Table S1. Restoration of healthy skin microbiota. A) Live microorganism

	Microorganisms (manipulation methods	In vivo, in vitro or ex vivo	AD Stage or Induction method /	Results	Conclusion	Ref.	Year
	and/or derivatives)	methodology used	Route of administration	100010	Concinsion	100	7011
LIVE MICROORGANISMS	L.plantarum LM1004	SD rats and ddY mice	Histamine-induced vasodilation AD and Contact dermatitis induced by dinitrophenyl- derivatised ovalbumin/ Oral	 Reduced vasodilation, pruritus, oedema, and serum histamine; decreased expression levels of Th2 and Th17 cell transcription factors enhanced transcription of immunomodulation factors (Th1 and Treg cells, galactin-9 and filaggrin). 	The potential for AD treatment was demonstrated by mechanisms that might involve the modulation of host immune systems and gut microbiota.	[129]	2019
	B. lactis CECT 8145 B. longum CECT 7347 L.casei CECT 9104	Clinical trial (Children)	Moderate/ Oral	Improvement in SCORAD;reduction in the use of topical steroids.	Reduction of SCORAD index and use of topical steroids in patients with moderate AD.	[50]	2018
	B. longum LA 101 L.helveticus LA 102 L. lactis LA 103, S. thermophilus LA104 L. rhamnosus LA 801	Hairless SKH-1 mice	Chronic skin inflammation induced by 2-O-tetradecanoylphorbol-13-acetate /	 Induced chronic skin inflammation limited; downregulation of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IL- 17 and IL-22); up-regulated levels of the anti-inflammatory cytokines, IL-10, and IL-4. 	Help in preserving skin integrity and homeostasis.	[51]	2018

					•	Reduction in	skin lesions, epi	dermal			
						thickening, and	d serum immunoglob	ulin E			
						levels;					
				AD-like lesions induced by	•	type 2 T cells c	ytokines decreased;		Amelioration of AD-like symptoms by		
	W. cibaria WIKIM28	BALB/c mice	e	2,4-dinitrochlorobenzene /	•	the	proportion	of	suppressing allergic Th2 responses and	[52]	2017
				Oral		CD4 ⁺ CD25 ⁺ For	xp3 ⁺ regulatory T ce	ells in	induction of Treg responses.		
						mesenteric lym	nph nodes and IL-10 le	vels in			
LIVE MICROORGANISMS						polyclonal stim	nulated MLN cells wer	re both			
						increased.					
ICRO	L. paracasei	Clinical	trials	Moderate to severe/			agonin			[52]	2015
	L. fermentum	(children)		Oral	•	Improvement in	n SCORAD		Significant clinical improvement.	[53]	2015
-		Clinical	trials	Moderate to severe/			~~~			F.C. 43	2014
	L. salivarius LS01	(children)		Oral	•	Improvement in	n SCORAD		Significant clinical improvement.	[54]	2014
=									The potential role of the two bacterial strain		
	L. salivarius LS01	Pilot trial		Moderate to severe/	•	Improvement in	n SCORAD		for AD treatment was demonstrated,	5553	2011
	S. thermophiles ST10	(Adults)		Oral	•	Slight decrease	in faecal S. aureus cou	ınt	moreover the addition of tara gum improve	[55]	2014
									the overall efficacy of the probiotic strain.		

Table S1 Restoration of healthy skin microbiota (Continued. B) Heat-killed or inactivated microorganisms

	L. johnsonii NCC 533 (heat-killed)	In vitro reconstructed human epidermis (RHE)	S. aureus in vitro adhesion to skin and boost cutaneous innate immunity/	 Reduction of the binding of radiolabelled <i>S. aureus;</i> antimicrobial peptide expression induction. 	An enhanced cutaneous innate immunity and reduced <i>S. aureus</i> colonisation was demonstrated.	[57]	2018
ISWSI	L. johnsonii NCC 533 (heat-killed)	Clinical trial (adult)	Mild-to-moderate/ Topical	 Reduction in <i>S. aureus</i> count; improvement in SCORAD. 	The findings support further development of topical treatments containing heat-treated non-replicating beneficial bacteria for AD treatment.	[58]	2017
HEAT-KILLED OR INACTIVATED MICROORGANISMSI	V. filiformis (biomass)	Clinical trial (aged from 6 months to 63 years)	Moderate form of AD / Topical	 Treatment with a lipophilic cream containing a biomass of <i>V. filiformis</i> Improvement in SCORAD Increased level of <i>Xanthomonas</i> genus Stable level of <i>Staphylococcus</i> genus. 	The ability to normalise skin microbiota and a reduction in the number and severity of flare-ups was demonstrated.	[59]	2017
	H. influenzae, S.pneumoniae, K. ozaenae K. pneumoniae, S. aureus, S.viridans S. pyrogenes, N. catarrhalis (OM-85 bacterial lysate)	Clinical trial (Children)	mild to severe / Oral	 Occurrence of new flares was reduced and/or delayed; no major side effect observed together; good tolerability. 	Clinical efficacy and long-term tolerability of an oral bacterial extract, as adjuvant therapy in children with established AD was demonstrated.	[60]	2017

