Clustering Protocol) [7]. LIDCP elects a lowest ID 
node in the neighborhood as a CH, while HCCP elects a highest degree node in the neighborhood as a 
CH. The so-called WCA (Weighted Clustering Algorithm) [6] considers degree, transmission power, 
mobility, and residual energy as criteria for CH election. These criteria are assigned different weights, 
according to the relative importance of the criteria in the network application. A final criterion is 
generated by multiplying each criterion by the corresponding weight and summing them. MOBIC 
(Lowest Relative Mobility Clustering) [8] presented a scheme which elects a CH by comparing 
relative mobility in the neighborhood. The relative mobility is estimated by measuring received signal 
power of two consecutive hello messages. Namely, a node exchanges two consecutive messages with 
neighbors and measures the difference of received signal power between two messages. These values 
can be positive values or negative values. Each node can get relative mobility by computing the 
variance with respect to zero. The prominent problem of above weight based schemes is that a 
malicious node can broadcast a forged criterion as if it has a highest criterion among neighbors. In that 
case, it can become a CH. 

Heinzelman et al. proposed LEACH (Low-Energy Adaptive Clustering Hierarchy), which elects a 
CH without message exchange. This scheme tried to extend the network lifetime by giving all nodes 
equal chances to be a CH. In this scheme, each sensor becomes a CH or a member of a CH depending 
on the computed probability. Therefore, the hop distance between a CH and its members can be further 
than single hop. In HEED [2], nodes elect a CH using their residual energy and communication cost to 
their neighbors. That is, the initial probability that each sensor becomes a CH depends on its residual 
energy. Later, sensors that do not belong to any clusters double this probability, and this procedure is 
repeated until all sensors are served by at least one CH. If a sensor has to choose one of two or more 
CHs, it chooses one with a fewer communication cost. VCA [9] presented a CH election scheme which 
considered local topology information as well as residual energy. First, VCA balances the number and 
size of clusters by considering residual energy and degree in the election process. Second, sensors 
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which belong to two or more clusters choose a CH concerning the energy distribution. However, above 
schemes cannot prevent a malicious node from declaring itself as a CH, like the weight based schemes. 

Ferreira et al. proposed F-LEACH [13] to protect the CH election in LEACH. A sensor declares 
itself as a CH using common keys shared with the sink, and the sink authenticates the CH declaration 
using the same keys. Then, the sink securely broadcasts the authenticated CHs using μTESLA [14]. 
Sensors join only one authenticated CH. However, this scheme cannot authenticate the sensors which 
join the service of a CH. To resolve this problem, Oliveira et al. proposed SecLEACH [15] in which 
the sink authenticates the CH declaration from sensors and CHs also authenticate the joining sensors. 
In SecLEACH, sensors are assigned some keys for authentication prior to deployment. However, both 
F-LEACH and SecLEACH can prevent only external attackers from declaring themselves as CHs. 
That is, they cannot prevent internal attackers from declaring themselves as CHs and joining other 
CHs. 

Recently, Sirivianos et al. proposed a CH election scheme using a random value, called SANE. 
SANE consists of Merkle’s puzzle based scheme, a commitment based scheme, and a seed based 
scheme. In Merkle’s puzzle based scheme, a current CH establishes pairwise keys with its members. 
Then, a member generates its random value and encrypts it using the pairwise key with the current CH. 
It sums its encrypted random value with the accumulated sum which is received from other node and 
delivers the sum to another node. This procedure is repeated until all sensors get the total sum of the 
encrypted random values. To decrypt this sum, each sensor should know all pairwise keys used for the 
generation of the sum due to the property of homomorphic encryption transformation [10]. So, the 
current CH distributes the pairwise keys to all nodes, and all nodes get the real sum of random values 
using the pairwise keys. They divide the real sum of random values by the number of sensors and get 
the remainder which indicates the position of CH node in the cluster. Because each sensor stores the 
IDs of nodes in an ascending order, they can easily reach an agreement on the CH election result. This 
conversion of an agreed random value to a CH position is also applied to other schemes. In the 
commitment based scheme, each sensor sends its commitment to other sensors in the peer-to-peer 
manner. Here, a commitment is an encrypted random value using a shared key and the random value is 
created by each sensor. Then, each sensor sends the fulfillment value (that is, its random value) to 
other sensors. Receiving sensors verify the fulfillment values using the shared key and sum them to 
make an agreed random value. In the seed based scheme, each sensor generates its seed value and 
distributes it to other sensors in the broadcast manner. This seed value is the initial random value for 
generation of sum of random values. Every CH election round, each sensor broadcasts its availability. 
This availability is a kind of fulfillment values, and sensors receiving the availability keep the list of 
the senders. That is, all sensors make a sum of random values using the seed values of the senders and 
the number of CH election round. Merkle’s puzzle based scheme causes a lot of overhead due to the 
pairwise key establishment, generation of sum of encrypted random values, and the key distribution. 
The commitment based scheme and the seed based scheme are vulnerable to transmission suppression 
and selective transmission of fulfillment values. The transmission suppression of fulfillment values 
causes changes of CH election result. Besides, selective transmission of fulfillment value causes the 
partition of clusters by separating one agreement of CH election into two or more agreements. 
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3. Network and Threat Model 
 
