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Abstract: Polymers are the most commonly used material for three-dimensional (3D) printing in
dentistry; however, the high porosity and water absorptiveness of the material adversely influence
biofilm formation on the surface of the 3D-printed dental prostheses. This study evaluated the effects
of a newly developed chlorhexidine (CHX)-loaded polydimethylsiloxane (PDMS)-based coating
material on the surface microstructure, surface wettability and antibacterial activity of 3D-printing
dental polymer. First, mesoporous silica nanoparticles (MSN) were used to encapsulate CHX, and the
combination was added to PDMS to synthesize the antibacterial agent-releasing coating substance.
Then, a thin coating film was formed on the 3D-printing polymer specimens using oxygen plasma and
thermal treatment. The results show that using the coating substance significantly reduced the surface
irregularity and increased the hydrophobicity of the specimens. Remarkably, the culture media
containing coated specimens had a significantly lower number of bacterial colony formation units
than the noncoated specimens, thereby indicating the effective antibacterial activity of the coating.

Keywords: 3D-printing; dental polymer; antibacterial agent; coating; mesoporous silica nanoparticles;
polydimethylsiloxane

1. Introduction

Three-dimensional (3D) printing technology is an additive manufacturing method in which a
3D object is formed by adding successive layers of material [1,2]. Dentistry has benefited from the
rapid expansion of 3D-printing methods, especially in the field of prosthesis manufacturing [3-5].
The 3D-printing technology used in dentistry is classified into four main categories: extrusion printing,
inkjet printing, laser melting/sintering, and stereolithography printing [3]. Those printing methods are
based on the principle of layered manufacturing, which is more suitable than conventional casting and
milling methods for producing individualized complex structures [6]. Moreover, using a machining
process with computer-aided design/computer-aided manufacturing (CAD/CAM) reduces manual
labor and material waste [1]. Recent studies have shown that 3D-printed dental prostheses had a
clinically acceptable degree of precision [3,6,7].
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Along with the increasing accuracy of 3D-printing technology, various materials, including polymers,
ceramics, and metallic powders, have been developed [4]. Regarding dental materials used in 3D
printers, polymers are the most commonly used in dentistry for interim and definitive prostheses due
to their suitable mechanical strength, highly biocompatible properties, and ease of manipulation [3,4].
However, a major clinical complication associated with dental polymer prostheses is dental plaque
surface deposition, which comprises numerous oral microorganisms due to the porosity and water
absorptiveness of the polymer material [8]. Specifically, as the 3D-printed prosthesis is generated
layer-by-layer, micropores are created when air is trapped between the layers during the printing process
or when the individual layers are incompletely fused [9]. During clinical occlusal adjustment and clinical
use, these micropores are exposed on the surface because of the abrasion of the restorations, potentially
becoming a host for bacterial growth [6]. The risk of material contamination by microorganisms is a
critical limitation for the longevity of 3D-printed polymer prostheses [3].

Several strategies have been reported for the fabrication of antimicrobial polymers for 3D-printed
polymers [10]. Direct incorporation of an antibacterial agent into dental polymers has been used to
reduce plaque accumulation [11]. Chlorhexidine (CHX) is an antiseptic agent widely used in dentistry
for its broad-spectrum antibacterial effects and nontoxicity toward mammalian cells [12]. CHXis
effective in managing infected oral mucositis; thus, it has commonly been used to prevent dental
plaques and to control infections as a topical agent in daily mouth rinse and as an irrigation solution in
endodontic treatment [13]. When CHX was directly mixed with the polymer and cured, CHX release at
the therapeutic dose was maintained for 28 days [14-16]. However, direct mixing may negatively affect
the mechanical and surface properties of polymers in terms of polymerization degree, surface porosity,
and water absorption [11,17]. Moreover, commercial polymers used for the subtractive manufacturing
method are provided in a completely polymerized state, making it difficult to directly add CHX inside
the substance without jeopardizing material integrity [18].

