Supplementary Information

3-Vinylazetidin-2-ones: Synthesis, antiproliferative and tubulin destabilizing activity in MCF-7 and MDA-MB-231 breast cancer cells

Shu Wang^a, Azizah M. Malebari^{a,b*}, Thomas F. Greene^{a*}, Niamh M. O'Boyle^a, Darren Fayne^c, Seema M. Nathwani^c, Brendan Twamley^d, Thomas McCabe^d, Niall O. Keely^a, Daniela M. Zisterer^c, Mary J. Meegan^{a**}

^a School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
^b Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
^c School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
^d School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
Tel: +353-1-8962798; Fax: +353-1-8962793

*Authors contributed equally to the work

**Corresponding author:Mary J. MeeganE-mail: <u>mmeegan@tcd.ie</u>

Supplementary Information

Experimental section: Experimental details for preparation and characterisation of
intermediate imine compounds 5a-i, 5m-s, 6a-c, 6f-k 3
Table S1: Tier-1 Profiling Screen of Selected β-Lactams
Table S2: ADMET and Lipinski Properties for Selected β-Lactams
Table S3: Comparative Antitumour Evaluations of compounds 7h, 7s, 7t, 17b, 17c in
the NCI60 Leukemia, Non-Small Cell Lung Cancer, Colon Cancer and CNS Cancer
cell lines <i>in vitro</i> primary screen15
Table S4: Comparative Antitumour Evaluations of compounds 7h, 7s, 7t, 17b, 17c in
the NCI60 Melanoma, Ovarian cancer, Renal cancer and Breast cancer cell line in
<i>vitro</i> primary screen16
Table S5: NCI 60 cell line mean screening results for selected compounds
Table S6: Standard COMPARE analysis of β-lactam 7h 18
Table S7: Standard COMPARE analysis of β -lactam 7s
Table S8: Toxicity at 10 µM against two concentrations of murine epithelial cells. 20
Table S9. Toxicity at IC ₅₀ against two concentrations of murine epithelial cells20
References

Experimental section: Experimental details for preparation and characterisation of intermediate imine compounds 5a-i, 5m-s, 6a-c, 6f-k

Materials and methods: Chemistry

All reagents were commercially available and were used without further purification unless otherwise indicated. Tetrahydrofuran (THF) was distilled immediately prior to use from Na/Benzophenone under a slight positive pressure of nitrogen, toluene was dried by distillation from sodium and stored on activated molecular sieves (4Å) and dichloromethane was dried by distillation from calcium hydride prior to use. Uncorrected melting points were measured on a Gallenkamp SMP 11 melting point apparatus. Infra-red (IR) spectra were recorded as thin film on NaCl plates, or as potassium bromide discs on a Perkin Elmer FT-IR Spectum 100 spectrometer. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded at 27°C on a Brucker Avance DPX 400 spectrometer (400.13 MHz, ¹H; 100.61 MHz, ¹³C) at 20 °C in either CDCl₃ (internal standard tetramethylsilane TMS) or CD₃OD by Dr. John O'Brien and Dr. Manuel Ruether in the School of Chemistry, Trinity College Dublin. For CDCl₃, ¹H-NMR spectra were assigned relative to the TMS peak at 0.00 δ and ¹³C-NMR spectra were assigned relative to the middle CDCl₃ triplet at 77.00 ppm. For CD₃OD, ¹H and ¹³C-NMR spectra were assigned relative to the centre peaks of the CD₃OD multiplets at 3.30 δ and 49.00 ppm respectively. Electrospray ionisation mass spectrometry (ESI-MS) was performed in the positive ion mode on a liquid chromatography time-of-flight (TOF) mass spectrometer (Micromass LCT, Waters Ltd., Manchester, UK) equipped with electrospray ionization (ES) interface operated in the positive ion mode at the High Resolution Mass Spectrometry Laboratory by Mr. Brian Talbot in the School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin and Dr. Martin Feeney in the School of Chemistry, Trinity College Dublin. Mass measurement accuracies of $< \pm 5$ ppm were obtained. Low resolution mass spectra (LRMS) were acquired on a Hewlett-Packard 5973 MSD GC-MS system in electron impact (EI) mode. Rf values are quoted for thin layer chromatography on silica gel Merck F-254 plates, unless otherwise stated. Flash column chromatography was carried out on Merck Kieselgel 60 (particle size 0.040-0.063 mm). Chromatographic separations were also carried out on Biotage SP4 instrument. All products isolated were homogenous on TLC. Analytical highperformance liquid chromatography (HPLC) to determine the purity of the final

compounds was performed using a Waters 2487 Dual Wavelength Absorbance detector, a Waters 1525 binary HPLC pump, a Waters In-Line Degasser AF and a Waters 717plus Autosampler. The column used was a Varian Pursuit XRs C18 reverse phase 150 x 4.6 mm chromatography column. Samples were detected using a wavelength of 254 nm.

Experimental section

General method I: Preparation of imines 5a-I, 5m-s, 6a-c, 6f-k

The appropriately substituted benzaldehyde (10 mmol) and corresponding substituted aniline (10 mmol) were heated reflux in ethanol (40 mL) for 4 h with a catalytic amount of concentrated sulphuric acid. The volume of reaction was then reduced to approximately 10 mL in *vacuo*. The Schiff base precipitated from solution upon standing at room temperature overnight. The solid product obtained was filtered and purified by recrystallisation from ethanol.

