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Abstract: Comprehensive 3D modeling of our environment requires integration of 

terrestrial and airborne data, which is collected, preferably, using laser scanning and 

photogrammetric methods. However, integration of these multi-source data requires 

accurate relative orientations. In this article, two methods for solving relative orientation 

problems are presented. The first method includes registration by minimizing the distances 

between of an airborne laser point cloud and a 3D model. The 3D model was derived from 

photogrammetric measurements and terrestrial laser scanning points. The first method was 

used as a reference and for validation. Having completed registration in the object space, 

the relative orientation between images and laser point cloud is known. The second method 

utilizes an interactive orientation method between a multi-scale image block and a laser 

point cloud. The multi-scale image block includes both aerial and terrestrial images. 

Experiments with the multi-scale image block revealed that the accuracy of a relative 

orientation increased when more images were included in the block. The orientations of 

the first and second methods were compared. The comparison showed that correct 

rotations were the most difficult to detect accurately by using the interactive method. 

Because the interactive method forces laser scanning data to fit with the images, inaccurate 

rotations cause corresponding shifts to image positions. However, in a test case, in which 

the orientation differences included only shifts, the interactive method could solve the 
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relative orientation of an aerial image and airborne laser scanning data repeatedly within a 

couple of centimeters. 

Keywords: laser scanning; photogrammetry; registration; ICP method; interactive 

orientation; multi-view; multi-scale 

 

1. Introduction  

Accurately measured 3D information from our environment has become more and more important 

in our daily life. For example, virtual environments, environmental and urban planning, decision 

making processes, and modern navigation systems require 3D data that correspond with reality. Laser 

scanning has become popular due to its fast 3D point cloud acquisition, improvements in post 

processing software and high usability of the data generated. Photogrammetric techniques have been 

used for a long time, but development of digital cameras, more efficient automatic and semiautomatic 

3D measuring methods and good internal geometry have been key factors that have kept image-based 

techniques as suitable alternatives for 3D modeling. Both methods have advantages and disadvantages, 

and in many ways they complement each other. 

Complete 3D modeling requires both terrestrial and airborne data [1]. In addition, both perspectives 

should preferably include both laser scanning data and images. The viewing direction of a data 

acquisition method defines which parts of a building can be modeled reliably. A terrestrial point of 

view does not allow seeing all roof shapes, and nadir perspective prevents accurate modeling of 

vertical structures. Thus, different perspectives offer additional information about the behavior and 

quality of data. Therefore, terrestrial images are also excellent for assuring the quality of airborne laser 

scanning data [2–5].  

Airborne laser scanning data is widely used for, e.g., creation of digital terrain models (DTM)  

(e.g., [6–11]) and for extracting buildings (e.g., [12–15]), other infrastructure such as bridges 

(e.g., [16]), as well as urban trees (e.g., [17]). However, the point density of airborne laser scanning is 

typically not enough for the most accurate modeling, such as exact positioning of building 

outlines [18]. Terrestrial laser scanning provides significantly denser point clouds and good 

accuracy [19], but suffers from stationary data acquisition that makes the method slow and costly when 

large areas are modeled. Vehicle-based mobile laser scanning provides faster data acquisition and 

relatively dense point clouds, but suffers from satellite visibility problems in urban areas resulting in 

systematic errors of the order of 0.1–3 meters [20,21], in the data. 

Integration of data obtained by different measuring methods enables numerous applications [4], but 

requires accurate relative orientations. The more detailed the 3D model needed, the more accurate the 

relative orientation required. Direct sensor orientation with GPS and inertial equipment is essential for 

laser scanning data acquisition and can also be used for detecting exterior orientations of images. 

Accuracies as high as 5–10 cm in position and better than 0.006º for and , and 0.01º for  in 

rotations [22–25] have been reported. However, studies with photogrammetric frame sensors 

[24,26,27] have shown that insufficient satellite visibility, an incomplete relative orientation between 

the imaging sensor and GPS/IMU-components, inaccuracies of an imaging model, and transformations 
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between various coordinate systems can reduce this accuracy. In general, direct sensor orientation 

alone is not yet providing orientations fine enough for most accurate integration of data from multiple 

sources [23]. 

