Supplementary material

Synthesis and evaluation of saccharide-based aliphatic and aromatic esters as antimicrobial and antibiofilm agents

Raffaella Campana^a, Alessio Merli^a, Michele Verboni^a, Francesca Biondo^a, Gianfranco Favi^a,

Andrea Duranti^{a*} and Simone Lucarini^{a*}

^aDepartment of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino (PU), Italy.

* Corresponding authors.

E-mail addresses: <u>andrea.duranti@uniurb.it</u> (A. Duranti) and <u>simone.lucarini@uniurb.it</u> (S. Lucarini)

Table of Contents

1.	Characterization of glucose and mannose fatty acid ester derivatives 7b–e and 8b–e	S2
2.	Scheme S1: Synthesis of triphenylacetic acid (1i).	S6
3.	References	S7

1. Characterization of glucose and mannose fatty acid ester derivatives 7b-e and 8a-e.

6-O-Decanoyl-D-mannopyranose (mannose caprate, URB1390) (7b) [1]

Yield = 59%, α/β = 1:0.5. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H+1.5H, *J* = 6.5 Hz, CH₃), 1.24–1.26 (m, 12H+6H), 1.49–1.53 (m, 2H+1H, OCCH₂*CH*₂), 2.25–2.31 (m, 2H+1H, OC*CH*₂CH₂), 3.21–3.32 (m, 1.5H, H³β, H⁴β, H⁵β), 3.35–3.41 (m, 1H, H⁴α), 3.49–3.56 (m, 2H+0.5H, H^{2α}, H^{3α}, H^{2β}), 3.70 (ddd, 1H, *J*_{H5α-H6bα} = 1.5 Hz, *J*_{H5α-H6aα} = 7.0 Hz, *J*_{H5α-H4α} = 9.0 Hz, H^{5α}), 3.94–4.01 (m, 1H+0.5H, H^{6aα}, H^{6αβ}), 4.27–4.32 (m, 1H+0.5H, H^{6bα}, H^{6bβ}), 4.53–4.59 (m, 1H+1H, OH^{2α}, H^{1β}, OH^{2β}), 4.63 (d, 1H, *J*_{OH3α-H3α} = 4.5 Hz, OH^{3α}), 4.66 (d, 0.5H, *J*_{OH3β-H3β} = 5.5 Hz, OH^{3β}), 4.86 (dd, 1H, *J*_{H1α-H2α} \approx *J*_{H1α-OH1α} = 4.5 Hz, H^{1α}), 4.89 (d, 1H, *J*_{OH4α-H4α} = 6.0 Hz, OH^{4α}), 4.94 (d, 0.5H, *J*_{OH4β-H4β} = 5.0 Hz, OH^{4β}), 6.26 (d, 0.5H, *J*_{OH1β-H1β} = 8.0 Hz, OH^{1β}), 6.37 (d, 1H, *J*_{OH1α-H1α} = 5.0 Hz, OH^{1α}) ppm. ¹³C NMR (100 MHz, DMSO): δ = 14.4 (1.5C), 22.6 (1.5C), 24.9 (1.5C), 28.9 (1.5C), 29.1 (1.5C), 29.2 (1.5C), 29.3 (1.5C), 31.7 (1.5C), 33.9 (1.5C), 64.7 (C6, 1.5C), 67.2 (C5, 0.5C), 67.6 (C5, 1C), 70.8 (C4, 1C), 70.9 (C3, 1C), 71.8 (C2, 1C), 72.0 (C2, 0.5C), 73.9 (C4, 0.5), 74.5 (C3, 0.5C), 94.5 (C1, 1C), 94.6 (C1, 0.5C), 173.5 (CO, 1.5C) ppm.