An alternative technique for inhibiting bacterial adherence is to change the surface property of
the object by creating a coating film [19-21]. Coating layer formation does not sacrifice the mechanical
properties and integrity of the material. The major mechanisms underlying the antibacterial activity
of the coating layers include antiadhesion/bacterial-repelling and contact-killing [22]. Antiadhesion
coating reduces the adhesion force between bacteria and the substrate to enable the easy removal
of bacteria before the biofilm layer is formed [21]. Alternatively, in the contact-killing approach,
antibacterial compounds are attached to the surface of the material by flexible, hydrophobic polymeric
chains, which can kill bacteria upon contact [21,22]. Remarkably, using a polymer coating significantly
reduced plaque biofilm formation on polymeric restorations with the coating layer exhibiting acceptable
mechanical and chemical durability [20]. Azuma et al. [19] reported that silica coating with silica
nanoparticles of various sizes was effective in decreasing bacterial adherence to polymeric restorations.
While these previous coating materials showed antiadhesion potential, they passively hindered the
adherence of early colonizers by increasing polymer surface hydrophobicity [19,20]. This strategy
may physically suppress dental plaque formation and maturation; however, it provides no active
antimicrobial agent to inhibit the vitality and growth of pathogenic microorganisms.

With the development of new drug-carrier materials, active antibacterial agent-releasing coating
is now a significant focus in biomedical research [22]. In its most advanced form, the coating
mediates antibacterial activity by releasing loaded antibacterial compounds over time to kill the
bacteria in the surrounding [21,22]. In drug delivery systems, materials with a porous structure
are recommended for incorporating drug-loaded particles [23,24]. Among the porous polymeric
materials, polydimethylsiloxane (PDMS) has been used in the medical field due to its flexibility,
biocompatibility, transparency, low cost, and ease of fabrication [23,25]. The incompatibility between
the coated substrate and PDMS could cause a dewetting that may induce a greater surface roughness;
however, the subsequent treatments of oxygen plasma could enhance the wettability of precured
PDMS, inducing its uniform coating [26,27]. Moreover, the drug release rate of PDMS can be controlled
by surface modifications using plasma treatment, which effectively influence the water penetration
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rate and functionalization of the polymer that contains drug [28]. The highly functionalized PDMS
can be polymerized using thermal treatment or ultraviolet (UV) light activation for curing the coating
layer, inducing a more chemically and physically stable coating layer on the substrate [27]. Thus,
it would be an effective approach for tissue engineering or drug delivery systems in biological and
biomedical applications [29]. In dentistry, PDMS coating has been used for tooth enamel and metallic
dental implants as a hydrophobic layer to improve the antibacterial features [30]. However, no studies
have examined the PDMS coating application for active antibacterial effects in dental 3D-printable
polymers. Therefore, this study evaluated the effect of a newly developed CHX-loaded PDMS-based
coating on the surface microstructure, surface wettability, and antibacterial activity of the 3D-printing
dental polymer.

2. Results

2.1. Surface Characteristics

Figure 1 shows the microscopic images of specimens in different groups. Deep grooves and
small defects were found on the surface of noncoated specimens, whereas no scratches were observed
on the surface of coated specimens. Several different-sized silica particles were observed on the
coating surface.
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Figure 1. Cont.
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Figure 1. Scanning electron microscope (SEM) images at 500 X (left) and 2000 X (right) magnification
and the resulting histogram of pixel brightness levels (0 = black, 255 = white) of: (a) noncoated
specimen; and (b) coated specimens.

Table 1 presents the SEM image analysis for surface roughness obtained from the surface plot
histograms. The SEM roughness index (SRI) values were significantly lower in the coated group
than in the noncoated group (p < 0.001). Regarding surface wettability, the mean contact angles were
significantly higher in the coated group than in the noncoated group (p < 0.001) (Figure 2 and Table 1).

Table 1. Effect of coating layer on SEM roughness index (SRI) and contact angle degree (CA) measurements.

Mean (SD)
Group
SRI CA p-Value
Noncoated 39.25 (3.69) @ 120.22 (4.46) @ <0.001
Coated 15.41 (8.07) 91.88 (8.19) P :

2P Different superscript lowercase letters indicate a statistically significant difference within a column; SRT, SEM
roughness index; CA, contact angle degree.