(*E*)-1-(4-Fluorophenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5a). Preparation as described above from 4-fluorobenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as a colorless solid, yield 81%, Mp: 100-102 °C.[1] IR (KBr) v_{max} : 1638 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.84 (s, 3H), 3.93 (s, 6H), 6.51 (s, 2H), 7.17-7.22 (m, 2H), 7.91-7.94 (m, 2H), 8.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.93, 61.05, 98.13, 115.92, 130.73, 130.82, 132.23, 132.32, 147.69, 153.61, 158.22, 163.49. HRMS: found 290.1192 (M⁺+H); C₁₆H₁₇FNO₃ requires 290.1192.

(*E*)-1-(4-Chlorophenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5b). Preparation as described above from 4-chlorobenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 75%, Mp 110-112 °C. [2] IR (KBr) v_{max} : 1627 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H), 3.93 (s, 6H), 6.53 (s, 2H), 7.48 (d, J = 8.52 Hz), 7.88 (d, J = 8.52 Hz), 8.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.69, 60.58, 97.71, 128.67, 129.45, 130.47, 134.06, 136.96, 147.05, 153.15, 157.71. HRMS: found 306.0903 (M⁺+H); C₁₆H₁₇³⁵ClNO₃ requires 306.0897.

(*E*)-1-(4-Bromophenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5c). Preparation as described above from 4-bromobenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 70%, Mp 110-112 °C [3] IR (KBr) v_{max} : 1624 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H), 3.92 (s, 6H), 6.51 (s, 2H), 7.63 (d, J = 8.52 Hz, 2H), 7.79 (d, J = 8.52 Hz, 2H), 8.45 (s, 1H). ¹³C NMR

(100 MHz, CDCl₃): δ 55.69, 60.58, 97.71, 125.54, 129.68, 130.53, 131.64, 132.00, 147.86, 153.16, 157.80. HRMS: found 350.0382 (M⁺+H); C₁₆H₁₇⁸⁰BrNO₃ requires 350.0392.

(*E*)-1-(4-Nitrophenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5d). Preparation as described above from 4-nitrobenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as light yellow solid, yield 90%, Mp 160-162 °C. [3] IR (KBr) v_{max} : 1630 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.90 (s, 3H), 3.94 (s, 6H), 6.57 (s, 2H), 8.09 (d, J = 9.04 Hz), 8.35 (d, J = 8.56 Hz), 8.59 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.73, 60.60, 97.98, 123.61, 123.87, 128.88, 136.92, 141.02, 146.19, 148.80, 153.25, 156.04. HRMS: found 317.1146 (M⁺+H); C₁₆H₁₇N₂O₅ requires 317.1137.

(*E*)-*N*,*N*-Dimethyl-4-(((3,4,5-trimethoxyphenyl)imino)methyl)aniline (5e). Preparation as described above from 4-(dimethylamino)benzaldehyde and 3,4,5trimethoxyaniline. The product was obtained as light yellow solid, yield 59%, Mp 97-98 °C. [4] IR (KBr) v_{max} : 1604 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.09 (s, 6H), 3.88 (s, 3H), 3.92 (s, 6H), 6.51 (s, 2H), 6.76 (d, J = 8.80 Hz, 2H), 7.80 (br s, 2H), 8.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 39.74, 55.64, 60.57, 97.62, 111.11, 123.50, 130.07, 135.19, 142.97, 152.11, 153.03, 159.20. HRMS: found 315.1710 (M⁺+H); C₁₈H₂₃N₂O₃ requires 315.1709.

(*E*)-1-Phenyl-*N*-(3,4,5-trimethoxyphenyl)methanimine (5f). Preparation as described above from benzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 59%.[5] Mp: 90-92 °C. IR (KBr) v_{max} : 1633 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H), 3.93 (s, 6H), 6.53 (s, 2H), 7.51-7.52 (m, 3H), 7.92-7.94 (m, 2H), 8.50 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.69, 60.58, 97.70, 128.36, 128.38, 129.31, 131.04, 135.51, 135.96, 153.12, 159.34. HRMS: found 272.1284 (M⁺+H); C₁₆H₁₈NO₃ requires 272.1287.

(*E*)-1-*p*-Tolyl-*N*-(3,4,5-trimethoxyphenyl)methanimine (5g). Preparation as described above from 4-methylbenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 73%, Mp 107-108 °C. [6] IR (KBr) ν_{max} : 1638 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.44 (s, 3H), 3.88 (s, 3H), 3.92 (s, 6H), 6.51 (s, 2H), 7.30 (d, J = 8.04 Hz, 2H), 7.81 (d, J = 8.04 Hz, 2H), 8.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.21, 55.67, 60.57, 97.68, 128.35, 129.12, 132.96, 135.78, 141.57, 147.60, 153.09, 159.31. HRMS: found 286.1449 (M⁺+H); C₁₇H₂₀NO₃ requires 286.1443.

(*E*)-1-(4-Methoxyphenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5h).