6-O-Dodecanoyl-D-mannopyranose (mannose laurate, URB1380) (7c) [1]

Yield = 12%, α/β = 1:0.5. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H+1.5H, *J* = 7.0 Hz, CH₃), 1.24–1.26 (m, 16H+8H), 1.49–1.53 (m, 2H+1H, OCCH₂*CH*₂), 2.25–2.30 (m, 2H+1H, OC*CH*₂CH₂), 3.21–3.33 (m, 1.5H, H³ β , H⁴ β , H⁵ β), 3.35–3.41 (m, 1H, H^{4 α}), 3.49–3.55 (m, 2H+0.5H, H^{2 α}, H^{3 α}, H^{2 β}), 3.70 (ddd, 1H, *J*_{H5 α -H6 $b\alpha$} = 1.5 Hz, *J*_{H5 α -H6 $a\alpha$} = 7.0 Hz, *J*_{H5 α -H4 α} = 9.0 Hz, H^{5 α}), 3.94–4.02 (m, 1H+0.5H, H^{6 $a\alpha$}, H^{6 $a\beta$}), 4.27–4.32 (m, 1H+0.5H, H^{6 $b\alpha$}, H^{6 $b\beta$}), 4.53–4.59 (m, 1H+1H, OH^{2 α}, H^{1 β}, OH^{2 β}), 4.63 (d, 1H, *J*_{OH3 α -H3 α} = 4.0 Hz, OH^{3 α}), 4.66 (d, 0.5H, *J*_{OH3 β -H3 β} = 5.5 Hz, OH^{3 β}), 4.86 (dd, 1H, *J*_{H1 α -H2 α} \approx *J*_{H1 α -OH1 α} = 4.5 Hz, H^{1 α}), 4.89 (d, 1H, *J*_{OH4 α -H4 α} = 5.5 Hz, OH^{4 α}), 4.94 (d, 0.5H, *J*_{OH4 β -H4 β} = 5.0 Hz, OH^{4 β}), 6.26 (d, 0.5H, *J*_{OH1 β -H1 β} = 8.5 Hz, OH^{1 β}), 6.38 (d, 1H, *J*_{OH1 α -H1 α} = 4.5 Hz, OH^{1 α}) ppm. ¹³C NMR (100 MHz, DMSO): δ = 14.4 (1.5C), 22.6 (1.5C), 24.9 (1.5C), 28.9 (1.5C), 29.17 (1.5C), 29.20 (1.5), 29.4 (1.5), 29.5, 31.8 (1.5C), 33.88 (0.5C), 33.93 (1C), 64.6 (C6, 0.5C), 64.7 (C6, 1C), 67.3 (C5, 0.5C), 67.6 (C5, 1C), 70.8 (C4, 1C), 70.9 (C3, 1C), 71.8 (C2, 1C), 72.0 (C2, 0.5C), 73.9 (C4, 0.5), 74.5 (C3, 0.5C), 94.5 (C1, C), 94.6 (C1, 0.5C), 173.5 (CO, 1.5C) ppm.

(2*R*,3*S*,4*S*,5*S*,6*S*)-6-*O*-Tetradecanoyl-D-mannopyranose and (2*R*,3*S*,4*S*,5*S*,6*R*)-6-*O*-tetradecanoyl-D-mannopyranose (mannose myristate, URB1381) (7d) [1]