Images are typically oriented in large image blocks by block adjustment. The main alternative for 

solving exterior orientations of aerial images is aerial triangulation utilizing image points, 3D ground 

features and possibly direct georeferencing observations of orientations [28]. The aerial triangulation 

requires manual identification of ground control points from the images, but the advantage of the 

method is that inaccuracies of interior orientations are compensated with self-calibration during the 

adjustment [29]. Multi-view image blocks, which consist of aerial and terrestrial images, are usually 

utilized when the size of an object to be modeled, such as a historical building, is convenient. 

Especially, the development of unmanned aerial vehicle (UAV) systems has recently increased the use 

of such multi-view image blocks (e.g., [30]). If images within a block differ much in scale, the 

resolution of images may reduce the interpretation accuracy, which should be taken into account. The 

use of multi-scale image blocks is discussed more in detail, e.g., in [31].  

If the internal geometry of a terrestrial laser scanner has been calibrated and corrected [32], 3D 

laser scanning point clouds from multiple scans can be registered, e.g., using the iterative closest point 

(ICP) method or by extracting and matching tie features. The term registration means finding the 

geometric transformation which makes corresponding locations in the two 3D data sets [33]. ICP 

methods are very popular for registering two 3D data sets at the object space. An ICP algorithm 

minimizes point-to-point [34] or point-to-surface distances [35]. The method has several variants, 

which have been discussed, e.g., in [36,37]. Alternatively, several methods to register 2.5D and 3D 

surfaces have been reported [37]. Currently, many laser scanning software packages include ICP-based 

registration algorithms. Registered laser point clouds can reliably be transformed into a ground 

coordinate system using signalized ground control points.  

Airborne laser scanning missions usually include several laser scanning strips. By applying a strip 

adjustment, the internal quality of laser scanning data can be improved [38]. This step is necessary in 

order to ensure homogeneous quality within all laser scanning strips. When airborne laser scanning 

data is transformed into a ground coordinate system, ground control points should be signalized with 

large targets since the point density is typically much lower than with terrestrial laser scanning. Large 

circular targets have been suggested for ground control points, e.g., in [39] and [40], but the horizontal 

accuracy depends highly on point density [39]. However, the correct height for the laser scanning point 

cloud is much easier to solve than horizontal shifts [10]. Alternatively to circular targets, pavement 

markings have been used as control points (e.g., [41,42]). The use of linear features has been studied, 

e.g., in [13,43,44], in which breaklines were extracted by finding intersections of two planes that were 

fitted to laser scanning data. Corresponding breaklines were extracted from images for orientation.  

In [45], a triangulation of multi-sensor data using straight lines and planar patches as tie features was 

presented. Also, the centroids of rectangular roofs have been suggested as tie features for the 

orientation of multi-sensor data [46]. The concept of registering airborne laser scanning data and 

images through photogrammetrically-derived 3D surfaces measured from stereo images has been 

reported by, e.g., [47,48]. 

One difficulty with multi-sensor orientation is that it can be a challenging task to find accurate 

corresponding features, if, e.g., resolution, perspective or the nature of data sets differs much. As an 
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alternative to numerical methods, paper [2] describes how a single terrestrial image and airborne laser 

scanning data can be relatively oriented using an interactive orientation method. During interactive 

orientation, an operator adjusts a laser point cloud visually with the images by changing image 

orientation parameters and using anchor points. This being a manual method, an operator is able to 

interpret laser hits coming from both large objects and small objects. In many numeric methods, small 

details are usually considered as outliers and therefore filtered out even if they were to include 

significant information for orientation. Large objects, however, are especially suitable when laser 

scanning data is not dense, because shapes of point clouds can be used as interpretable tie features. In 

this article, an interactive orientation method is developed to use an image block instead of a single 

image. The advantage of using an image block is that a multiple viewing geometry gives more 

information about the orientation than a single viewing direction. 

The objectives of the article are: 1) to demonstrate a method for an interactive orientation of multi-

source and multi-scale data, 2) to compare orientation results of the depicted interactive method with 

reference image orientations, 3) to get a laser point cloud and a reference image block into the same 

coordinate system using the ICP method and 4) to integrate multi-source data.  