(@) (b)

Figure 2. Contact angle of the specimens: (a) noncoated specimen; and (b) coated specimen.
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2.2. Antimicrobial Activity

Because the specimen itself could affect bacterial growth, the incubation of S. mutans with
noncoated specimen was a control in this experiment. Statistical analysis was performed using
three technical replicates. Biological relevance of the results was confirmed using three independent
experiments with similar results. Figure 3 shows the results of the S. mutans bacterial growth inhibition
assay for the noncoated and coated groups. The numbers of bacterial colonies (x10* CFU/mL) of the
noncoated and coated groups were 210.92 + 8.02 and 70.76 + 9.16, respectively. Independent ¢-test
showed that the culture media containing the coated specimens had significantly lower CFU values
than the culture media containing the noncoated specimens (p < 0.001).

Non-coating Coating

-

Colony forming units (CFU/mL)

*
—
T

Non-caating Coating

(a) (b)

Figure 3. Bacterial growth inhibition assay of noncoated and coated groups: (a) bacterial colonization on
agar plates; and (b) colony-forming units. Statistical analysis was performed using three independent
technical replicates, inducing similar biological results. Independent ¢-test showed that the culture
media containing the coated specimens had significantly lower CFU values than the culture media
containing the noncoated specimens (* p < 0.001).

3. Discussions

This study evaluated the effect of a newly developed CHX-loaded PDMS-based coating substance
on the surface properties and antibacterial ability of coated 3D-printing dental material. From the
results of this study, applying the coating layer on the polymer specimens significantly reduced their
surface irregularity while increasing the hydrophobicity and antibacterial activity.

Once a dental restoration is placed in the oral cavity, proteins from saliva cover the surface of the
restoration as a film, followed by the attachment of free-floating bacteria to the film by microfilaments
in the cell walls to form a biofilm on the restoration [31]. Restorations with greater surface roughness
show higher biofilm formation because the irregular surface geometry offsets shear forces to the
surface, thereby providing a favorable context for bacterial growth [32]. In the clinical context, surface
smoothing of dental restoration by using polishing tools is necessary before restoration is placed
in the mouth [33]. The microscopic images of this study showed sharp grooves and defects on the
surface of specimens in the noncoated group due to the grinding motion during the polishing process.
The result agrees with previous studies where the polishing tools caused some microdefects to the
restoration surface as they removed material by abrasion [34]. In specimens given the coating substance,
scratches and defects were unobserved, and the roughness value was significantly lower than that
of the noncoated specimens. The results suggest that the coating decreases surface irregularity by
filling the scratches resulting from polishing and the inherent micropores created by the 3D-printing
process. Previous studies that evaluated the effect of different surface treatments on dental ceramic
restoration also indicated a significant decrease in roughness when a thin layer of glazing material was
coated on the restoration surface [35]. In addition, various micrometer-sized particles were observed
on the surface of the coated specimens. Considering that the mesoporous silica nanoparticles (MSNs)
dispersed in the solvent were nanosized, this result implies that some of the silica particles on the
coated layer became aggregated and clustered. A silica coating layer needs to contain particles of
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an optimum size to reduce microorganism adherence [19,36]. Thus, further technical optimization is
needed to improve the homogeneous distribution of the silica nanoparticles and to minimize their
uncontrolled aggregation in the coating layer.

Surface free energy greatly influences the initial step of biofilm formation [37]. Lower surface
energy of the material has weakened bacterial adhesion; thus, the bacteria that adhere to a material
with low surface energy are more easily removed by an external force [37,38]. The work of adhesion can
be calculated by measuring the contact angle of the liquid to the solid surface [39]. For a low wetting
surface, the surface energy of the solid is weaker than the surface tension of the liquid, allowing the
liquid to easily retain its droplet shape. Therefore, a higher contact angle is related to lower surface
energy and low interfacial tension of the solid surface. In this study, the coated group showed a
significantly higher contact angle than the noncoated group, thereby indicating a lower surface energy
of the coated specimens than that of the noncoated specimens. This is due to the hydrophobicity and
low surface energy of PDMS, which is a beneficial feature of the material that contributes to the low
bacterial adhesion [40].