Yield = 60%, α/β = 1:0.5. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H+1.5H, *J* = 6.5 Hz, CH₃), 1.24–1.26 (m, 20H+10H), 1.50–1.53 (m, 2H+1H, OCCH₂*CH*₂), 2.26–2.31 (m, 2H+1H, OCC*H*₂*C*H₂), 3.21–3.33 (m, 1.5H, H³^β, H⁴^β, H⁵^b), 3.35–3.41 (m, 1H, H⁴^α), 3.49–3.55 (m, 2H+0.5H, H^{2α}, H^{3α}, H^{2β}), 3.70 (ddd, 1H, *J*_{H5α-H6bα} = 1.5 Hz, *J*_{H5α-H6aα} = 7.0 Hz, *J*_{H5α-H4α} = 9.0 Hz, H^{5α}), 3.94–4.02 (m, 1H+0.5H, H^{6aα}, H^{6aβ}), 4.27–4.32 (m, 1H+0.5H, H^{6bα}, H^{6bβ}), 4.53–4.59 (m, 1H+1H, OH^{2α}, H^{1β}, OH^{2β}), 4.63 (d, 1H, *J*_{OH3α-H3α} = 4.0 Hz, OH^{3α}), 4.66 (d, 0.5H, *J*_{OH3β-H3β} = 5.5 Hz, OH^{3β}), 4.86 (dd, 1H, *J*_{H1α-H2α} \cong *J*_{H1α-OH1α} = 4.5 Hz, H^{1α}), 4.89 (d, 1H, *J*_{OH4α-H4α} = 5.5 Hz, OH^{4α}), 4.94 (d, 0.5H, *J*_{OH4β-H4β} = 5.0 Hz, OH^{4β}), 6.26 (d, 0.5H, *J*_{OH1β-H1β} = 8.5 Hz, OH^{1β}), 6.38 (d, 1H, *J*_{OH1α-H1α} = 4.5 Hz, OH^{1α}) ppm. ¹³C NMR (100 MHz, DMSO): δ = 14.4 (1.5C), 22.6 (1.5C), 24.9 (1.5C), 29.0 (1.5C), 29.18 (1.5C), 29.21 (1.5), 29.38 (1.5), 29.5, 31.8 (1.5C), 33.9 (1.5C), 64.7 (C6, 1.5C), 67.3 (C5, 0.5C), 67.6 (C5, 1C), 70.8 (C4, 1.5C), 71.8 (C2, 1C), 72.0 (C2, 0.5C), 74.0 (C4, 0.5), 74.5 (C3, 0.5C), 94.5 (C1, C), 94.6 (C1, 0.5C), 173.4 (CO, 1.5C) ppm.

(2*R*,3*S*,4*S*,5*S*,6*S*)-6-*O*-Esadecanoyl-D-mannopyranose and (2*R*,3*S*,4*S*,5*S*,6*R*)-6-*O*-esadecanoyl-D-mannopyranose (mannose palmitate, URB1382) (7e) [2]

Yield = 32%, α/β = 1:0.8. MS (ESI): 417.5 [M-H], 436.4 [M+NH₄], 441.4 [M+Na]. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H+2.4H, J = 6.5 Hz, CH₃), 1.24–1.26 (m, 24H+10H), 1.50–1.53 (m, 2H+1.6H, OCCH₂CH₂), 2.25–2.30 (m, 2H+1.6H, OCCH₂CH₂), 3.24–3.32 (m, 0.8x3H, H^{3β}, H^{4β}, H^{5β}), 3.34–3.39 (m, 1H, H^{4α}), 3.51–3.56 (m, 2H+0.8H, H^{2α}, H^{3α}, H^{2β}), 3.71 (ddd, 1H, $J_{H5 \alpha-H6b \alpha}$ = 1.5 Hz, $J_{H5 \alpha-H6a \alpha}$ = 7.0 Hz, $J_{H5 \alpha-H4 \alpha}$ = 9.0 Hz, H^{5α}), 3.95–4.02 (m, 1H+0.8H, H^{6aα}, H^{6aβ}), 4.28–4.33 (m, 1H+0.8H, H^{6bα}, H^{6bβ}), 4.51–4.53 (m, 1H+0.8H, OH^{2α}, H^{1β}), 4.57–4.59 (m, 1H+0.8H, OH^{3α}, OH^{2β}),

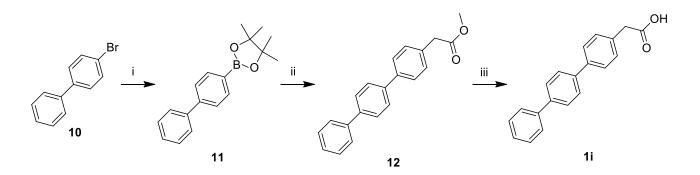
4.62 (d, 0.8H, $J_{OH3\beta} - H_{3\beta} = 4.5$ Hz, $OH^{3\beta}$), 4.84–4.87 (m, 2H, $H^{1\alpha}$, $OH^{4\alpha}$), 4.90 (d, 0.8H, $J_{OH4\beta} - H_{4\beta} = 4.5$ Hz, $OH^{4\beta}$), 6.22 (d, 0.8H, $J_{OH1\beta} - H_{1\beta} = 8.5$ Hz, $OH^{1\beta}$), 6.35 (d, 1H, $J_{OH1\alpha} - H_{1\alpha} = 4.5$ Hz, $OH^{1\alpha}$) ppm. ¹³C NMR (100 MHz, DMSO): $\delta = 14.4$ (1.8C), 22.6 (1.8C), 24.9 (1.8C), 29.0 (1.8C), 29.16 (1.8C), 29.20 (1.8C), 29.4 (1.8C), 29,47, 29.51, 31.8 (1.8C), 33.88 (0.8C), 33.93 (1C), 64.7 (C6, 1.8 C), 67.3 (C5, 0.8C), 67.6 (C5, 1C), 70.8 (C4, 1.8C), 71.8 (C3, 1C), 72.0 (C2, 1C), 74.0 (C4, 0.8), 74.5 (C3, 0.8C), 94.5 (C1, 1C), 94.6 (C1, 0.8C), 173.4 (CO, 1.8C) ppm.