2. Materials  

The test area was located on the campus area of the Helsinki University of Technology (TKK) in 

Otaniemi. Test data included terrestrial images, a panoramic image, an aerial image, airborne laser 

scanning data, terrestrial laser scanning data, and total station measurements. Terrestrial images were 

taken with Olympus E-10 and Nikon D200 with image sizes of 2,240 × 1,680 and 3,872 × 2,592 

pixels, respectively. A panoramic image was created from a set of concentric images taken with 

Olympus Camedia C-1400 L. A total of 7 images were stitched together into a rectilinear projection 

resulting in an image size of 10,729 × 5,558 pixels. In order to ensure concentric image acquisition, a 

special panoramic mount [49] was used (Figure 1). The number of other terrestrial images, acquired 

with Nikon D200, was 35. 

 

Figure 1. In order to create a measureable panoramic image, a concentric image 

acquisition was ensured with a calibrated camera mount.  

 

A low-altitude aerial image was taken from the altitude of 200 m with a Hasselblad Landscape 

camera. The size of the sensor was 3,056 × 2,032 pixels and therefore the footprint of a single pixel on 
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the ground was 4–4.5 cm, depending on the height of the object. The interior orientations of all 

cameras were known. 

Airborne laser scanning data was acquired with a TopEye MK I helicopter-borne laser scanner. The 

flying altitude was 200 m, resulting in the average point density of 2–3 points/m2. The scan angle of 

the TopEye MK I laser scanner was ±20°, the wavelength 1.064m and the pulse repetition rate 7 

kHz. From several laser scanning strips, only two parallel, partially overlapping strips were used. The 

strip adjustment was calculated using TerraMatch software yielding to a total RMS (dz) of 2.4 cm.  

Terrestrial laser scanning data was acquired with a Faro LS 880 HE80 instrument. The scanner is 

able to achieve a measurement rate of 120,000 pulses/s, at maximum. In our experiment, the  

¼ resolution of the maximum scanning resolution was used. Due to the 360° horizontal and 320° 

vertical coverage per scan position, the scanner is able to scan almost a complete hemisphere. The 

wavelength is 785 nm, and the linearity error has been reported to be 3 mm at the distance of 25 m and 

with a target having 84 % reflectivity (see www.faro.com). The location of the Faro scanner was 

selected in a way that its data completed those vertical surfaces, which had only very few hits from the 

airborne laser scanning.  

In order to obtain all data sets into the local coordinate system, a total of 44 targets were measured 

using a Leica TCA 2003 total station. Leica’s 2 × 2 cm targets were modified to make them suitable 

also for photogrammetric measurements by framing the targets with black self-adhesive sticker paper. 

In addition, 21 non-reflective photogrammetric targets were placed on the scene and used as tie points 

in order to assist with the orientation of the photogrammetric image block.  

3. Methods  

3.1. Workflow 

The reference orientations of images were solved in a bundle block adjustment of a multi-view, 

multi-scale image block. A relative orientation between the reference image block and airborne laser 

scanning data was calculated using the ICP method between a photogrammetrically-derived 3D model 

and a laser scanning point cloud. After the ICP registration, laser scanning data and the reference 

image block were in the same coordinate system. The result of the relative orientation was verified 

visually by superimposing laser scanning data onto aerial, terrestrial close-range and  

panoramic images. 

In order to test the interactive orientation, an aerial image, a panoramic image and a close-range 

image were selected from the reference image block. Interior orientations were known from camera 

calibrations and relative orientations of all images from a bundle block adjustment. An initial exterior 

orientation of selected block of images was randomly chosen in such a way that the relative 

orientations of images were not changed. The selected images were oriented with the airborne laser 

scanning point cloud using the interactive method. Because the airborne laser scanning data was in the 

same coordinate system as the reference image block, the resulting orientations of the interactive 

method were comparable with the reference orientations of the original reference image block. The 

workflow is illustrated in Figure 2. 
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Figure 2. The workflow of the research. 