S. mutans is an important etiologic agent for initiating dental caries [41]. The acid produced
from this bacteria decays tooth structure and induces restorative treatment failure [41]. Accordingly,
dental restorations require antibacterial qualities to ensure long-term success. For this purpose,
the MSN was used to encapsulate CHX in this study, and the CHX@MSN was then combined with
PDMS to unprecedentedly synthesize an antibacterial coating substance for polymeric restorative
3D-printing dental material. The bacterial growth inhibition assay results showed that the coated
specimens had antimicrobial activity against S. mutans. The antimicrobial activity may be due to
CHX release from the coating substance. Adding CHX to dental restorative material could increase
its antibacterial activity [14,15]. Yan et al. [12] incorporated CHX@MSN into a glass ionomer cement
powder and showed that CHX was continuously released, and the antibiofilm effect was maintained
up to 30 days. Remarkably, dental resin composites with CHX@MSN showed controlled release of
CHX over a prolonged time, providing strong inhibition against S. mutans adherence [11]. However,
the antibacterial activity of previous coatings has been limited to the surface of the coated objects.
In our study, an elastic porous material, PDMS, was used to store and release the CHX@MSN particles.
The encapsulation and drug-loading efficiency of the CHX@MSN were recorded at rates of 25.22%
and 63.04%, with a stable CHX releasing rate of approximately 1.56 pg/mL within the first 24 hin a
pilot study [32]. Because the synthesized coating layer could release the loaded CHX over time [42],
the coating exhibited antibacterial effects in the surrounding areas not directly in contact with the
surface of the restoration. Moreover, the CHX@MSN and PDMS materials used in this study have
been reported to be relatively noncytotoxic [32]. Therefore, this active antibacterial protective film
formation is expected to be a novel method for actively inhibiting bacterial inhabitation around the
coated surface of restorations.

Note that the human oral environment is more complicated than the in vitro experimental context
because the oral cavity temperature, food intake, and the pH and composition of saliva vary between
subjects and even within a subject [43]. In addition, the mechanical properties and material stability of
the coating layer were not investigated in this study. However, the mechanical properties of PDMS
strongly depend on the mixing ratio of a base to a curing agent in PDMS mixture [26,27,44]. In this
study, the PDMS mixture comprises a base and a curing agent at a weight ratio of 5:1 with the relative
elastic modulus number of 3.59 MPa [44]. However, the mechanical properties of the coating can be
significantly improved by incorporating MSN into the PDMS as the elastic modulus of MSN is at
least four orders of magnitude larger than that of PDMS [45]. Moreover, the hydrogen bonds between
MSNs and covalent bonds between MSN and PDMS may induce a strong resistance to mechanical
deformation [46]. The findings in those previous studies indicates that the mechanical strength of
the PDMS coating layer can be tuned by controlling the input parameters such as the curing agent
and MSN. In this study, the surface microstructure, surface wettability, and antibacterial activity were
immediately evaluated after coating and within 24 h of drug releasing; thus, the material was expected



Pharmaceuticals 2020, 13, 304 7 of 12

to be stable during this stage. A further study that focuses on investigating the mechanical properties
of the coating should be conducted in clinically relevant conditions to extend the understanding of this
new material.

4. Materials and Methods

4.1. Synthesis of the Coating Material (CHX@MSN-Loaded PDMS)

Figure 4 illustrates the fabrication process for the coating substance. Fifty milligrams of CHX
(Sigma-Aldrich Co., St. Louis, MO, USA) were dissolved in 5 mL of absolute ethanol, and then dried
MCM-41 mesoporous silica nanoparticles (MSN) (Sigma-Aldrich Co., St. Louis, MO, USA) with a pore
volume of 0.98 cm3/g, pore size of approximately 2.5 nm, and Brunauer-Emmett-Teller (BET) surface
area below 1000 m?/g were dispersed into the CHX solution. The mixture was sonicated for 10 min and
incubated for 24 h at room temperature using a magnetic stirrer (Corning PC-420D, Fisher Scientific,
Lowell, MA, USA) at a speed of 300 rpm. Next, to collect the CHX@MSN particles, the mixture was
filtered (Labogene Scan Speed Mini, Lynge, Denmark) and then vacuum-dried (OV-11, JEIO Tech,
Seoul, Korea).