Preparation as described above from 4-methoxybenzaldehyde and 3,4,5trimethoxyaniline. The product was obtained as pale yellow solid, yield 88%, Mp 114-115 °C [7]. IR (KBr) v_{max} : 1607 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 6.49 (s, 2H), 7.01 (d, J = 7.80 Hz, 2H), 7.86 (d, J = 7.84 Hz, 2H), 8.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.00, 55.66, 60.57, 97.63, 113.77, 128.61, 130.03, 135.61, 147.85, 153.08, 158.68, 161.83. HRMS: found 302.1400 (M⁺+H); C₁₇H₂₀NO₄ requires 302.1392.

(*E*)-1-(4-Ethoxyphenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5i). Preparation as described above from 4-ethoxybenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 71%, Mp: 103-105 °C. [4] IR (KBr) v_{max} : 1608 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.47 (t, J = 7.04Hz, 3H), 3.88 (s, 3H), 3.92 (s, 6H), 4.13 (q, J = 7.02 Hz, 2H), 6.51 (s, 2H), 6.99 (d, J = 9.00 Hz, 2H), 7.87 (d, J = 7.04 Hz, 2H), 8.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.76, 56.13, 61.04, 63.72, 98.11, 114.74, 128.69, 130.68, 132.03, 136.14, 153.56, 159.23, 160.09. HRMS: found 316.1551 (M⁺+H); C₁₈H₂₂NO₄ requires 316.1549.

(*E*)-1-(Naphthalen-1-yl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5m). Preparation as described above from 1-naphthaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as yellow solid, yield 80%, Mp 110-112 °C. [3] IR (KBr) v_{max} : 1637 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.92 (s, 3H), 3.96 (s, 6H), 6.60 (s, 2H), 7.59-8.13 (m, 7H), 9.14 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 56.21, 61.09, 98.22, 124.20, 124.92, 125.34, 126.31, 128.85, 129.90, 132.06, 133.94, 135.35, 136.75, 148.59, 153.67, 159.51. HRMS: found 322.1436 (M⁺+H); C₂₀H₂₀NO₃ requires 322.1443.

(*E*)-1-(Naphthalen-2-yl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5n). Preparation as described above from 2-naphthaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as yellow solid, yield 78%, Mp 122-124 °C. [4]. IR (KBr) v_{max} : 1637 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.90 (s, 3H), 3.95 (s, 6H), 6.63 (s, 2H), 7.59-8.29 (m, 7H) 8.68 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 56.17, 61.07, 98.25, 126.71, 127.66, 128.11, 128.77, 128.80, 129.15, 133.11, 134.12, 135.06, 136.49, 147.90, 153.63, 159.75. HRMS: found 322.1438 (M⁺+H); C₂₀H₂₀NO₃ requires 322.1443.

(E)-1-(3-((*tert*-Butyldimethylsilyl)oxy)-4-methoxyphenyl)-N-(3,4,5-trimethoxy phenyl) methanimine (50). Preparation as described above from 3-(*tert*- butyldimethylsilanyloxy)-4-methoxybenzaldehyde and 3,4,5-trimethoxyaniline. The product was obtained as amber solid, yield 90%. [7] Mp 85-86 °C. IR (KBr) v_{max} : 1625 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.20 (s, 6H), 1.03 (s, 9H), 3.87 (s, 3H), 3.89 (s, 3H), 3.91 (s, 6H), 6.50 (s, 1H), 6.94 (d, J = 8.52 Hz, 1H), 7.47 (m, 2H), 8.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ -5.05, 17.96, 25.18, 25.25, 55.01, 55.67, 60.54, 97.73, 111.04, 119.96, 125.82, 128.62, 129.75, 144.92, 147.32, 153.08, 153.83, 158.84. HRMS: found 431.2127 (M⁺); C₂₃H₃₃NO₅Si requires 431.2128.

(*E*)-1-(4-Methoxy-3-nitrophenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5p). Preparation as described above from 4-methoxy-3-nitrobenzaldehyde and 3,4,5trimethoxyaniline. The product was obtained as yellow solid, yield 84%, Mp 166-167 °C. [7] IR (KBr) ν_{max} : 1615 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.89 (s, 3H), 3.93 (s, 6H), 4.06 (s, 3H), 6.52 (s, 2H), 7.21 (d, J = 8.52 Hz, 1H), 8.12-8.15 (m, 1H), 8.40 (d, J = 2.00 Hz, 1H), 8.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.69, 56.39, 60.58, 97.72, 113.20, 125.57, 128.48, 133.33, 136.28, 139.37, 146.55, 153.17, 154.41, 155.67. HRMS: found 347.1234 (M⁺+H); C₁₇H₁₉N₂O₆ requires 347.1243.

(*E*)-1-(4-(Methylthio)phenyl)-*N*-(3,4,5-trimethoxyphenyl)methanimine (5q). Preparation as described above from 4-methylsulfanylbenzaldehyde and 3,4,5trimethoxyaniline. The product was obtained as yellow solid, yield 88%, 2.79 g, Mp 96 °C. [3] IR (KBr) v_{max} : 1628 cm⁻¹ (C=N); ¹H NMR (400 MHz, CDCl₃): δ 2.52 (s, 3H), 3.87 (s, 3H), 3.89 (s, 6H), 6.48-7.80 (m, 6H), 8.41 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.57, 55.65, 60.55, 97.69, 125.16, 132.19, 135.83, 142.87, 147.51, 153.09, 158.51. HRMS: found 318.1162 (M⁺+H); C₁₇H₂₀NO₃S requires 318.1164.