 

3.2. Reference Orientation for Laser Scanning Data 

In order to obtain a reference orientation for laser scanning data, an airborne laser scanning point 

cloud was registered with a photogrammetrically-derived 3D model, which was selected to be the 

reference surface. The photogrammetric 3D model was measured using a multi-scale image block, 

which included both aerial and terrestrial images. The orientation of the photogrammetric 3D model 

was known by the ground control points. Figure 3 illustrates how a relative orientation between images 

and a laser scanning point cloud is known if an image-derived 3D model is registered with a laser 

point cloud at the object space.  

In our experiments, the ICP algorithm in Geomagic Studio software was used. This algorithm 

minimizes the distance between a point cloud and a surface. The reference surface was created mainly 

from photogrammetrically-derived point clouds. However, in order to add more features having 

different orientations, also terrestrial laser scanning data was used. Before extracting surfaces from the 

terrestrial laser scanning data, it was registered with the photogrammetric reference surface using the 

ICP method. This task was significantly easier than registering airborne laser scanning data with the 

photogrammetric 3D model. The main reason for that was the high point density of the terrestrial laser 

scanning data.  
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Figure 3. The relative orientation of an image block and a laser point cloud can be solved 

through the 3D object space.  

 

 

 

 

 

 

 

 

 

 

In practice, any 3D data sets that are used for the ICP registration should correspond to each other 

as well as possible, because the method can be sensitive to outliers [50]. In addition, a good initial 

registration is needed in order to prevent iteration to stop at a local minimum. Registration areas 

should contain enough distinguishable features having slopes to several directions in order to assure 

correct registration. Typically, outliers should be filtered out and only most reliable data sets should  

be used. 

Orientations of images were solved in a bundle-block adjustment of 37 images using 848 natural tie 

points and 35 signalized points. The multi-scale image block consisted of close-range images, a 

panoramic image and a low-altitude aerial image. The reference orientation of the image block was 

solved using the iWitness software [51] resulting in the overall accuracy of 1.3 cm. The estimated 

accuracy of image referencing was 0.72 pixels. iWitness recalculates a complete block adjustment 

each time when a new observation is added. Therefore, the accuracy of the previously calculated 3D 

model may decrease, if more inaccurate images, such as aerial images, are included in the adjustment. 

To achieve as accurate 3D model as possible, the first image block included only terrestrial close-

range images. 3D model points measured from close-range images were re-imported in the software as 

ground control points, before the aerial image and the panoramic image were included. For the ICP 

registration, only such tie points were selected that belong to enclosed features and all unconnected 

points were manually discarded. Unconnected points were, however, used as tie points when the aerial 

image was oriented into the image block.  

As Figure 4 illustrates, only selected points were included in the ICP registration. After the 

registration, the software reported an average deviation of 2.5 cm. The relative orientation was 

examined by superimposing registered laser scanning data onto close-range images. Visual inspections 

did not reveal any significant errors in the relative orientation.  

 

 

 

 

 

Oriented image 
block  

 

Photogrammetrically-
derived point cloud or 3D 
model 

 
Registration 

If a laser point cloud and a photogrammetrically-derived 
3D model are registered, also the relationship between 
images and laser points is known. 

 

Laser-derived 
point cloud 

 

 



Sensors 2009, 9              

 

 

6015

Figure 4. ICP registration results. The reference surface was a combination of 

photogrammetric and terrestrial laser scanning data. Only red laser points were included in 

registration. 

 

3.3. The Interactive Orientation of a Laser Point Cloud and a Multi-view Image Block 

In this research, the interactive orientation method [2] was extended to be able to handle more than 

one image during the orientation. The interactive orientation method includes tools for changing 

exterior orientation parameters as well as for setting and using anchor points. For orientations, a 

complete laser point cloud or a selected subset of laser points can be used as a tie feature. The usability 

of the method is at its best with airborne laser scanning data, when a coarse sub-sampling of the scene 

usually makes it difficult to extract accurate tie features. Figure 5 illustrates a typical orientation 

workflow in the case of a single panoramic image. 

Figure 5. A suggestive workflow for an interactive orientation of a single image. 
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Interactive orientation of a single image can be extended to consist of an image block. In that case, 

if orientation parameters of any individual image are changed, all orientations of other images from the 

image block are calculated and updated. When the location of an active camera is shifted, all other 

cameras are moving along with same amount of shift. The case of rotations is more complex, because a 

rotation of an active image causes both shifts and rotations to all other images. Because 3D rotation 

matrices describe a relationship between a camera and the ground coordinate system, we have to 

calculate the changed 3D rotation matrices through the ground coordinate system.  