4 Synthesis of the Chlorhexidine-encapsulated Mesoporous Silica Nanoparticles (CHX@MSN)

O
888 MSNs 080
OO0
Loadlng &~ Filtration O
by

CHX solution " CHX@MSN

xc(’)go

4 Synthesis of the CHX@MSN-loaded Polydimethylsiloxane (PDMS) coating substance

@)
888 CHX@MSN

P>

IVI|xmg A|r bubble removal ——— CHX@MSN-loaded

°°% PDMS pre-cured solution

Figure 4. Synthesis of the CHX@MSN-loaded PDMS coating substance. CHX, Chlorhexidine; MSN,
Mesoporous silica nanoparticles; CHX@MSN, Chlorhexidine encapsulated in mesoporous silica
nanoparticles; PDMS, Polydimethylsiloxane.

The CHX@MSN particles were then mixed with PDMS (Sylgard 184, Dow Corning, Midland, MI,
USA) solution at 0.4 wt% relative to the total PMDS mass. The PDMS mixture comprised a base and a
curing agent at a weight ratio of 5:1. All components were blended in a SpeedMixerTM (FlackTek Inc.,
Landrum, SC, USA) for 3 x 30 s to form a precured coating paste, which was stored in the dark at room
temperature and vacuumed for 20 min to remove bubbles before use.

4.2. Coating Procedure

Sixty disk-shape specimens (N = 60) with a thickness of 1.0 mm and diameter of 13.0 mm were
designed using CAD software (Geomagic Design X, 3D Systems, Inc., Rock Hill, SC, USA) and printed
with the photopolymer (RAYDent C&B, Ray Co., Hwaseong, Korea) using a digital light processing
3D printer (RAM500, Ray Co., Hwaseong, Korea). All specimens were postcured with a curing
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unit (RPC500, Ray Co., Hwaseong, Korea) for 20 min and polished with a 1000-grit silicon carbide
abrasive paper (Buehler GmbH, Dusseldorf, Germany) for 60 s. Table 2 provides the composition of
the photopolymer.

Table 2. Composition of the 3D-printing photopolymer.

Component * Content (%)

o,0'-[(1-Methylethylidene)di-4,1-phenylene] bis [w-[(2-methyl-1-ox0-2-propenyl) 20-35
oxy] poly (oxy-1,2-ethanediyl)
7,7,9(or 7,9,9)-Trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecanel,16-diyl 20-28
2-methyl-2-propenoate

2-Methyl-2-propenoic acid 1,2-ethanediylbis(oxy-2,1-ethanediyl) ester 20-25
Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide 1-10
Rutile (TiO2) 0.1-5

* As provided by the manufacturer.

Surface functionalization and coating process were performed in the coated group specimens
(n = 30). The polished specimens were cleaned with isopropyl alcohol and treated with oxygen
plasma (CUTE, Femto Science Co., Seoul, Korea) for 5 min (Figure 5a). The specimen surfaces were
functionalized by immersion into 5% (v/v) 3-aminopropyltriethoxysilane (APTES) (Sigma-Aldrich
Co., St. Louis, MO, USA) solution at 85 °C for 10 min (Figure 5b). The specimens were then coated
by dipping in the precured coating solution using a dip coating equipment (KD Scientific, Holliston,
MA, USA) at a lowering speed of 6000 um/s and lifting speed of 1000 um/s (Figure 5c). Subsequently,
the specimens underwent thermal treatment in an oven (OV-11, JEIO Tech, Seoul, Korea) at 80 °C for
2 h (Figure 5d). The noncoated group specimens were defined as control (n = 30).

