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Abstract: In 2018, Baricitinib was approved by the Food and Drig Administration (FDA) for the
treatment of rheumatoid arthritis. Baricitinib exerts its action by targeting Janus kinases (JAK). In this
study, we describe the necessary steps for preparing the drug using two alternative routes.
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1. Introduction

In May 2001, Food and Drig Administration (FDA) approved the first kinase inhibitor [1], imatinib
(1, Figure 1; Gleevec® from Novartis, Basel, Switzerland), for the treatment of chronic myeloid
leukemia. [2] Since that year, more than 45 kinase inhibitors have been marketed, most of them
in oncology.
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1. Introduction 

In May 2001, Food and Drig Administration (FDA) approved the first kinase inhibitor [1], 
imatinib (1, Figure 1; Gleevec® from Novartis, Basel, Switzerland), for the treatment of chronic 
myeloid leukemia. [2] Since that year, more than 45 kinase inhibitors have been marketed, most of 
them in oncology. 
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Figure 1. Structure of imatinib 1. 

In 2018, 59 novel drugs have been approved by FDA. Among them, 40 can be considered as 
small molecules, 16 are derived from amino acids, and 3 from nucleic acids. Interestingly, almost 25% 
of the approved small molecules acted as kinase inhibitors and predominantly as protein kinase 
inhibitors. The purpose of this review is to provide a series of specific information on one of those 
inhibitors: baricitinib (LY3009104, formerly developed by Incyte Co as INCB028050 and subject of a 
license agreement with Eli Lilly and Co in 2009). 

2. Baricitinib 

2.1. Names and Structure 

Figure 1. Structure of imatinib 1.

In 2018, 59 novel drugs have been approved by FDA. Among them, 40 can be considered as
small molecules, 16 are derived from amino acids, and 3 from nucleic acids. Interestingly, almost
25% of the approved small molecules acted as kinase inhibitors and predominantly as protein kinase
inhibitors. The purpose of this review is to provide a series of specific information on one of those
inhibitors: baricitinib (LY3009104, formerly developed by Incyte Co as INCB028050 and subject of a
license agreement with Eli Lilly and Co in 2009).

2. Baricitinib

2.1. Names and Structure

Baricitinib (2, Figure 2) is the active ingredient of Olumiant®, commercialized by Eli Lilly and Co.
Its IUPAC name is: 2-[1-(ethanesulfonyl)-3-(4-{7H-pyrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrazol-1-yl)aze
tidin-3-yl] acetonitrile, CAS 1187594-09-7.
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Baricitinib (2, Figure 2) is the active ingredient of Olumiant®, commercialized by Eli Lilly and 
Co. Its IUPAC name is: 2-[1-(ethanesulfonyl)-3-(4-{7H-pyrrolo[2,3-d]pyrimidin-4-yl}-1H-pyrazol-1-
yl)azetidin-3-yl] acetonitrile, CAS 1187594-09-7. 

2.2. Uses 

After a rejection in April 2017, baricitinib (2 mg tablets) has been approved on May 31, 2018 for 
treatment of rheumatoid arthritis. [3] Noticeably, it had been approved, for the same purpose, in the 
European Union (EU) in February 2017. [4] 

2.3. Targets 

Janus kinases (JAK) are tyrosine kinases (TYK) that play a crucial role in cell signaling [5,6]. They 
can be divided into four families: JAK1, JAK2, JAK3, and TYK2, and constitute interesting therapeutic 
targets [5,7]. The first JAK inhibitor approved by FDA (November 2011) was ruxolitinib (3) [8]. 
Through its selective inhibition of JAK1 and JAK2 (Table 1), it is clinically used for intermediate or 
high-risk myelofibrosis. 

Baricitinib (2) is also a selective and reversible inhibitor of JAK1 and JAK2 with less affinity for 
JAK3 and TYK2 (Table 1). Interestingly, tofacitinib (4, Figure 2), another FDA-approved kinase 
(November 2012) used to treat rheumatoid arthritis [9], is even more selective (Table 1).  

Selectivity of inhibitors within the Janus kinases has been tentatively correlated to specific 
interactions (hydrogen bonds) with amino acid residues in the hinge region of the ATP binding site 
[5]. Studies started during a screening of approximately 400,000 compounds from a Pfizer library in 
order to discover an inhibitor of JAK3. This enabled the identification of 9-(7H-Pyrrolo[2,3-
d]pyrimidin-4-yl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5) as a lead, which was reported by 
Flanagan et al. [10]. Improvements of the properties of 5, among which its metabolic stability [10] led 
to the identification and development of commercialized drugs 2-4. 