For clarity, we present here a case of two images, although the calculation of all other images of the 

block is similar. In this example, Camera 1 is an active image, whose orientation parameters are 

changed interactively and the orientation of Camera 2 is calculated. At first, we define that 3D rotation 

matrices R1 and R2 realize transformations from the cameras to the ground coordinate system  

(Figure 6).  

 

Figure 6. With 3D rotation matrices R1, R2 and U, camera coordinate observations can be 

rotated to a coordinate system parallel to the target coordinate system. Because 3D rotation 

matrices are orthogonal, inverse matrices can be calculated with matrix transposes. 

 

 

 

 

 

 

 

  

 

 

 

 

 

In addition, 3D rotation matrix U is the relative rotation between the two camera coordinate 

systems. Therefore, the equation describing a rotation between the camera coordinate systems is: 
T
originaloriginalrelative RRU 12   (1)

If camera base (b) at the ground coordinate system is the difference between projection centers P10 

and P20: 

originaloriginalground PPb _0_0 12    (2) 

then the camera base converted from the ground coordinate system into the camera coordinate system 

of Camera 1 is: 

ground
T
originalcamera bRb 11    

(3) 

R1 

R2

Camera 1 

Camera 2 

Ground coordinate system

Camera base (b)

TRRU 12
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Relative 3D rotation matrix relativeU  and camera base 1camerab  remain the same no matter how an 

active image is rotated or shifted. If we rotate the active camera, we get a new 3D rotation matrix, 

newR1 . The coordinates of the projection center of Camera 2 at the ground coordinate system can be 

calculated from: 

originalcameranewnew PbRP _01_0 112    (4)

Using the new 3D rotation matrix of Camera 1 and the original relative 3D rotation matrix U, we 

can solve a new 3D rotation matrix for Camera 2: 

originalrelativenew RUR 12    (5)

As a special case, if images fulfill the conditions of a normal case of stereo photogrammetry, 3D 

rotation matrices of Cameras 1 and 2 are identical and only a new location for the projection center of 

Camera 2 needs to be calculated (Equation 4). 

The strategy for the interactive orientation of the image block is different, depending on whether 

there is a need to solve only shifts or both rotations and shifts. In the case that orientation differences 

include only shifts, all images may be employed as a master image by turns. The strategy can be that 

the first master image is registered along the x and y axes of the image coordinate system as well as 

possible. Then another image is selected as a master image and an orientation similar to that in the 

case of the first master image is completed. Any image can be the master image and the selection of 

the master image depends on optimum visibility. Finally, the orientation iterates to the final solution 

when orientation cannot be improved any more from any image. 

Most commonly, both rotations and shifts need to be solved. If initial orientation is not close to the 

correct one, interactive orientation begins with the strategy presented in Figure 5. When the orientation 

is well enough and laser data is visible in all images, it is recommended to use one image as the master 

image and to use the other images only for monitoring. After changing the orientation parameters of 

the master image, superimposing laser scanning data onto the other images reveals whether changes 

had a positive influence on the relative orientation. In our experience, use of an anchor point at a well 

detectable feature usually assists with the orientation. If the anchor point is set, shifts along the X and 

Y axes of the camera coordinate system automatically change rotations. Again, by monitoring other 

images the correct directions of corrections can be detected. The optimal case would be when the 

viewing directions of images are perpendicular to each other. However, it is not usually possible to 

arrange such image acquisition. If the viewing directions are not perpendicular to each other, the shifts 

and rotations of the master image cause changes to all rotations and shifts along axes of the camera 

coordinate systems of other images. In other words, it is not always easy to predict how orientation 

changes of a master image affect the orientations of other images. Therefore, it is recommended not to 

try and fit features exactly to correct locations during correction of one rotation or shift direction, but 

only move them closer towards a better solution. By iterating, the solution becomes closer and closer 

to the correct solution until superimposing laser data onto images reveals no more orientation 

differences between the images and laser scanning data. 
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3.4. Applying Transformations to Laser Point Clouds  