L. plantarum KCTC 10887BP (lysate)	um KCTC NC/Nga mice back skin	Skin sensitisation/ Oral	 Horny layer formation attenuation; reduction of epidermal thickening; increase in epidermal permeability barrier function; reduced spontaneous scratching behaviour. 	Host homeostasis improvement and utilisation for the clinical treatment of inflammatory diseases.	[61]	2015
L. plantarum K8 (lysate)	SKH-1 hairless female mice and Clinical trial (Adults)	Mice skin sensitisation and Healthy Volunteers / Oral	 Mouse model: attenuation in horny layer formation decreased epidermal thickening increase in epidermal permeability reduced damage to barrier function Clinical study: improvement in barrier repair and function 	The alleviation of AD lesions in the mouse model indicates that <i>L. plantarum</i> K8 lysates have a moisturising effect. Clinical trial results showed increased hydration, less water loss, and decreased horny layers on the face and forearm.	[62]	2015
E. coli and E. faecalis (Symbio®)	Clinical trial (Children)	Subjects at severe risk of atopy	 Reduction of AD; no effect on food sensitisation was demonstrated. 	An immune modulation in terms of prevention of AD in infancy was demonstrated by feeding bacterial lysates early in life.	[63]	2014

Table S1 Restoration of healthy skin microbiota (Continued. C) Microorganism-derivate substances

	S. epidermidis ATCC12228 (cytoplasmic bacteriocin compounds)	In vitro	antimicrobial activity and characterisation		selective antimicrobial activity against <i>S. aureus</i> MRSA, no active actions against S. epidermidis, E. coli, and Salmonella Typhimurium.	Promising <i>S. aureus</i> growth inhibition agent with a great potential for topical AD treatment.	[68]	2020
	L. paracasei IJH-SONE68 (esopolysaccarides)	BALB/cAJcl mice	PiCl-Induced Delayed-Type Allergy Mouse Model / Oral	•	Inhibition of the catalytic activity of hyaluronidase; overexpression of ear interleukin-4 (T2 helper cytokine); increase in serum immunoglobulin E.	Reduction in the ear swelling in mice. Improvement in type I and IV allergies as well as AD.	[69]	2019
MICROORGANISM-DERIVATE SUBSTANCES	Malassezia globosa CBS7966 (secreted protease)	In vivo and in vitro studies	Skin Sampling and Protease characterisation		The protease is expressed on Human Facial Skin; S. aureus biofilm disruption by hydrolysing S. aureus protein A.	Definition of the role of <i>Malassezia</i> and its enzymes for human skin health.	[70].	2018
	C. granulosum (Bacterial cell wall fragment P40 conjugated with jaluronic acid)	Female mice	Oxazolone-induced contact AD / Topical	•	Reduction in ear thickness and weight together with oedema; anti-inflammatory effects confirmed by histological analysis; leukocyte recruitment.	The use of this cream may potentially alleviate the symptoms of and/or treat irritant contact dermatitis,	[71]	2017
	Streptomices narvonensis subsp. Josamyceticus (bacteriocins)	NC/Nga Mice	Induction of AD-Like Skin Lesions / Topical	•	Improvement in SCORAD; decrease in the density of cellular infiltration into the dermis and the serum IgE level; reduced the expression of IFN-γ and IL-4 in auricular lymph node cells and the skin lesions.	Topical application of josamycin to AD lesions colonised by <i>S. aureus</i> would be beneficial for control of AD by acting on superficially located <i>S. aureus</i> and inhibiting the development of Th1 and Th2 cells	[72]	2017