3.1. Network Model 
 

In this paper, sensors are deployed by a helicopter or an airplane without human intervention and 
they reside in quasi-stationary state during network operation. To produce a cluster structure, one of 
CH election schemes in Section 2 can be used. However, they are very vulnerable to illegal CH 
declaration of disqualified nodes as described in Section 2. To debilitate these attackers, a CH election 
result should be determined in a random manner like SANE [10]. In SANE, sensors are deployed in 
their pre-assigned sectors, and the CH election result in a sector is independent from other sectors. 
However, because the network that we assumed has no pre-assigned sectors, sensors need to invoke a 
CH election scheme to generate sectors after the deployment. We exploit a weight based CH election 
scheme to complete the sector formation in a short time. Sensors should exchange a criterion (for 
instance, ID, degree, residual energy and so on) with their neighbors. Then, they elect a local manager, 
which is called sector manager, by comparing the criteria between neighbors, like weight based 
election schemes. After this initial cluster formation, the network is divided into multiple sectors and 
each sector has its own sector manager which plays a role of a helper node for intra-sector key 
establishments between sensors. After the intra-sector keys are established, the sector manager is 
treated like a normal sensor in its sector and does not have any special duties. Details related with the 
sector determination are dealt in Section 4.2. Then, sensors in each sector establish pairwise keys with 
other sensors for intra-cluster communication. This is because a CH is elected randomly in a sector, 
and the CH and its members should exchange data directly. For this purpose, each sensor is randomly 
assigned some keys from the sink with a key pool, and it can know the IDs of the assigned keys of 
other sensors. If any two sensors have the same assigned key(s), they can establish a pairwise key 
using them. We deal with the details about pairwise key establishment in Section 4.1 and Section 4.3. 
Here, we add two reasonable assumptions to the sector determination and the pairwise key 
establishment. First, all sensors are trustworthy at network boot-up time and this trustworthiness lasts 
during these two steps. Second, attackers cannot compromise any legitimate sensors during these two 
steps. Note that these two steps are invoked only one time after the deployment of sensors and these 
two steps are completed in a very short time. After the pairwise key establishment, sensors in a sector 
elects one node as their CH. Note that the messages exchanged for CH election are not propagated to 
other sectors. This is because all sectors exploit different spreading code in their sector as described in 
Section 4.2. 

Network operation is divided into rounds, and each round consists of synchronization phase, CH 
election phase, and communication phase. In the synchronization phase, each sensor synchronizes its 
clock with other members of the sector to start the CH election at the same time. In the CH election 
phase, sensors in each sector elect one node as CH and join the service of the CH. To avoid the 
interference in a sector, elected CHs generate a TDMA schedule and broadcast it. In the 
communication phase, each sensor transmits its sensed data to its CH according to the schedule. The 
CH aggregates the received data from sensors and sends the aggregated data to the sink. Each sensor 
sends its data in its allowed time slots and remains in sleep state in other slots. To save the energy 
consumption for frequent CH election, the communication phase consists of multiple TDMA frames. 
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CHs employ two levels of power and directly communicate with the sink through a high power level. 
Figure 1 shows the network operation of clustered sensor networks and the thick rectangles are 
functions covered in this paper. 