To transfer photogrammetric data accurately to the ground coordinate system is easier, in many 

cases, than transferring laser scanning data. For photogrammetric data there exist standard methods, 

such as bundle block adjustment, to find correct orientations. The interactive orientation method, 

however, is more flexible if the image orientation parameters are manipulated instead of the laser point 

cloud orientation. After interactive orientation, inverse transformation can be applied, in which the 

camera orientation is fixed to be the original one and the laser scanning point cloud is transformed 

according to the results of interactive orientation. First, laser scanning points (x = [X Y Z]T) are shifted 

in such a way that the origin of the coordinate system is at the projection center of a camera after an 

interactive orientation (P0_after): 

afteroriginalshifted Pxx _0   (6) 

Next, the laser point cloud is rotated around the projection center using the relative 3D rotation 

matrix U (Equation 1), in which R1 is a 3D rotation matrix after interactive orientation and R2 is the 

original 3D rotation matrix. At the same time, possible shifts: 

     TT

after

T

original dZdYdXZYXZYXt 000000000   (7) 

between locations of projection centers before and after orientations can be corrected:  

tUxx shifteddtransforme    (8) 

Finally, the laser point cloud is shifted to the ground coordinate system: 

afterdtransformefinal Pxx _0   (9) 

As a result, the image orientation is the original one and the laser point cloud is transformed into the 

same coordinate system according to the results of the interactive orientation between the image and 

the laser point cloud. An example of inverse transformation is presented in Section 4.3. 

 

4. Results and Discussion  

 

4.1. The Accuracy of an Interactive Orientation of Multi-view Image Blocks and Laser Scanning Data 

 

Accuracies were examined by comparing interactive orientations with reference orientations. At 

first, a panoramic image and an aerial image were selected from a larger image block. From the block 

adjustment, the relative orientations of images were known. An interactive orientation of the image 

block and laser scanning data was completed eight times, starting each time from an arbitrary chosen 

initial orientation. The results from the interactive orientation were compared with the reference 

orientations (Table 1). The maximum shift of eight individual orientations was 30.5 cm indicating that 

the orientation had not been perfect in all cases. One reason was that the number of features and 

density of laser scanning data had not enabled accurate detection of rotations. If the rotations are not 

solved correctly, errors are also visible at camera locations. The location of the panoramic image was 

detected more accurately than the location of the aerial image because of the proximity of the former 
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to the laser point cloud and its more illustrative viewing perspective. In the case of aerial image, the 

interpretation of the airborne laser scanning point cloud is not as clear as from the side view because of 

the acquisition perspective. Both interpretation difficulties and the resolution of the aerial image 

reduce the final orientation accuracy. 

Table 1. Differences of exterior orientation parameters (interactive orientation – 

reference). The interactive orientation was applied using simultaneously a terrestrial 

panoramic image and an aerial image, whose relative orientation was known. Statistics 

were calculated from 8 individual orientations. 

 Aerial image 
 X (cm) Y (cm) Z (cm)   (deg)   (deg)   (deg) 

Average -8.1 2.2 -1.1 -0.062 -0.012 0.046 
Std 10.6 15.4 2.5 0.064 0.041 0.038 

Max 20.0 30.5 5.6 0.194 0.069 0.106 

 Panoramic image 

 X (cm) Y (cm) Z (cm)   (deg)   (deg)   (deg) 

Average -3.1 -2.8 -0.6 -0.005 -0.063 0.043 
Std 5.1 7.2 1.8 0.055 0.056 0.033 

Max 10.2 18.5 4.1 0.101 0.176 0.065 

The second experiment included a panoramic image, an aerial image and a terrestrial close-range 

image. In this case, the close-range image was taken in such a way that the viewing direction was 

almost perpendicular to the viewing direction of the panoramic image.  

Table 2. Differences of exterior orientation parameters (interactive orientation – 

reference). The interactive orientation was applied using simultaneously a close-range 

normal-angle image, a terrestrial panoramic image and an aerial image, whose relative 

orientations were known. Statistics were calculated from 8 individual orientations. 