{93

3-APTES
Polymer
RlgsaiChanioens ‘ ‘ é
¢ é ¢4 Heating oven
NH, NH,
NH, | NH, | NH,
l, losi |osi
%i [ S‘i | ‘Si ééé
OH CI)H OH O‘H OH OH O"" OH OlH OH T

‘ | solution

(a) (b) (c) (d)

Figure 5. Surface functionalization and coating treatment: (a) oxygen plasma treatment; (b) APTES
treatment; (c) dip coating; and (d) Thermal curing. APTES, 3-aminpropyltriethoxysilane; PMMA,
polymethyl methacrylate; CHX@MSN, Chlorhexidine encapsulated in mesoporous silica nanoparticles;
PDMS, Polydimethylsiloxane.

4.3. Evaluation of Surface Microstructure

Surface microstructure was evaluated using a scanning electron microscope (SEM) (5-4500,
Hitachi Co., Tokyo, Japan). Specimens were coated with spotted platinum using a sputter coater
(E-1030, Hitachi Co., Tokyo, Japan), and scanned at 5 kV at 500x and 2000x magnification. Ten locations
in each specimen were randomly selected for image acquisition. The images were converted to 8-bit
grayscale (black = 0, white = 225) using Image] software (version 1.52k, National Institute of Health,
Bethesda, MD, USA). The pixel brightness data of each image were plotted as 256-level histograms
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to build a surface plot image, where the y-axis represents the 0-255 grayscale levels and the x-axis
represents the pixel frequency. The histograms from all 10 images were combined, and the standard
deviation of the pixel brightness was calculated as the SRI [47].

4.4. Measurement of Surface Wettability

Surface wettability was evaluated by measuring the contact angle (CA) in an air environment.
Aliquid droplet (5 uL) of distilled water was dispensed onto the specimen surface at a room temperature
of 20 °C. The image of the droplet was immediately captured by a digital camera (Canon EOS 500D
with Canon EF 100 mm 2.8 Macro USM Lens, Canon Inc., Tokyo, Japan) (Figure 6a), and the contact
angles were determined from the corresponding pictures using the contact angle plugin of the Image]J
software. The CA degree was determined by measuring the tangent angle to the surface of the liquid
droplet (Figure 6b). The mean value was calculated by averaging three individual measurements.

Contact Angle {CA)

Smaller Contact Angle Greater Contact Angle

Solid surface Solid surface

(a) (b)

Figure 6. Measurement of surface wettability: (a) contact angle measurement system setting; and (b)
contact angle (0) measurement by the tangent angle of the liquid droplet to the surface.

4.5. Assessment of Antimicrobial Activities

To evaluate the antibacterial activity, a bacterial growth inhibition assay was performed.
Streptococcus mutans ATCC 25175 (S. mutans) was inoculated into a 15-mL tube containing 10 mL of
brain heart infusion (BHI) media (BHI, Mast Group, Bootle, UK) and incubated on a rotary shaker
(150 rpm) at 37 °C. To determine the concentration of bacteria in culture media, the optical density at
600 nm (ODgqy) of the cell suspensions was recorded using a DS-11+ apparatus (DeNovix, Wilmington,
DE, USA). After 12 h, ODggp was checked to measure bacterial density in liquid media.

When the ODg of the S. mutans culture reached approximately 0.4, aliquots of 500 pL were added
to each well in a 24-well plate and incubated with noncoated or coated specimens at 37 °C on a shaker
at 15 rpm for 24 h. Cultures without any test specimens were used as the control condition. Following
incubation, appropriate dilutions of the cultures were plated on BHI agar plates using an ethanol-flamed
bacterial spreader, and the plate was incubated for 24 h at 37 °C. Then, the colony-forming units per
milliliter (CFU/mL) were calculated using the number of colonies observed and the dilution factor
(1:10%) for each well.

4.6. Statistical Analysis

Statistical calculations were performed using SPSS software (SPSS version 25.0, IBM Inc., Chicago,
IL, USA). The measured values were expressed as the mean + standard deviation. The independent
t-test was conducted to compare differences between the groups. The statistical significance level was
set at 0.05.

5. Conclusions

This study evaluated the effect of a newly developed CHX@MSN-loaded PDMS-based
coating substance on the surface properties and antibacterial ability of coated 3D-printing dental
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material. From our results, it can be concluded that applying the coating layer on the polymer
specimens significantly reduced their surface irregularity, while increasing the hydrophobicity and
antibacterial activity.
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