Figure 1. Network operation of clustered sensor networks. 
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4. Sector Formation and Pairwise Key Establishments 
 
4.1. Exchange of ID and Neighbor List 
 

In a network which is divided into sectors, sensors communicate with their CH directly. Note that a 
CH is selected randomly in a sector. Therefore, the maximum hop distance between a sensor and its 
CH is two. This means that each sensor should know the IDs of at most two hop sensors to complete 
pairwise key establishments in its sector. This is because each sensor can know their assigned keys if it 
recognizes their IDs. For this purpose, each sensor exchanges its ID and neighbor list consecutively at 
network boot-up time. Through these exchanges, each sensor recognizes other sensors which share 
common assigned keys within at most two hops, and performs pairwise key establishments in its sector 
via their help. Hereafter, these sensors sharing common assigned keys are referred as helper nodes. If a 
sensor node has more helper nodes, it can easily establish pairwise keys with other members in its 
sector without causing any extra overhead. If we want a sensor to have many helper nodes, we have to 
assign the same keys to many other nodes. We deal with how this key assignment probability affects 
the intra-sector key establishments in Section 4.3. 
 
4.2. Sector Formation 
 

After exchanging the ID and the neighbor list, sensors invoke a CH election scheme to determine 
their sector. For instance, if HCCP [7] is used for the sector formation, a sensor compares its degree 
(number of neighbors) with its neighbors. If it is a highest degree node among neighbors, it becomes a 
sector manager and broadcasts the manager declaration message to its neighbors. The neighbors 
become members of the sector and send a join message to the sector manager. Otherwise, it waits for a 
higher degree node to declare as a sector manager or join as a member to a different sector. Once a 
sensor joins a sector, it never joins other sectors even if it receives a manager declaration message 
from a different sector manager. Generally, a CH election scheme creates some single sectors which 
consist of only one node. Because these single sectors have no merits for grouping, we have to 
eliminate them or incorporate them into other sectors. In our scheme, a single sector joins one of 
adjacent sectors. After the sector determination, sector managers register themselves into the sink. To 
reduce inter-sector interference, each sector communicates with the sink using direct-sequence spread 
spectrum (DSSS). Each sector employs a unique spreading code. All sensors in a sector transmit a 
message using the spreading code and the code is assigned when the sector manager registers itself 
into the sink. For instance, the first sector manager to register is assigned the first code on a predefined 
list, the second sector manager to register is assigned the second code, and so on. Then sensors 
establish pairwise keys with other sensors in the same sector. The membership and the structure of 
sectors highly depend on which CH election scheme is used for the sector formation. Besides, it also 
affects the probability of success of pairwise key establishments in a sector. We deal with this effect in 
Section 4.3.  
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4.3. Pairwise Key Estalbishments in Sectors 
 

In a sector, a sensor may recognize some sensors which do not share common assigned keys. These 
sensors are referred to as insecure sensors in this paper. A sensor can indirectly establish pairwise keys 
with the insecure sensors using the helper nodes. However, if all sensors in a sector perform this 
indirect pairwise key establishment individually, it causes a lot of communication and computation 
overhead. To reduce this overhead, we use the sector manager. The reason why we use the sector 
manager is that it is directly connected to the most of its members. First, the sector manager establishes 
pairwise keys with its insecure members using the helper nodes. If all helper nodes do not share a 
common key with an insecure sensor, the sector manager establishes pairwise keys with the insecure 
nodes via the help of the sink. This is because the sink has a key pool of all keys assigned to sensors in 
the network. In fact, this key establishment using the sink causes a lot of communication overhead. 
This is because the distance between a sector manager and the sink is fairly long in most cases. Then 
the sector manager broadcasts the list of members, and each member establishes pairwise keys with its 
insecure members via the help of its sector manager. That is, a sector manager which is requested to 
distribute a pairwise key by a member generates a pairwise key and distributes it to two members. 
Therefore, the success probability of intra-sector key establishments is highly depends on the success 
probability of key establishments between the sector manager and its memebers. So, we need to 
analyze the success probability of key establishments between a sector manager and its members by 
varying the key assignment probability and the sector formation scheme. 

The number of helper nodes has a greatest impact on the success of pairwise key establishment 
between a sector manager and its members. The number of helper nodes highly depends on the 
probability that a key is assigned to a sensor from the key pool. That is, if this probability is high, the 
number of helper nodes increases and the success probability of intra-sector key establishments 
increases. Second, a cluster formation scheme used for sector determination makes a difference in 
membership, size, and structure of sectors. For instance, some sector managers can have many helper 
nodes. We performed a simulation to verify the above descriptions. In the simulation, 100 sensors 
which have 50 keys were randomly deployed in a simulation area of 100 m  100 m, and each sector 
manager tried to establish pairwise keys with its members. We varied the size of key pool to make a 
difference in the key distribution probability and made sectors using four different cluster formation 
schemes (that is, LIDCP [7], HCCP [7], Two Phase [16], and VCA [9]).  