6-O-Decanoyl-D-glucopyranose (glucose caprate, URB1385) (8b) [3]

Yield = 15%. ¹H NMR (400 MHz, DMSO): $\delta = 0.86$ (t, 3H, J = 7.0 Hz, CH₃), 1.22–1.28 (m, 12H), 1.48–1.54 (m, 2H, OCCH₂CH₂), 2.28 (t, 2H, J = 7.5 Hz, OCCH₂CH₂), 3.03 (ddd, 1H, $J_{H4-OH4} = 6.0$ Hz, $J_{H4-H3} = 9.0$ Hz, $J_{H4-H5} = 9.5$ Hz, H⁴), 3.13 (ddd, 1H, $J_{H2-H1} = 4.0$ Hz, $J_{H2-OH2} = 6.5$ Hz, $J_{H2-H3} = 9.0$ Hz, H²), 3.43 (ddd, 1H, $J_{H3-OH3} = 5.0$ Hz, $J_{H3-H2} \cong J_{H3-H4} = 9.0$ Hz, H³), 3.77 (ddd, 1H, $J_{H5-H6b} = 2.0$ Hz, $J_{H5-H6a} = 6.0$ Hz, $J_{H5-H4} = 9.5$ Hz, H⁵), 3.99 (dd, 1H, $J_{H6a-H5} = 6.0$ Hz, $J_{H6a-H6b} = 12.0$ Hz, H^{6a}), 4.27 (dd, 1H, $J_{H6b-H5} = 2.0$ Hz, $J_{H6b-H6a} = 12.0$ Hz, H^{6b}), 4.54 (d, 1H, $J_{OH2-H2} = 6.5$ Hz, OH²), 4.76 (d, H, $J_{OH3-H3} = 5.0$ Hz, OH³), 4.90 (dd, 1H, $J_{H1-H2} = 4.0$ Hz, $J_{H1-OH1} = 4.5$ Hz, H¹), 5.05 (d, 1H, $J_{OH4-H4} = 6.0$ Hz, OH⁴), 6.35 (d, 1H, $J_{OH1-H1} = 4.5$ Hz, OH¹) ppm. ¹³C NMR (100 MHz, DMSO): $\delta = 14.4$, 22.6, 24.9, 28.9, 29.1, 29.2, 29.3, 31.7, 33.9, 64.3 (C6), 69.6 (C5), 71.0 (C4), 72.7 (C2), 73.3 (C3), 92.7 (C1), 173.4 (CO) ppm.

6-O-Dodecanoyl-D-glucopyranose (glucose laurate, URB1384) (8c) [3]