 
Figure 2. Structure of Janus kinases (JAK) inhibitors 2–5. 

Table 1. IC50 values for the inhibition of JAK1, JAK2, JAK3, and tyrosine kinases 2 (TYK2) 
by 2, 3, and 4, following the methodology of Clarck et al. [5]. 

Compound 
IC50 Values, Enzyme Assay (nM)  
JAK1 JAK2 JAK3 TYK2 

2 5.9 5.7 >400 53 
3 3.3 2.8 323 19 
4 3.2 4.1 1.6 34 

2.4. In Vitro Studies, Rodent Models, and Clinical Trials 

Several proinflammatory cytokines are involved in the pathogenesis of rheumatoid arthritis. 
Mention can be made of interleukin (IL) 6, IL-15, IL-17, IL-23, interferon-α/β, interferon-γ, and 
granulocyte-macrophage colony as stimulating factors. [10] As elegantly depicted by Furumoto and 
Gadina [11], such activity is critically linked to JAK signaling pathways and the signal transducer 
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2.2. Uses

After a rejection in April 2017, baricitinib (2 mg tablets) has been approved on May 31, 2018 for
treatment of rheumatoid arthritis. [3] Noticeably, it had been approved, for the same purpose, in the
European Union (EU) in February 2017. [4]

2.3. Targets

Janus kinases (JAK) are tyrosine kinases (TYK) that play a crucial role in cell signaling [5,6].
They can be divided into four families: JAK1, JAK2, JAK3, and TYK2, and constitute interesting
therapeutic targets [5,7]. The first JAK inhibitor approved by FDA (November 2011) was ruxolitinib
(3) [8]. Through its selective inhibition of JAK1 and JAK2 (Table 1), it is clinically used for intermediate
or high-risk myelofibrosis.

Table 1. IC50 values for the inhibition of JAK1, JAK2, JAK3, and tyrosine kinases 2 (TYK2) by 2, 3, and
4, following the methodology of Clarck et al. [5].

Compound IC50 Values, Enzyme Assay (nM)

JAK1 JAK2 JAK3 TYK2

2 5.9 5.7 >400 53
3 3.3 2.8 323 19
4 3.2 4.1 1.6 34

Baricitinib (2) is also a selective and reversible inhibitor of JAK1 and JAK2 with less affinity
for JAK3 and TYK2 (Table 1). Interestingly, tofacitinib (4, Figure 2), another FDA-approved kinase
(November 2012) used to treat rheumatoid arthritis [9], is even more selective (Table 1).

Selectivity of inhibitors within the Janus kinases has been tentatively correlated to specific
interactions (hydrogen bonds) with amino acid residues in the hinge region of the ATP binding
site [5]. Studies started during a screening of approximately 400,000 compounds from a
Pfizer library in order to discover an inhibitor of JAK3. This enabled the identification of
9-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5) as a lead, which was
reported by Flanagan et al. [10]. Improvements of the properties of 5, among which its metabolic
stability [10] led to the identification and development of commercialized drugs 2-4.

2.4. In Vitro Studies, Rodent Models, and Clinical Trials

Several proinflammatory cytokines are involved in the pathogenesis of rheumatoid arthritis.
Mention can be made of interleukin (IL) 6, IL-15, IL-17, IL-23, interferon-α/β, interferon-γ, and
granulocyte-macrophage colony as stimulating factors. [10] As elegantly depicted by Furumoto and
Gadina [11], such activity is critically linked to JAK signaling pathways and the signal transducer and
activator of transcription (STAT) signaling pathways. Therefore, targeting those pathways represented
and still represents a challenging field of research [11,12].
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In an in-depth preclinical study performed by Incyte Co, Fridman et al. [13], they reported that
the action of baricitinib in peripheral blood mononuclear cells (PBMCs) could prevent the production
of pathogenic and proinflammatory cytokines. That production was not altered by structural analogs
that did not inhibit JAK1 and JAK 2. Baricitinib has been administered orally (1, 3, and 10 mg/kg/day)
or by constant infusion in several rodent models (rats and mice). Clinical, histologic, radiographic,
and hematologic data demonstrated the efficacy and safety of the drug, thus justifying clinical trials.