Figure 2 shows the variation of member nodes with which a sector manager could not establish 
pairwise keys using helper nodes. Figure 2 also shows the difference between four cluster formation 
schemes. As shown in Figure 2, all schemes increase the number of failure nodes as the size of key 
pool increases. This is because the probability that a key exists in a sensor decreases and consequently 
makes the reduction in the number of helper nodes. Nevertheless, HCCP significantly reduces the 
failure nodes.  

Figure 3 shows the variation of energy consumption for intra-sector key establishments as the size 
of key pool increases. Here, the intra-sector key establishment includes the initial sector formation, key 
establishments between sector managers and their members. As shown in Figure 3, VCA consumes 
more energy than the three other schemes because it makes all sensors exchange three messages for 
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sector formation. The other three schemes consume almost same amount of energy for the intra-sector 
key establishments. Therefore, in this paper we decided to make sectors using HCCP. 

Figure 2. Insecure members vs. size of key pool. 
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Figure 3. Energy consumption for intra-sector key establishments vs. size of key pool. 
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5. Secure Cluster Head Election 
 

After the pairwise keys between sensors in a sector are established, sensors should elect a node 
which plays the role of CH in this round. For simplicity, we assume that no collision occured in the 
MAC layers of sensors during the CH election. This assumption can be actualized using a broadcast 
order which is predetermined for broadcast of fulfillments in each sector. 

As shown in Section 3, a CH election scheme using a sum of random values has some problems. 
They enable the manipulation attack by a last node which is expected to transmit the fulfillment value. 
Our scheme adopts the following strategies to prevent the manipulation attack. 

1. Initially, the transmission order of fulfillment values is scheduled by the order of IDs.  
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2. Sensors which do not follow the order are scheduled to transmit its fulfillment value before 
anyone else. Thanks to the synchronization phase, every sensor can transmit its fulfillment value 
without interference even though the transmission order is changed. 

3. If a sensor does not follow the schedule more than one time, it is excluded from the sector 
member list by other sensors.  

Besides, attackers in a CH election scheme using a sum of random values can collapse a CH 
agreement by lowering the transmission power when they transmit their fulfillment values. To defeat 
this agreement prevention attack, our scheme employs the received signal strength. Figure 4 shows the 
flowchart of the proposed cluster head election using the signal strength estimation and the ordered 
transmissions. 

Figure 4. Flow chart of secure cluster head election using signal strength estimation and 
ordered transmission. 
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5.1. Commitment Broadcast 
 

After determining the sector, each sensor synchronizes its clock with other members in its sector. 
Then, each sensor sets its timer interval to a predefined value. The timer interval is long enough to 
accommodate all later steps as well as data transmissions. Then each sensor generates its random 
number and encrypts it with pairwise keys shared with other sensors to make commitments. The 
commitments are generated as many as the number of other sensors. Each sensor makes a list of the 
commitments in the order of IDs and broadcasts the list. After initial sector formation, distance 
between any two sensors in a sector two hops and it is extended to at most four hops after join of 
single sectors. Therefore, each sensor broadcasts the list with the power with which a message can 
reach four hops away nodes. Sensors receiving the list first check whether the sender is a member in 
their sectors or not. If the sender is not the member, the receivers discard the message. Otherwise, the 
receivers pick up its commitment from the list and decrypt it to store with the sender’s ID. 
 
5.2. Broadcast of Fulfillment Value 
 

The commitments broadcasted by sensors can take part in the generation of the sum of random 
values only if corresponding fulfillment values are received from the sensors. In this step, each sensor 
broadcasts the random number which was used for commitment generation with the transmission 
power with which a message can reach four hops away nodes. Each sensor knows the broadcast order 
of fulfillment values (random numbers) and should follow the order. After the sector formation, this 
order is configured with an ascending order of IDs of sector members. If a sensor violates this order, 
the sensor is identified as a suspicious node and recorded in the suspicious node list. Besides, the 
message from a suspicious node is discarded. If a sensor broadcasts the fulfillment value in its correct 
order, receiving sensors compare it with the corresponding commitment to check the equality. If they 
are equal, the receivers store the sender into normal node list. If a suspicious node violates the 
broadcast order again, the receivers exclude it from the member list and the suspicious node list. 
Therefore, a compromised node can prevent a specific node from being a CH only once by suppressing 
its fulfillment value transmission. Afterward, it is forced to broadcast its fulfillment value in the first 
order. If it tries to suppress its fulfillment transmission again or delays its transmission, other 
legitimate sensors eliminate it from the member list as well as discard the fulfillment value. 