 Aerial image 
 X (cm) Y (cm) Z (cm)   (deg)   (deg)   (deg) 

Average -9.6 1.5 -0.4 -0.033 -0.017 0.038 
Std 7.4 12.0 1.2 0.031 0.036 0.021 

Max 20.9 16.3 2.4 0.097 0.065 0.065 

 Panoramic image 
 X (cm) Y (cm) Z (cm)   (deg)   (deg)   (deg) 

Average 0.6 0.7 -1.2 0.024 -0.017 0.045 
Std 2.6 0.4 1.4 0.035 0.022 0.028 

Max 6.8 1.3 2.8 0.065 0.046 0.078 

 Close-range image 
 X (cm) Y (cm) Z (cm)   (deg)   (deg)   (deg) 

Average 1.2 0.3 -0.6 -0.034 0.022 0.008 
Std 2.3 0.2 0.8 0.062 0.023 0.050 

Max 6.5 0.6 2.0 0.105 0.054 0.097 
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The previous example revealed that the panoramic image had more shift along the viewing 

direction (close to the direction of the Y axis, see Figure 7) than in the other directions. It was 

predicted that the close-range image with the perpendicular viewing direction to the viewing direction 

of the panoramic image could reduce uncertainty in this particular direction. As the results illustrate 

(Table 2), practical examples were in conjugation with this prediction.  

The location of the panoramic image has a maximum shift of 1.3 cm at the direction of the Y axis of 

the ground coordinate system when compared with the reference orientation. A disadvantage of the 

close-range image was that it had only few good features for orientation. Therefore, the maximum 

error at the direction of the X axis of the ground coordinate system was still almost 7 cm. In addition, 

some errors in rotations remained. However, when using three images instead of two during the 

interactive orientation, the overall accuracy of the orientations became better. In the case of the aerial 

image, the average improvements in maximum errors were 10.3 cm in location and 0.098 degrees  

in rotations. 

Figure 7. Laser scanning data, which was used for interactive orientation, superimposed 

onto aerial, close-range and panoramic images. The color-coding is illustrating the heights 

of laser points. The coordinate axes illustrate the approximate directions of the ground 

coordinate system. 

 

 

In many cases, laser scanning data can be leveled reliably using control patches [52], targets, road 

markings, linear features or large open planar areas, such as parking areas or football fields. As 
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previous examples have shown, finding accurately rotation differences between images and laser 

scanning data is a challenging task for interactive orientation. One reason is that the observed area is 

typically relatively small if terrestrial images are used. In addition, the footprint of the images does not 

necessarily cover a sufficient number of clear corresponding features to ensure reliable determination 

of all three rotations. In the last experiment of the interactive orientation, the same three images as in 

the previous example were used. However, the orientation differences with laser scanning data 

included only shifts and no rotations. As can be seen from Table 3, the interactive orientation produced 

results very similar to those of the reference orientation. 

Table 3. Differences of shifts (interactive orientation – reference). Because there were no 

rotation differences between laser scanning data and the image block coordinate system, 

the differences of shifts were the same for all images. Statistics were calculated from 8 

individual orientations. 

 Image block 

 X (cm) Y (cm) Z (cm) 

Average 0.7 0.3 -0.9 

Std 1.2 0.3 0.5 

Max 2.6 0.6 1.8 

After an interactive orientation the errors in rotations are automatically compensated with shifts of 

the projection center. As a result, even if the image orientations slightly differ from the reference 

orientation, the effect on the ground is typically much smaller. Correspondingly, the effect on the 

image plane is typically very small. Therefore, laser scanning data fits locally with the images. In order 

to detect better small errors in shifts and rotations, a larger area should be examined or more images 

should be included in the interactive orientation. One solution could be that 2–3 separate image blocks 

from the different sides of an aerial image are created and registered with laser scanning data.  

4.2. Integrated Multi-source Data 

After the orientations, airborne laser scanning data, part of one terrestrial laser scanning data and 

photogrammetrically-derived 3D points were integrated. In addition, point clouds were colorized using 

both aerial and terrestrial panoramic images (Figure 8). Terrestrial laser scanning data is easy to 

differentiate from airborne laser data because of its superior point density.  