4-[(3,4,5-Trimethoxyphenylimino)methyl]benzonitrile (5r). Preparation as described above from 4-formylbenzonitrile and 3,4,5-trimethoxyaniline. The product was obtained as pale yellow solid, yield 2.72 g, 92%. [3] Mp 134 °C. IR (KBr) v_{max} : 1580 cm⁻¹ (C=N), 2223 cm⁻¹ (C=N). ¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H), 3.92 (s, 6H), 6.55-8.02 (m, 6H), 8.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 56.18, 61.05, 98.36, 114.34, 118.48, 129.05, 132.58, 137.20, 139.85, 146.76, 153.68, 157.07. HRMS: found 297.1250 (M⁺+H); C₁₇H₁₇N₂O₃ requires 297.1239.

(*E*)-N-(3,5-Dimethoxyphenyl)-1-(4-methoxyphenyl)methanimine (5s). Preparation as described above using the general method III above and was obtained from 4-methoxybenzaldehyde and 3,5-dimethoxyaniline as an oil. [8] Yield: 97%, Purity (HPLC): 92%. IRvmax (ATR): 1592.2 cm⁻¹(C=N). ¹H NMR (400 MHz, CDCl₃): δ 3.79 (s, 6 H), 3.84 (s, 3 H), 6.30 - 6.36 (m, 3 H), 6.95 (d, *J* = 7.93 Hz, 2 H), 7.81 (d, *J* = 7.93

Hz, 2 H), 8.35 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 55.37, 55.52, 97.92, 98.97, 114.15, 114.26, 129.00, 130.54, 131.92, 154.52, 159.83. HRMS: found 272.1289 (M⁺+H); C₁₆H₁₈NO₃ requires 272.1287.

(*E*)-*N*-(4-Fluorophenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6a). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4-fluoroaniline. The product was obtained as colourless solid, yield 65%, Mp 110-113 °C. [9] IR (KBr) ν_{max} : 1620 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.94 (s, 3H), 3.96 (s, 6H), 7.07-7.12 (m, 2H), 7.16 (d, J = 7.52 Hz, 2H), 7.19-7.22 (m, 2H), 8.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.79, 60.55, 105.25, 115.32, 115.55, 121.79, 131.06, 140.53, 147.42, 153.07, 159.25, 161.94. HRMS: found 290.1181 (M⁺+H); C₁₆H₁₇FNO₃ requires 290.1192.

(*E*)-*N*-(4-Chlorophenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6b). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4-chloroaniline. The product was obtained as pale green solid (yield 77%); mp: 136-137 °C. [10] IR (KBr) v_{max} : 1625 cm⁻¹ (C=N). ¹H NMR (400 MHz, CDCl₃): δ 3.94 (s, 3H), 3.97 (s, 6H), 7.18 (br s, 4H), 7.37 (d, J = 8.04 Hz, 2H), 8.35 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.84, 60.59, 105.57, 121.76, 128.66, 128.84, 131.25, 131.89, 144.58, 147.20, 153.08, 159.83. HRMS: found 306.0902 (M⁺+H); C₁₆H₁₇³⁵ClNO₃ requires 306.0897.

(*E*)-*N*-(4-Bromophenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6c). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4-bromoaniline. The product was obtained as colourless crystals, yield 90%, Mp 140-141 °C. [11] IR (KBr) v_{max} : 1625 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.94 (s, 3H), 3.96 (s, 6H), 7.11 (d, J = 8.52 Hz, 2H), 7.17 (s, 2H), 7.52 (d, J = 8.52 Hz, 2H), 8.34 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.82, 60.57, 105.45, 118.86, 122.14, 131.25, 131.53, 131.77, 140.78, 153.08, 153.19, 159.84. HRMS: found 350.0385 (M⁺+H); C₁₆H₁₇⁷⁹BrNO₃ requires 350.0392.

(*E*)-*N*-Phenyl-1-(3,4,5-trimethoxyphenyl)methanimine (6f). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and aniline. The product was obtained as yellow crystal, yield 98%, Mp 90-92 °. [7] IR (KBr) v_{max} : 1629 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.94 (s, 3H), 3.96 (s, 6H), 7.19 (s, 2H), 7.24-7.27 (m, 3H), 7.39-7.43 (m, 2H), 8.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.81, 60.55, 105.35, 120.43, 125.51, 128.74, 131.16, 140.53, 151.36, 153.07, 159.49. HRMS: found 272.1284 (M⁺+H); C₁₆H₁₈NO₃ requires 272.1287.

(*E*)-*N*-*p*-Tolyl-1-(3,4,5-trimethoxyphenyl)methanimine (6g). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and *p*-toluidine. The product was obtained as colourless crystals, yield 69%, Mp 100-101 °C. [12] IR (KBr) v_{max} : 1622 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.40 (s, 3H), 3.94 (s, 3H), 3.97 (s, 6H), 7.15-7.23 (m, 6H), 8.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 20.59, 55.84, 60.57, 105.38, 120.36, 129.37, 130.26, 131.59, 139.98, 144.67, 153.04, 158.72. HRMS: found 286.1443 (M⁺+H); C₁₇H₂₀NO₃ requires 286.1443.