Although a sensor transmits its fulfillment value, some sensors cannot receive it when the 
transmission power of the message is lower than a specific level. That is, we infer a node as an attacker 
trying to impair the agreement property if its message cannot reach at most four hop nodes. Receivers 
can recognize this trial using the received signal strength. However, received signal strength can be 
different at each sensor due to an obstacle or a propagation error. To deal with this problem, we set a 
specific level of signal strength to a threshold. The distance of the threshold ranges from three hops to 
four hops and it is close to four hops. Even though this technique cannot avoid the agreement 
prevention attack perfectly, the benefits of attackers are significantly reduced. Note that attackers 
should transmit a message with a power level which reaches over three hop away nodes. Therefore, the 
number of split clusters is reduced. If a message can propagate over the threshold, the receivers keep 
the message. Otherwise, it discards the message. We assume that the energy model in [1] is employed 
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in the energy consumption of transmitters and receivers. Assuming the two-ray ground reflection 
model is used for radio propagation, a receiving node can calculate the transmission power of a sender 
transmitting a fulfillment value(Pt) by Equation (1):  

4

2 2
r

t
t r t r

P d LP
G G h h

=  (1)

where, Pr is the received power, d is the Euclidean distance, and L is the system loss. Besides, Gt and 
Gr are antenna gains and ht and hr are antenna heights. If a receiving node can know the transmission 
power of a sender, it can estimate the maximum reachable distance by the power (dr) by Equation (2):  
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r
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E b
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Here, Etwo_ray_amp is the energy consumed by the amplifier and b is the bandwidth of the channel. If 
dr is smaller than a predetermined threshold, the receivers discard the received fulfillment value. This 
rejection of fulfillment value based on the received signal strength mitigates the impairment of the 
agreement property. That is, this mechanism alleviates the splitting of a cluster. 
 
5.3. Random Value Generation and CH Election 
 

If all random numbers are gathered from other sensors, each sensor generates a sum of the random 
numbers. Then they divide the sum by the number of normal nodes to get the remainder. Note that all 
sensors keep the list of normal nodes which follow the broadcast order correctly. The remainder is the 
index of a node which is elected as CH in the normal node list. 

Each sensor finds out the sensors which do not transmit their fulfillment value. This non-
transmission of fulfillment value may be resulted from an attacker which prevents a sensor from being 
a CH or a message loss. Therefore, each sensor inserts these nodes into the suspicious node list at first. 
If these nodes repeat the same misbehavior, each sensor erases these nodes from the member list and 
the suspicious node list. 
 
5.4. Adjustment of Broadcast Order 
 

Now it is time for each sensor to readjust the broadcast order of fulfillments. In the broadcast order, 
the suspicious nodes are moved to the first places and normal nodes follow them. Namely, the 
broadcast order of the next round is generated by concatenating the suspicious node list and the normal 
node list. 

The elected CH in each sector generates a TDMA schedule and broadcasts it. All members compute 
their transmission time and rest time in line with this schedule. They transmit their sensed data to the 
CH in their allowed time slots, and the CH transmits the aggregated data to the sink. This procedure is 
repeated until the timer which was set in the commitment broadcast step expires. If the timer expires, 
each sensor restarts the commitment broadcast step in Section 5.1. 
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6. Simulations 
 

We built the simulation environment to evaluate our scheme in terms of security and efficiency 
(especially, energy efficiency). In the simulation environment, 100 nodes were randomly deployed in a 
100 m × 100 m area, and the sink was at (50 m, 175 m) position. The energy model employed in the 
simulation adopted that of [1]. To concentrate on the evaluation of security and energy efficiency for 
the CH election, we did not implement the data transmissions (sensor-CH and CH-sink). We ran each 
scheme 20 times for each number of compromised nodes, and the network topology and the 
compromised nodes were changed in each run. In a sector, all compromised nodes invoke the same 
kind of attack. This is because two objectives of compromised nodes (that is, impairment of non-
manipulability and impairment of agreement) are conflict with each other. To manipulate the CH 
election result in a sector, all compromised nodes in the sector cooperate with each other. That is, only 
one compromised node does not send its fulfillment value while others behave like legal nodes. If the 
non-sender is excluded from its sector, one node among other compromised nodes repeats the same 
misbehavior. If the number of compromised nodes increases, they have more chances to become a CH 
because most of them normally act. Simulation results were collected to compute statistical 
representatives. All these representatives have 95% confidence intervals. Table 1 shows the parameters 
and their values employed in the simulations. 