Yield = 15%. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H, *J* = 7.0 Hz, CH₃), 1.23–1.26 (m, 16H), 1.49–1.52 (m, 2H, OCCH₂*CH*₂), 2.27 (t, 2H, *J* = 6.5 Hz, OC*CH*₂CH₂), 3.04 (ddd, 1H, *J*_{H4-OH4} = 5.5 Hz, *J*_{H4-H3} = 9.0 Hz, *J*_{H4-H5} = 9.5 Hz, H⁴), 3.12 (ddd, 1H, *J*_{H2-H1} = 4.0 Hz, *J*_{H2-OH2} = 6.5 Hz, *J*_{H2-H3} = 9.0 Hz, H²), 3.43 (ddd, 1H, *J*_{H3-OH3} = 5.0 Hz, *J*_{H3-H2} \cong *J*_{H3-H4} = 9.0 Hz, H³), 3.76 (ddd, 1H, *J*_{H5-H6b} = 1.5 Hz, *J*_{H5-H6a} = 6.5 Hz, *J*_{H5-H4} = 9.5 Hz, H⁵), 3.99 (dd, 1H, *J*_{H6a-H5} = 6.5 Hz, *J*_{H6a-H6b} = 11.5 Hz, H^{6a}), 4.26 (dd, 1H, *J*_{H6b-H5} = 1.5 Hz, *J*_{H6b-H6a} = 11.5 Hz, H^{6b}), 4.51 (d, 1H, *J*_{OH2-H2} = 6.5 Hz, OH²), 4.73 (d, H, *J*_{OH3-H3} = 5.0 Hz, OH³), 4.89 (dd, 1H, *J*_{H1-H2} = 4.0 Hz, *J*_{H1-OH1} = 4.5 Hz, H¹), 5.02 (d, 1H, *J*_{OH4-H4} = 5.5 Hz, OH⁴), 6.32 (d, 1H, *J*_{OH1-H1} = 4.5 Hz, OH¹) ppm. ¹³C NMR (100 MHz, DMSO): δ = 14.4, 22.6, 24.9, 28.9, 29.16, 29.18, 29.4, 29.5 (2C), 31.8, 33.9, 64.3 (C6), 69.6 (C5), 71.0 (C4), 72.7 (C2), 73.3 (C3), 92.8 (C1), 173.4 (CO) ppm.


Tetradecanoyl-D-glucopyranose (glucose myristate, URB1386) (8d) [3]

Yield = 10%. ¹H NMR (400 MHz, DMSO): δ = 0.85 (t, 3H, *J* = 7.0 Hz, CH₃), 1.21–1.28 (m, 20H), 1.47–1.54 (m, 2H, OCCH₂CH₂), 2.27 (t, 2H, *J* = 6.5 Hz, OCCH₂CH₂), 3.03 (ddd, 1H, *J*_{H4-OH4} = 5.5 Hz, *J*_{H4-H3} = 9.0 Hz, *J*_{H4-H5} = 9.5 Hz, H⁴), 3.13 (ddd, 1H, *J*_{H2-H1} = 4.0 Hz, *J*_{H2-OH2} = 6.5 Hz, *J*_{H2-H3} = 9.0 Hz, H²), 3.43 (ddd, 1H, *J*_{H3-OH3} = 5.0 Hz, *J*_{H3-H2} \cong *J*_{H3-H4} = 9.0 Hz, H³), 3.77 (ddd, 1H, *J*_{H5-H6b} = 1.5 Hz, *J*_{H5-H6a} = 6.5 Hz, *J*_{H5-H4} = 9.5 Hz, H⁵), 3.99 (dd, 1H, *J*_{H6a-H5} = 6.5 Hz, *J*_{H6a-H6b} = 11.5 Hz, H^{6a}), 4.27 (dd, 1H, *J*_{H6b-H5} = 1.5 Hz, *J*_{H6b-H6a} = 11.5 Hz, H^{6b}), 4.55 (d, 1H, *J*_{OH2-H2} = 6.5 Hz, OH²), 4.79 (d, 1H, *J*_{OH3-H3} = 5.0 Hz, OH³), 4.89 (dd, 1H, *J*_{H1-H2} = 4.0 Hz, *J*_{H1-OH1} = 4.5 Hz, H¹), 5.06 (d, 1H, *J*_{OH4-H4} = 5.5 Hz, OH⁴), 6.36 (d, 1H, *J*_{OH1-H1} = 4.5 Hz, OH¹) ppm.¹³C NMR (100 MHz, DMSO): δ = 14.4, 22.6, 24.9, 28.9, 29.18, 29.19, 29.37, 29.48, 29.50, 29.52, 31.8, 33.9, 64.3 (C6), 69.6 (C5), 71.0 (C4), 72.7 (C2), 73.3 (C3), 92.8 (C1), 173.4 (CO) ppm.