(*E*)-*N*-(4-Ethylphenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6h). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4-ethylaniline. The product was obtained as pale yellow crystals, yield 52%, Mp 85-86 °C. [13] IR (KBr) v_{max} : 1625 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.28 (t, J = 7.52 Hz, 3H), 2.70 (q, J = 7.52 Hz, 2H), 3.94 (s, 3H), 3.97 (s, 6H), 7.18-7.20 (m, 4H), 7.25 (d, J = 8.04 Hz, 2H), 8.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 15.22, 27.98, 55.82, 60.55, 105.28, 120.42, 128.15, 131.25, 140.41, 141.83, 149.01, 153.05, 158.71. HRMS: found 300.1597 (M⁺+H); C₁₈H₂₂NO₃ requires 300.1600.

(*E*)-*N*-(4-Methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6i). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4methoxyaniline. The product was obtained as pale green solid, yield 83%, Mp 109-111 °C. [7] IR (KBr) ν_{max} : 1619 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.85 (s, 3H), 3.94 (s, 3H), 3.97 (s, 6H), 6.95 (d, J = 8.52 Hz, 2H), 7.19 (s, 2H), 7.27 (d, J = 8.52 Hz, 2H), 8.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.06, 55.82, 60.56, 105.20, 113.95, 121.73, 129.04, 140.95, 143.90, 153.04, 157.56, 157.85. HRMS: found 302.1390 (M⁺+H); C₁₇H₂₀NO₄ requires 302.1392.

N-((*E*)-4-(3,4,5-Trimethoxybenzylideneamino)phenyl)acetamide (6j). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4-aminoacetanilide. The product was obtained as yellow solid, yield 38%, Mp 161-162 °C. [14] IR (KBr) v_{max} : 1667 (C=O), 1621 (C=N) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.20 (s, 3H), 3.93 (s, 3H), 3.95 (s, 6H), 7.16 (s, 2H), 7.22 (d, J = 8.52 Hz), 7.52 (s, 1H), 7.56 (d, J = 9.04 Hz, 2H), 8.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 24.14, 55.78, 60.55, 105.18, 120.20, 121.09, 121.81, 131.27, 135.66, 140.99, 147.44, 153.04, 158.78, 167.93. HRMS: found 329.1510 (M⁺+H); C₁₈H₂₁N₂O₄ requires 329.1501.

(*E*)-N-(4-(Methylthio)phenyl)-1-(3,4,5-trimethoxyphenyl)methanimine (6k). Preparation as described above from 3,4,5-trimethoxybenzaldehyde and 4methylthioaniline. The product was obtained as yellow crystals, Yield: 92%, Mp 112 °C. [13] IR (NaCl, film) ν_{max} : 1677.89 cm⁻¹(C=N). ¹H NMR (400 MHz,CDCl₃): δ ppm 2.48 (s, 3H), 3.86 – 3.96 (m, 9 H), 7.14 (d, *J*=8.54 Hz, 2 H), 7.23-7.28 (m, 2 H), 7.12 (s, 2H), 8.33 (s, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 16.34, 56.23, 60.96, 105.71, 121.50, 127.66, 131.69, 135.80, 140.95, 149.17, 153.49, 159.18. HRMS: found 340.0994 (M⁺+Na); C₁₇H₁₉NO₃SNa requires 340.0983.

Molecule	ADMET Solubility ^b	ADMET Solubility Level ^c	ADME T BBB ^d	ADMET BBB Level ^e	ADMET EXT CYP2D6 Prediction	ADMET EXT Hepatotoxic Prediction
HO HO HO N OCH ₃ OH OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OH 13	-2.32	3	_	4	false	true
OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	-4.27	2	-0.07	2	false	false
OCH ₃ OH OH OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	-3.83	3	-0.47	2	false	true
OCH ₃ NH ₂ O H ₃ CO OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	-4.07	2	-0.72	3	false	false

Table S1: Tier-1 Profiling Screen of Selected β-Lactams^a

Molecule	ADMET Solubility ^b	ADMET Solubility Level ^c	ADME T BBB ^d	ADMET BBB Level ^e	ADMET EXT CYP2D6 Prediction	ADMET EXT Hepatotoxic Prediction
HO HO HO HO HO HO HO HO HO HO HO HO HO H	-4.55	2	-0.11	2	false	false
ОСН ₃ О-Р-ОН ОН ОСН ₃ ОСН ₃ ОСН ₃ 17b	-3.81	3	-	4	false	true

^aCalculated using Pipeline Pilot Professional (v8.5.0.200) BIOVIA, Dassault Systèmes

^bADMET Solubility: Log of the water solubility at 25 °C (LogSw)(mol/L) ^cADMET Solubility Level: Ranking of the solubility values into the following classes: 0: Extremely Low; 1: Very Low; 2: Low; 3: Good; 4: Optimal; 5: Very Soluble

^dADMET BBB[:] Predicts the blood brain barrier penetration of a molecule, defined as the ratio of the concentrations of solute (compound) on the both sides of the membrane after oral administration.