Table 1. Simulation parameters. 

Parameter Value 
Simulation time 3,600 sec. 
Initial energy 10 Joules/battery 
Bandwidth 1 Mbps 
Data packet size 500 bytes 
Packet header size 25 bytes 
Number of compromised nodes 10 ~ 50 
Compromise time distribution Random, 3 ~ 1,800 sec. 
Neighbor radius 30 meters 
Clustering protocol for sector formation HCCP [8] 
Expiration time of CH election timer 20 sec. 

 
We compared our scheme with the commitment based scheme and the seed based scheme. This is 

because our scheme is also a kind of random value based schemes like the commitment based scheme 
and the seed based scheme. Although many other schemes have been proposed so far, their CH 
election method is greatly different from that of random valued based schemes. Their CH election 
highly depends on a weight value which can be deceitfully claimed by an attacker. However, random 
value based schemes elect a CH in a random manner to avoid the intentional cheat. So, comparing our 
scheme with them is unfair. To facilitate the security comparison of our scheme and other schemes, we 
developed the following metrics.  

 Average number of CHs generated during the CH election process: This value is the metric for 
evaluating the agreement property. If this value is large, it is evidence that the agreement 
property is severely impaired. 
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 Frequency of the case in which compromised nodes are elected as CHs: This value is the metric 
for evaluating the non-manipulability. A CH election scheme should keep this value low.  

 Frequency of the case in which CH election result is changed: This value is the metric for 
evaluating the non-manipulability. If this metric and the previous metric increase, it is evidence 
that the CH election scheme cannot prevent the attackers from suppressing the transmission of 
fulfillment values.  

Besides, we developed the following metric to compare our scheme with other schemes in terms of 
energy efficiency. 

 Total energy consumption: This value is the sum of energy consumed for sector formation, 
pairwise key establishments, and periodic CH elections at all sensors. If this value is large, it is 
evidence that the energy efficiency of the CH election scheme is low. 

 
6.1. Security Evaluation 
 

Figure 5 shows the variation of average number of CHs with the increase of compromised nodes. 
As shown in Figure 5, the commitment based scheme and the seed based scheme (depicted as 
predetermined random values) are very vulnerable to the agreement impairment attack. In those 
schemes, even though a compromised node broadcasts a fulfillment value with a low transmission 
power, sensors do not check the received signal strength of the message.  

Figure 5. Generated CHs vs. compromised nodes. 
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Therefore, some receivers in the same sector have a different sum of random numbers and this 

makes them elect a different node as their CH, and the number of CHs in the sector increases. As 
compromised nodes proliferate, their fulfillment broadcasted with a low transmission power makes 
more different sums of random numbers in a sector. This creates a number of CHs and weakens the 
advantage of cluster structure. On the contrary, in our scheme, receivers measure the transmission 
power of a fulfillment value and estimate the corresponding reachable distance. If a fulfillment value 
cannot reach a specified threshold, they discard the value. That is, because our scheme blocks the 
agreement impairment attacks, it produces almost same number of clusters (CHs) as the number of 
sectors (that is, on average 6.9 sectors). Besides, it produces almost constant number of clusters 
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regardless of the increase of compromised nodes. Figure 6 shows the cases in which the compromised 
nodes are elected as CHs as the number of compromised nodes increases. In the commitment based 
scheme and the seed based scheme, the compromised nodes can continuously prevent the legitimate 
nodes from being elected as CHs by suppressing their transmissions of fulfillment values. This 
continuous prevention gives the chances of being CHs to the compromised nodes. Therefore, as the 
number of compromised nodes increases, they can get more chances of being CHs. In our scheme, a 
compromised node can get the chance of being a CH only once. This is because it would be excluded 
if it performs the malicious action two times. As a result, the cases in which the compromised nodes 
are elected as CHs decrease remarkably in our scheme. 