4.3. Confirmation of the Inverse Transformation from Image Orientations to Laser Scanning Point 

Cloud Transformations 

Inverse transformation (Section 3.4) is the final step of the workflow if interactive orientation is 

applied and laser data is required to be introduced into the original coordinate system of an image 

block. An experiment was carried out in which an image included calibration targets and the point 

cloud included target observations from an automatic camera calibration in iWitness software.  
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Figure 8. After the orientations, 3D points from photogrammetric measurements, 

terrestrial laser scanning and airborne laser scanning were integrated. 3D points were 

colorized using both aerial images and terrestrial panoramic image. 

 

Initially, the test image and the 3D point cloud were at different coordinate systems. Because the 

interpretation of targets in the image was simple, only a single image was used when an interactive 

orientation between 3D points and the image was carried out. After the interactive orientation, the 

image was oriented into the same coordinate system as the 3D points. According to the relative 

orientation that was solved using the interactive orientation, the 3D points were transformed into the 

coordinate system of the initial camera pose. Figure 9, on one hand, illustrates the misfit between the 

3D points and the targets on images when the initial orientations were used while superimposing the 

points onto the image (small red dots). On the other hand, the blue dots in the figure show how 3D 

points are again well registered with the image after the interactive orientation and the inverse 

transformation.  

5. Conclusions  

Integration of multi-source data requires accurate relative orientations. In this article, an interactive 

method for registering multi-view, multi-scale image blocks with laser scanning data was presented. 

During an interactive orientation of an image block, the image orientation parameters of any image 

from the block can be changed. When an orientation of one image is changed, new orientations are 

calculated for other images according to the original relative orientation. Laser scanning data is 

superimposed onto all images using new orientations, which reveals visually the quality of the relative 

orientation.  
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Figure 9. Small red dots illustrate the initial orientation and blue dots the registration after 

the interactive orientation and the inverse transformation of 3D points according to the 

relative orientation parameters. 

 

 

Results from the interactive orientation were compared with the orientations of a reference image 

block, which was calculated using a bundle block adjustment. The laser scanning point cloud, which 

was fixed during interactive orientation, was pre-registered with a 3D model that was measured 

photogrammetically using the reference image block. In other words, the reference image block and 

laser scanning data were in the same coordinate system. Therefore, image orientations after the 

interactive orientation were comparable with reference orientations. 

The first example included an aerial image and a terrestrial panoramic image. The interactive 

orientation was done eight times, resulting in a maximum shift of 30.5 cm and a maximum rotation 

difference of 0.194 degrees. In the second example, a terrestrial close-range image was added to the 

image block to be used for the interactive orientation. As a result, the differences with the reference 

orientation decreased significantly. At this time, the maximum shift was 20.9 cm and the maximum 

rotation was 0.105 degrees. The last example included the same images as in the previous experiment. 

However, the initial image block orientation had no rotation differences compared to the laser data 

orientation, only shifts. Because the interpretation of laser data became easier when no rotations 

needed to be solved, the maximum shift was only 2.6 cm. 

Typically, images are easier than airborne laser scanning data to orient with regards to the ground 

coordinate system. Interactive orientation, however, is more flexible if all orientation changes are done 

to the image orientation parameters. The equations for transferring laser data to the original coordinate 

system of an image block according to the relative orientation results from the interactive orientation 

were presented.  

Because the accuracy of an interactive orientation is highly dependent on the image block 

geometry, on the number of images and on the amount of distinguishable features within the image 



Sensors 2009, 9              

 

 

6024

footprints, extensive numerical results cannot be generalized. The area for an interactive orientation 

should be selected carefully in order to capture many clear features in the images. In areas, in which 

the amount of distinguishable features is low, thus posing a challenge, the interpretation skills of an 

operator become significant. The results, however, verify that including more images to interactive 

orientation increases accuracy. In addition, if laser scanning data is already leveled, an interactive 

orientation can provide very accurate orientation.  

To conclude, interactive orientation improves the quality of multi-source data integration and thus 

the quality of the final products. However, the cost-effectiveness of the approach in practical 

applications has to be separately studied. Applications, where, e.g., sparse laser-scanning point clouds 

are densified with photogrammetrically-generated point clouds, accurate registration of the data can 

totally dominate the usability of the data, and, thus the highest quality approaches are expected to  

be needed. 
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