Following the NIH [14], baricitinib has been the subject of 30 completed clinical trials, namely
17 phase 1 studies, 7 phase 2 studies, and 6 phase 3 studies; 20 other trials are ongoing or scheduled.
Historically, the first trial was a phase 2 study launched on May 15, 2009. It was entitled “INCB028050
Compared to Background Therapy in Patients with Active Rheumatoid Arthritis (RA) with Inadequate
Response to Disease Modifying Anti-Rheumatic Drugs” (NCT00902486) and was summarized as
follows: “This was a randomized, double blind, placebo controlled, dose ranging, parallel group
study. Participants who had active rheumatoid arthritis (RA) who had inadequate response to any
disease modifying anti-rheumatic drug (DMARD) therapy including biologics were enrolled. Screening
evaluations were performed within approximately 28 days of randomization. The duration of the study
was [six] months with the primary endpoint assessed at [three] months. Eligible participants were
randomly assigned to one of three doses (4, 7, or 10 mg QD) of INCB028050 (Baricitinib) or placebo.”
The first phase 3 studies were initiated at the end of 2012 under the titles “A Study in Moderate to
Severe Rheumatoid Arthritis (RA-BEAM)” (NCT01710358; first posted October 19, 2012), “A Study in
Participants with Moderate to Severe Rheumatoid Arthritis (RA-BEGIN)” (NCT01711359; first posted
October 22, 2012), “A Moderate to Severe Rheumatoid Arthritis Study (RA-BEACON)” (NCT01721044;
first posted November 2, 2012), and “A Study in Moderate to Severe Rheumatoid Arthritis Participants
(RA-BUILD)” (NCT01721057; first posted November 2, 2012). All results confirmed the high efficiency
of baricitinib and underlined a limited incidence of side effects such as a decrease in hemoglobin and
an increase in LDL, HDL, creatinine, and creatine phosphokinase. Further details on clinical trials can
be found in references [14–19].

2.5. Syntheses

There are essentially two routes for the preparation of baricitinib 2. As depicted in Scheme 1,
they can be distinguished by introducing central pyrazole ring in the molecule. In the original
procedure [20,21], the pyrazole ring was linked to the pyrrolo[2,3-d]pyrimidine system (to afford 6)
and then coupled to the azetidine moiety 7 to give the intermediate 8. In an alternative route [22,23],
the bound between the pyrazole and the azetidine was formed (to yield 10) before reaction with the
fused system 9.

Thus (Scheme 2), 4-chloro-7H- pyrrolo[2,3-d]pyrimidine was protected on position 7 by reaction
with 2-(trimethylsilyl)ethoxymethyl chloride. The protected fused system was then coupled with
4-pyrazoleboronic acid pinacol ester 12 by a Suzuli-Miyaura reaction, giving 6. Parallelly, 7 was
obtained from 1-Boc-3-azetidinone 13 and diethyl cyanomethylphosphonate. Reaction between 6 and 7
in the presence of DBU afforded the ester 8. Subsequent hydrolysis, decarboxylation, sulfonation, and
finally deprotection of the pyrrolopyrimidine moiety yielded the targeted derivative 2. In a variant [21],
also used to prepare deuterated samples of 2 [24], the azetidine derivative 7 has been deprotected and
sulfonated before coupling with 6.

In a more recent patent [22], the sulfonated azetidine 14 (Scheme 3) was prepared from
azetidine-3-ol by a sequence including a sulfonation, an oxidation, and introduction of the
cyanomethylene moiety. Interestingly, there is no need to protect any position in that sequence.
Additionally, let us emphasize that the oxidation step could be performed both in batch or under
flow conditions. [22,25]. Then, 14 was reacted with 4-pyrazoleboronic acid pinacol ester 12 to yield 10.
The bound between the azetidinylpyrazole group and the pyrrolo[2,3-d]pyrimidine system was then
created through a Suzuki-Miyaura reaction involving 7-Boc-4-chloro-7H-pyrrolo[2,3-d]pyrimidine 9 or
even the unprotected 4-chloro-7H-pyrrolo[2,3-d]pyrimidine.
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3. Perspectives 

As expected, success of the 7H-pyrrolo[2,3-b]pyrimidine scaffold in the development of drugs 
for treatment of various diseases and essentially rheumatoid arthritis has initiated many researches 
on structurally related analogs. Among them, the 1H-pyrrolo[2,3-b]pyridine skeleton emerged as a 
moiety of particular interest, as indicated by the number of recent publications and patents in which 
it has been described [26–31]. 
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3. Perspectives

As expected, success of the 7H-pyrrolo[2,3-b]pyrimidine scaffold in the development of drugs
for treatment of various diseases and essentially rheumatoid arthritis has initiated many researches
on structurally related analogs. Among them, the 1H-pyrrolo[2,3-b]pyridine skeleton emerged as a
moiety of particular interest, as indicated by the number of recent publications and patents in which it
has been described [26–31].
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