^eADMET Blood Brain Barrier Absorption (BBB) Level: Ranking of LogBBB values into one of the following levels: 0: Very High; 1: High; 2: Medium; 3: Low; 4: Undefined (molecule is outside the confidence area of the regression model used to calculate LogBB)

Molecule	ADMET Absorption Level ^b	ADMET EXT PPB Prediction ^c	ALogP	MW	HA	HD	RB	Volume	PSA
HO HO HO N OCH ₃ OCH ₃ OCH ₃ H ₃ CO 13	0	false	1.26	419.43	8	3	8	274.74	117.92
OCH ₃ OCH ₃ OCH ₃ OCH ₃ H ₃ CO OCH ₃ OCH ₃ OCH ₃	0	true	3.17	369.41	5	0	7	250.38	57.230
OCH ₃ OH OH OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	0	true	2.92	385.41	6	1	7	258.96	77.460
OCH ₃ NH ₂ OCH ₃ OCH ₃ H ₃ CO	0	true	2.42	384.43	6	1	7	260.33	83.250

Table S2: ADMET and Lipinski Properties for Selected β-Lactams^a

Molecule	ADMET Absorption Level ^b	ADMET EXT PPB Prediction ^c	ALogP	MW	HA	HD	RB	Volume	PSA
HO HO HO HO HO HO H_3 H_3 CO H_3 H_3 CO H_3 H_3 CO H_3 H_3 CO H_3 H_3 H_3 CO H_3	0	true	4.09	475.53	6	1	9	322.41	77.460
OCH ₃ O-P'-OH OH O-P'-OH OH OCH ₃ OCH ₃	1	true	2.67	465.39	9	2	9	291.89	133.80
17b									

^aCalculated using Pipeline Pilot Professional (v8.5.0.200) BIOVIA, Dassault Systèmes

^bADMET Absorption Level: Ranking of the molecule into one of the following levels: 0: Good; 1: Moderate; 2: Poor; 3: Very Poor

^cADMET Plasma Protein Binding (PPB) Prediction: If true, the compound is predicted to be a binder (>=90%). Otherwise, it is predicted to be a weak or nonbinder(<90%).

Table S3: Comparative Antitumour Evaluations of compounds **7h**, **7s**, **7t**, **17b**, **17c** in the NCI60 *Leukaemia*, *Non-Small Cell Lung Cancer*, *Colon Cancer* and *CNS Cancer* cell lines *in vitro* primary screen^{*a*}

Cell line	7h	7s	7t	17b	17c
	GI ₅₀				
	(µM)	(µM)	(µM)	(µM)	(µM)
Leukemia					
CCRF-CEM	Nt^b	nt ^a	0.0326	0.0604	0.0325
HL-60(TB)	nt ^a	nt ^a	0.0137	0.0273	0.0288
K-562	nt ^a	nt ^a	0.0372	0.0415	0.035
MOLT-4	nt ^a	nt ^a	0.04	0.129	0.0477
RPMI-8226	nt ^a	nt ^a	< 0.0100	0.0802	0.0482
SR	nt ^a	nt ^a	0.0439	0.0572	0.0335
Non-Small Cell					
Lung Cancer					
A549/ATCC	0.0413	< 0.0100	0.0392	0.0458	0.0382
EKVX	0.0583	0.0258	nt ^a	nt ^b	nt ^b
HOP-62	0.0369	< 0.0100	0.0412	0.09	0.024
HOP-92	nt^b	nt ^b	0.0393	1.78	0.0979
NCI-H226	0.0339	< 0.0100	0.0387	>100	>100
NCI-H23	0.0245	< 0.0100	0.0387	0.0637	0.0444
NCI-H332M	Nt ^b	0.0855	0.0645	0.0903	0.0449
NCI-H460	0.036	0.0131	0.0355	0.0386	0.0352
NCI-H552	0.0206	< 0.0100	< 0.0100	0.0227	0.0142
Colon Cancer					
COLO 205	0.0206	0.0321	0.0175	1.91	0.204
HCT-2998	0.0353	0.0364	0.0368	0.19	0.0409
HCT-116	0.0307	< 0.0100	0.0276	0.0439	0.035
HCT-15	0.0371	0.018	0.0287	0.0474	0.0296
HT29	0.0337	0.429	0.0179	2.78	0.356
KM12	0.0351	< 0.0100	0.0242	0.0391	0.022
SW-620	0.0402	< 0.0100	0.0405	0.0552	0.0379
CNS Cancer					
SF-268	0.0476	< 0.0100	0.0546	0.0884	0.0433
SF295	0.0358	0.271	0.0213	0.0291	0.0243
SF539	nt^b	Nt ^b	< 0.0100	0.042	0.0162
SNB-19	0.0542	0.0405	0.049	0.459	0.0639
SNB-75	0.0372	0.0153	0.0301	0.0365	0.0237
U251	0.0342	0.0156	0.0362	0.0343	0.0313
Prostate cancer					
PC-3	0.0374	< 0.0100	0.0415	0.0536	0.0349
DU-145	0.0298	< 0.0100	0.0365	0.0596	0.0413

^{*a*} GI₅₀ is the mean concentrations required to cause 50% reduction in proliferation in the growth of the cancer cells over the total NCI 60 cell line panel in the assay [15]. ^{*b*}nt = not tested;

Table S4: Comparative Antitumour Evaluations of compounds **7h**, **7s**, **7t**, **17b**, **17c** in the NCI60 *Melanoma*, *Ovarian cancer*, *Renal cancer* and *Breast cancer* cell line *in vitro* primary screen^{*a*}