Figure 6. Cases in which compromised nodes are elected as CHs vs. compromised nodes. 
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Figure 7. Cases in which CH election results are modified vs. compromised nodes. 
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Figure 7 shows the cases in which the CH election results are changed as the number of 

compromised nodes increases. In the commitment based scheme and the seed based scheme, the 
compromised nodes can change the CH election result by suppressing the transmission of their 
fulfillment values. However, the increase in compromised nodes does not always cause the increase in 
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the changes of CH election results. This is because no matter how many compromised nodes exist in a 
sector, only the last sender of fulfillment values can change the CH election result. Our scheme greatly 
reduces the changes as compared with other schemes. This is because the compromised nodes can take 
only one chance to change the CH election result by suppressing their fulfillment value. If they take 
the malicious action two times, they are excluded from the sector by other legitimate nodes. 
 
6.2. Energy Efficiency Evaluation 
 

Figure 8 shows the total amount of energy consumption during the simulation as the number of 
compromised nodes increases. Because all schemes employ the same sector formation protocol (that is, 
HCCP), the amounts of energy consumed for sector formation and key establishments within sectors 
are equal. However, because they employ a different method to transmit the commitment and the 
fulfillment value, their energy consumption for the CH election is different from each other. 

Figure 8. Total energy consumption vs. compromised nodes. 
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As shown in Figure 8, our scheme consumes more amount of energy than the seed based scheme. 

This is because our scheme makes each sensor transmit its commitment every CH election round while 
the seed based scheme makes each sensor transmit its seed (that is, commitment) just once. Even 
though the seed based scheme reduces the energy consumption by avoiding periodic transmission of 
commitment, attackers can predict the results of CH elections. This predictability makes a lot of 
attacks available [10]. In our scheme, because sensors transmit their commitment every CH election 
round and they are encrypted with pairwise keys, attackers cannot predict which nodes are elected as 
CHs. Besides, our scheme employs sensors’ energy more efficiently than the commitment based 
scheme. This is because the commitment based scheme makes a sensor transmit its commitment to 
other sensors in a peer-to-peer manner. 
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7. Synchronization Issue 
 

Our scheme satisfies most of the required properties defined in [10]. First, our scheme satisfies the 
strong non-manipulability that the commitment based scheme and the seed based scheme do not satisfy. 
That is, our scheme prevents an attacker from manipulating the CH election result by excluding it from 
the member list. Second, although a sector is partitioned into many clusters in a round, they can be 
incorporated into one cluster again if sensors follow the broadcast order of fulfillment values. So, our 
scheme is adaptive. Third, the CH election in our scheme does not rely on a specific node, so our 
scheme tolerates the failure of a node. Lastly, even though our scheme is worse than the seed based 
scheme in terms of energy efficiency, it provides a desirable property of a CH election scheme (that is, 
unpredictability). 

Generally, a periodic CH election in a network requires the time synchronization between sensors. 
The weight based schemes require the global synchronization between sensors. This is because a CH 
election in a region is affected by CH elections of neighboring other nodes. However, our scheme does 
not need the global synchronization. This is because a CH election in a sector does not affect that of 
other sectors. Therefore, the synchronization in a sector is only required in our scheme. 

A lot of schemes for local and global network synchronization have been proposed so far. Recently, 
TinySerSync [17] which was proposed by Sun et al. presents a local synchronization scheme between 
neighbors which share a pairwise key and a global synchronization scheme using μTESLA. Because 

sensors in a sector share a pairwise key with each other in our scheme, they can synchronize with each 
other using the local synchronization scheme of TinySerSync. 
 
8. Conclusions 
 

In this paper, we have shown that the existing CH election schemes did not deal effectively with 
some malicious actions of smart attackers. We first identified those malicious actions and proposed 
two mechanisms to provide the resiliency against them, namely the preservation of order for 
fulfillment value broadcast and the message abolition prevention using received signal strength. Our 
simulation results showed that these two mechanisms prevent the malicious actions of smart attackers 
with a little drop in energy efficiency. 

For future work, we are going to study the performance variance of our scheme under the 
environment where sensors are mobile. For long lived networks, we need to deal with join of new 
nodes during network operation. For that purpose, we need a scheme which concerns inter-generation 
pairwise keys establishments. Besides, we are planning to incorporate our scheme with the cluster 
based key management to design a new key management scheme which is based on the secure CH 
election. 
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