Esadecanoyl-D-glucopyranose (glucose palmitate, URB1387) (8e) [3]

Yield = 5%. ¹H NMR (400 MHz, DMSO): δ = 0.86 (t, 3H, *J* = 7.0 Hz, CH₃), 1.19–1.28 (m, 24H), 1.47–1.53 (m, 2H, OCCH₂CH₂), 2.27 (t, 2H, *J* = 7.5 Hz, OCCH₂CH₂), 3.04 (ddd, 1H, *J*_{H4-OH4} = 5.5 Hz, *J*_{H4-H3} = 9.0 Hz, *J*_{H4-H5} = 9.5 Hz, H⁴), 3.12 (ddd, 1H, *J*_{H2-H1} = 4.0 Hz, *J*_{H2-OH2} = 6.5 Hz, *J*_{H2-H3} = 9.5 Hz, H²), 3.43 (ddd, 1H, *J*_{H3-OH3} = 4.5 Hz, *J*_{H3-H2} \cong *J*_{H3-H4} = 9.5 Hz, H³), 3.77 (ddd, 1H, *J*_{H5-H6b} = 1.5 Hz, *J*_{H5-H6a} = 6.0 Hz, *J*_{H5-H4} = 9.0 Hz, H⁵), 3.99 (dd, 1H, *J*_{H6a-H5} = 6.0 Hz, *J*_{H6a-H6b} = 11.5 Hz, H^{6a}), 4.27 (dd, 1H, *J*_{H6b-H5} = 1.5 Hz, *J*_{H6b-H6a} = 11.5 Hz, H^{6b}), 4.51 (d, 1H, *J*_{OH2-H2} = 6.5 Hz, OH²), 4.74 (d, H, *J*_{OH3-H3} = 4.5 Hz, OH³), 4.90 (dd, 1H, *J*_{H1-H2} \cong *J*_{H1-OH1} = 4.0 Hz, H¹), 5.02 (d, 1H, *J*_{OH4-H4} = 5.5 Hz, OH⁴), 6.34 (d, 1H, *J*_{OH1-H1} = 4.0 Hz, OH¹) ppm. ¹³C NMR (100 MHz, DMSO): δ = 14.4, 22.6, 24.9, 28.9, 29.16 (2C), 29.19, 29.36, 29.46 (2C), 29.5 (2C), 31.2, 31.8, 33.9, 64.3 (C6), 69.6 (C5), 71.0 (C4), 72.7 (C2), 73.3 (C3), 92.8 (C1), 173.4 (CO) ppm.

2. Synthesis of triphenylacetic acid (1i) (Scheme S1).

Scheme 1S. Reagents and conditions: (i) B₂pin₂, Pd(dppf)Cl₂/CH₂Cl₂, dppf, KOAc, dry dioxane, 80 °C, 16 h; ii) methyl 2-(4-bromophenyl)acetate, Pd(II)(dba)₃, PCy₃, K₃PO₄/H₂O, dioxane:H₂O 2:1, 75 °C, 16 h; iii) LiOH, MeOH:H₂O 3:1, 60 °C, 5 h.

Methyl 2-(4-bromophenyl)acetate (11) [4]

A mixture of *p*-phenylbromobenzene (0.534 g, 2.29 mmol) (**10**), B₂pin₂ (1.635 g, 6.44 mmol), Pd(dppf)Cl₂ in CH₂Cl₂ (0.170 g, 0.21 mmol), dppf (0.083 g, 0.15 mmol) and KOAc (1.320 g, 13.43 mmol) in dry dioxane (11.6 mL) was stirred at 80 °C for 20 h, then filtered on Celite[®], and extracted with EtOAc. The combined organic layers were washed with H₂O, dried (Na₂SO₄), and concentrated. The purification of the residue by column cromatography (cyclohexane/EtOAc 98:2) gave **11** as a white solid. Yield = 96%. ¹H NMR (400 MHz, CDCl₃): δ = 1.29 (s, 12H, 6 CH₃), 7.26–7.31 (m, 1H, ArH), 7.35–7.39 (m, 2H, ArH), 7.53–7.56 (m, 4H, ArH), 7.81–7.83 (m, 2H, ArH).