Cell line	7h	7s	7t	17b	17c
	GI ₅₀	GI ₅₀	GI50	GI50	GI ₅₀
	(µM) ^a				
Melanoma					
LOX IMVI	0.0416	< 0.0100	< 0.0100	0.0422	0.0241
MALME-3M	0.073	0.0283	>100	54.5	71.4
M14	0.0252	< 0.0100	0.0272	0.748	0.0317
MDA-MB-435	0.0226	< 0.0100	< 0.0100	0.021	0.0128
SK-MEL-2	0.191	0.0314	0.0656	0.0858	0.0544
SK-MEL-28	0.0599	< 0.0100	0.0181	0.0977	7.46
SK-MEL-5	0.0194	< 0.0100	0.0146	0.0312	0.019
UACC-257	42.2	>100	>100	>100	>100
UACC-62	0.0502	< 0.0100	12.3	0.0511	0.0348
Ovarian cancer					
IGROV1	0.0404	< 0.0100	0.0496	0.0669	0.0376
OVCAR-3	0.0251	< 0.0100	0.0181	0.0497	0.0368
OVCAR-4	0.0776	0.0131	< 0.0100	0.16	0.168
OVCAR-5	0.0587	0.0453	0.0446	3.57	0.444
OVCAR-8	Nt ^b	Nt^b	0.0148	0.0442	0.0327
NCI/ADR-RES	0.0272	< 0.0100	< 0.0100	0.037	0.0191
SK-OV-3	0.0285	0.0105	0.0457	0.0977	0.0341
Renal cancer					
786-0	0.0339	0.0273	0.0346	0.229	0.0445
A498	0.0183	< 0.0100	0.011	0.0218	0.0129
ACHN	0.0615	< 0.0100	0.0373	0.0645	0.0385
CAKI-1	0.392	0.0402	0.0329	0.0717	0.0352
RXF 393	0.0287	0.0136	0.0366	0.0648	0.0369
SN12C	0.0552	< 0.0100	nt ^a	0.146	0.0548
TK-10	Nt ^b	0.0102	26.8	11.4	0.0736
UO-31	0.0709	0.0111	0.064	0.254	0.0426
Breast cancer					
MCF-7	0.0306	< 0.0100	< 0.0100	0.0394	0.0251
MDA-MB- 231/ATCC	0.0317	< 0.0100	0.0415	0.0486	0.031
HS 578T	0.0727	< 0.0100	0.0398	0.0531	0.0371
BT-549	0.0325	< 0.0100	0.0259	0.115	0.0338
T-47D	20.5	0.0299	nt ^a	>100	>100
MDA-MB-468	0.0227	< 0.0100	< 0.0100	0.0496	0.0276

^{*a*} GI₅₀ is the mean concentrations required to cause 50% reduction in proliferation in the growth of the cancer cells in the assay [15]. ^{*b*}nt = not tested.

NCI Ref.	Compound	GI ₅₀	TGI	LC ₅₀
No	number	(µM) ^a	(μM) ^b	(µM) ^a
S-613729	CA-4	0.0993	10.30	85.50
S-762036	7h	0.0525	23.44	75.86
S-762031	7s	0.0229	5.89	74.13
S-775039	7t	0.0479	50.12	89.12
S-775042	17a	0.1412	39.8	87.09
S-775043	17b	0.0724	36.30	87.09
S-775044	17c	0.1380	43.65	85.11

 Table S5: NCI 60 cell line mean screening results for selected compounds

^{*a*} GI₅₀ and LC₅₀ are the mean concentrations required to inhibit the growth and kill 50 % of the cells over the total NCI 60 cell line panel in the assay respectively [15]. ^{*b*} TGI is the mean concentration required to completely inhibit the growth of all cells over the total NCI 60 cell line panel [15].

Rank	Compound	r
	Based on GI ₅₀ mean graph	
1	Vincristine sulfate (hiConc = $10-5$ M)	0.623
2	Maytansine	0.511
3	Tiazofurin	0.477
4	Vincristine sulfate (hiConc = $10-3$ M)	0.458
5	Vinblastine sulfate ($hiConc = 10-4 M$)	0.453
	Based on TGI mean graph	
1	Vinblastine sulfate ($hiConc = 10-4 M$)	0.567
2	Maytansine	0.565
3	Vinblastine sulfate (hiConc = $10-5.6$	0.552
4	M) Vincristine sulfate (hiConc = $10-5$	0.538
5	M) A-TGDR	0.479
	Based on LC ₅₀ mean graph	
1	Tetraplatin	0.886
2	B-TGDR	0.879
3	Didemnin B	0.862
4	Paclitaxel (Taxol)	0.765
5	Maytansine	0.743

Table S6: Standard COMPARE analysis of β -lactam 7h

The target set was the standard agent database and the target set endpoints were selected to be equal to the seed end points. Standard COMPARE analysis was performed. Correlation values (r) are Pearson correlation coefficients. Vincristine sulfate appears at different concentrations as it has been tested by the NCI at multiple concentration ranges [15].