Methyl 2-[(1,1':4',1"-triphenyl)-4-yl]acetate (12) [4]

A K₃PO₄ 1,27 M aqueous solution (4 mL) was added to solution of **11** (0.999 g, 3.57 mmol), methyl 2-(4-bromophenyl)acetate (0.682 g, 2.98 mmol), Pd₂(dba)₃ (0.164 g, 0.18 mmol), PCy₃ (0.114 g, 0.41 mmol) in a mixture 2:1 dioxane/H₂O (8 mL). The solution was stirred at 80 °C for 20 h, then filtered on Celite[®], and extracted with EtOAc. The combined organic layers were washed with H₂O, dried (Na₂SO₄), and concentrated. The purification by column cromatography (cyclohexane/EtOAc 98:2 then petroleum ether/Et₂O 95:5) gave **12** as a white solid. Yield = 47%. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.62$ (s, 2H, CH₂), 3.65 (s, 3H, CH₃), 7.29–7.31 (m, 3H, ArH), 7.34–7.41 (m, 2H, ArH), 7.53–

7.58 (m, 4H, ArH), 7.59–7.61 (m, 4H, ArH) ppm. ¹³C NMR (100 MHz, CDCl₃) δ = 40.8, 52.1, 127.0, 127.2, 127.3, 127.4, 127.5, 128.8, 129.7, 133.1, 139.6, 139.7, 140.2, 140.7, 172.0 ppm.

2-[(1,1',4',1"-triphenyl)4-yl]acetic acid (1i) [5]

A solution of **12** (0.420 g, 1.39 mmol) and LiOH (0.292 g, 6.95 mmol) in a mixture 3:1 MeOH/H₂O (9.3 mL) was stirred at 60 °C for 5 h, then acidified with HCl 2N to pH = 2, and extracted with EtOAc. The combined organic layers were washed with H₂O, dried (Na₂SO₄), and concentrated. The purification by recrystallization from EtOAc gave **1i** as a white solid. Yield = 79%. Mp = 266-268 °C. MS (ESI): 289 [M + H]⁺, 287 [M–H]⁻, 243 [M–COOH]⁻. ¹H NMR (400 MHz, DMSO): δ = 3.64 (s, 2H, CH₂), 7.37–7.40 (m, 3H, ArH), 7.47–7.51 (m, 2H, ArH), 7.67–7.69 (m, 2H, ArH), 7.72–7.74 (m, 2H, ArH), 7.75–7.78 (m, 4H, ArH), 12.36 (brs, 1H, COOH) ppm. ¹³C NMR (100 MHz, DMSO) δ = 40.8 (CH₂), 126.9, 127.0, 127.52, 127.56, 127.7, 128.0, 129.5, 130.5, 134.9, 138.4, 139.4, 139.5, 140.1, 173.11 ppm.

4. References

[1] Watanabe, Y.; Miyawaki, Y.; Adachi, S.; Adachi, S.; Nakanishi, K.; Matsuno, R. Continuous production of acyl mannoses by immobilized lipase using a packed-bed reactor and their surfactant properties. *Biochem. Eng. J.* **2001**, *8*, 213–216.

[2] AlFindee, M.N.; Zhang, Q.; Subedi, Y.P.; Shrestha, J.P.; Kawasaki, Y.; Grilley, M.; Takemoto, J.Y.; Chang, C.W.T. One-step synthesis of carbohydrate esters as antibacterial and antifungal agents. *Bioorg. Med. Chem.* 2018, *26*, 765–774.

[3] Yosimoto, K.; Tahara, K.; Suzuki, S.; Sasaki, K.; Nishikawa, Y.; Tsuda, Y. Regioselective syntheses of mono-*O*-acylglucoses. *Chem. Pharm. Bull.* **1979**, *27*, 2661–2674.

[4] Seath, C.P.; Fyfe, J.W.B.; Molloy, J.J.; Watson, A.J.B. Tandem chemoselective Suzuki-Miyaura cross-coupling enabled by nucleophile speciation control. *Angew. Chemie* **2015**, *54*, 9976–9979.

[5] Liphardt, B.; Luettke, W. laser dyes. I. Bifluorophoric laser dyes for increase of the efficient of dye lasers. *Liebigs Ann. Chem.* **1981**, *6*, 1118–1138.