Rank	Compound	r
	Based on GI ₅₀ mean graph	
1	Vincristine sulfate (hiConc = $10-5$ M)	0.471
2	Maytansine	0.436
3	Glycoxalic acid	0.413
4	Vincristine sulfate (hiConc = $10-3$ M)	0.401
5	DHAD (Mitoxantrone)	0.388
	Based on TGI mean graph	
1	Vinblastine sulfate (hiConc = $10-5.6$ M)	0.665
2	Maytansine	0.644
3	Vincristine sulfate (hiConc = $10-3$ M)	0.594
4	Vinblastine sulfate (hiConc = $10-4$ M)	0.564
5	Vincristine sulfate (hiConc = 10-5 M	0.550
	Based on LC ₅₀ mean graph	
1	5-FUDR	0.769
2	Tetranlatin	0.714
3	Cisplatin	0.694
4	Mavtansine	0.688
5	Rhizoxin	0.686

Table S7: Standard COMPARE analysis of β -lactam 7s

The target set was the standard agent database and the target set endpoints were selected to be equal to the seed end points. Standard COMPARE analysis was performed. Correlation values (r) are Pearson correlation coefficients. Vincristine sulfate appears at different concentrations as it has been tested by the NCI at multiple concentration ranges [15]

% Viable cells		% Viable cells
	(10 µM, 25,000 cells/mL)	(10 µM, 50,000 cells/mL)
CA-4	58.0	75.0
7s	60.0	73.3

Table S8: Toxicity at 10 µM against two concentrations of murine epithelial cells.

Table S9. Toxicity at IC₅₀ against two concentrations of murine epithelial cells.

	IC50, MCF-7 (nM)	% Viable cells at IC ₅₀ (25,000 cells/mL)	% Viable cells at IC ₅₀ (50,000 cells/mL)
CA-4	5.2	73.6	92.1
7s	1.4	93.1	93.2

References

- Carr, M.; Greene, L.M.; Knox, A.J.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted betalactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. *Eur J Med Chem* 2010, *45*, 5752-5766.
- Elmeligie, S.; Taher, A.T.; Khalil, N.A.; El-Said, A.H. Synthesis and cytotoxic activity of certain trisubstituted azetidin-2-one derivatives as a cis-restricted combretastatin a-4 analogues. *Arch Pharm Res* 2017, *40*, 13-24
- Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O'Boyle, N.M.; Zisterer, D.M., *et al.* Synthesis and biochemical evaluation of 3-phenoxy-1,4diarylazetidin-2-ones as tubulin-targeting antitumor agents. *J Med Chem* 2016, *59*, 90-113.
- O'Boyle, N.M.; Carr, M.; Greene, L.M.; Keely, N.O.; Knox, A.J.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis, biochemical and molecular modelling studies of antiproliferative azetidinones causing microtubule disruption and mitotic catastrophe. *Eur J Med Chem* 2011, 46, 4595-4607.
- Georg, G.I.; He, P.; Kant, J.; Mudd, J. N-vinyl and n-unsubstituted betalactams from 1-substituted 2-aza-1,3-butadienes. *Tetrahedron Lett* 1990, 31, 451-454.
- Arroyo, Y.; Sanz-Tejedor, M.A.; Alonso, I.; Garcia-Ruano, J.L. Synthesis of optically pure vic-sulfanyl amines mediated by a remote sulfinyl group. *Org Lett* 2011, *13*, 4534-4537.

- O'Boyle, N.M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S.M.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of azetidinone analogues of combretastatin a-4 as tubulin targeting agents. *J Med Chem* 2010, *53*, 8569-8584.
- Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4diaryl-2-azetidinones as specific anticancer agents: Activation of adenosine monophosphate activated protein kinase and induction of apoptosis. *J Med Chem* 2012, 55, 2112-2124.
- Sandhar, R.K.S., J. R.; Manrao, M. R. . Reaction of acetylacetone with benzal-4-fluoroanilines and antifungal potential of the products. *Journal* of Indian Council of Chemists 2005, 22, 32-34.
- Dehno Khalaji, A.; Fejfarova, K.; Dusek, M. N,n'-bis(3,4-dimethoxybenzyl-idene)butane-1,4-diamine. Acta Crystallogr Sect E Struct Rep Online 2009, 65, o1773.
- Khalaji, A.D.; Weil, M.; Gotoh, K.; Ishida, H. 4-bromo-n-(3,4,5trimethoxy-benzyl-idene)aniline. *Acta Crystallogr Sect E Struct Rep Online* 2009, 65, 0436.
- Yang, Z. Synthesis and in vitro biological activity evaluation of the derivatives of combretastatin a-4. *Letters in Drug Design & Discovery* 2006 3, 544-546.
- Cushman, M.; He, H.M.; Lin, C.M.; Hamel, E. Synthesis and evaluation of a series of benzylaniline hydrochlorides as potential cytotoxic and antimitotic agents acting by inhibition of tubulin polymerization. *J Med Chem* 1993, 36, 2817-2821.

- 14. Gaidhane, M.K.G., A. M.; Lanjewar, K. R. . Novel synthesis and antimicrobial activity of novel schiff base derived quinoline and their beta-lactam derivatives. *International Journal of Pharmacy and Pharmaceutical Sciences* **2013**, *5*, 421-426.
- National Cancer Institute biological testing branch; National Cancer Institute; Bethesda, MD; 2019. <u>https://dtp.Nci.Nih.Gov/branches/btb/hfa.Html</u> (accessed 10th January 2019).