S. lugdunensis IVK28 In via (bacteriocins)	Antimicrobial activity and characterisation	 novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonisation by <i>S. aureus</i>; non-ribosomally synthesised bioactive compound from human-associated bacteria. 	Human microbiota should be considered as a source for new antibiotics.	[73]	2016
L. casei KCTC 12398BP NC/N (P14 protein)	AD induced by cream prepared from house dust mites and a crude extract allergen of D. farinae /	 Down regulation of serum IgE and interleukin-4; improvement in SCORAD and scratching score. 	Potential therapeutic effects and use as immunomodulatory agent for clinical treatment.	[74]	2015

Table S1 Restoration of healthy skin microbiota (Continued. D) Microbiome transplantation

ATION	Skin microbiota communities	Pilot study (Adults)	Healthy volunteers / Complete transplant	•	Evidence of transfer of a partial DNA signature were demonstrated.	Unenriched transfer of whole cutaneous microbiota, despite the challenges, is worthy of further investigation to restore the dysbiosis that occurs in AD	[76]	2019
MICROBIOME TRANSPLANTATION	R. mucosa ATCC BAA-692	Clinical trial (Adults and paediatric)	AD diagnosis / Allogeneic transplant	•	Improvement in SCORAD; decrease of pruritus, topical corticosteroid use and S. aureus colonisation; no adverse events reported.	These early results support continued evaluation of <i>R. mucosa</i> therapy with a placebo-controlled trial.	[77]	2018
MICRO	Staphylococcus hominis and S. epidermidis	Clinical trial (Adults)	AD diagnosis / Autologous transplant	•	Decreased <i>S. aureus</i> colonisation was observed at the autologous microbiome transplant site compared to the vehicle-treated contralateral forearm.	A single application was sufficient to exert antimicrobial action.	[19]	2017

Table S2 Drug Delivery System (DDS) for AD treatment. A) Nanoparticles (NPs)

,	Vehicle and compound	Methodology and model	Target/Characterisation	Results	Conclusion	Ref.	Year
	Betamethasone valerate (BMV) nanoencapsulate into the chitosan nanoparticles (CS-NPs)	In vitro formulation and characterisation Ex-vivo with Wistar albino rat skin	 Drug permeation studies retention into various skin layers 	 Facilitated drug penetration across the stratum corneum higher drug retention into various skin layers (epidermis and dermis) 	Increased localised targeting and improved therapeutic efficacy for treatment of AD.	[88]	2019
Ξ	Tacrolimus-loaded thermosensitive solid lipid nanoparticles (SLN)	In vitro formulation and characterisation Ex vivo Sprague Dawley rat dorsal skin and in vivo New Zealand white rabbits	Skin penetration tests	 Penetration to a deeper layer than the reference product; Delivering more drug into deeper skin layers than the controls. 	Potential application for the delivery of difficult-to-permeate, poorly water-soluble drugs into deep skin layers.	[89]	2019
NAN -	Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles (HA-BMV-CS-NPs)	In vitro formulation and characterisation ex vivo (Wistar albino rat skin)	 Physicochemical characteristics Release study Drug permeation 	 In vitro release study displayed Fickian diffusion-type mechanism of release in simulated skin surface Higher amount of drug retained in the epidermis and the dermis compared to compound alone 	Efficient dermal targeting of betamethasone and improved anti-AD efficacy.	[90]	2019

_
= -
ι,
$\overline{}$
_
_
_
~
_
Ч.
=
$\overline{}$
_
~
_
_
<1
. ~
~
_

NANOPARTICLES	Hydrocortisone hydroxytyrosol anti-oxidant- loaded chitosan nanoparticles (HA-HT-CSNPs)	In vivo Human adult healthy female	•	Systemic toxicity	 Not significative differences in parameters level indicating non systemic toxicity 	Safe, well-tolerated, and non-toxic, which may be useful in treating AD.	[91]	2019
	Tacrolimus nanoparticles based on chitosan combined with nicotinamide (FK506- NIC-CS-NPs)	In vitro formulation and characterisation In vivo BABL/c mice (induced skin lesion)	•	Skin permeation studies	 Enhanced permeation through and into the skin, Efficacy on clinical symptoms 	The system enhances the permeability and plays an adjuvant role in anti-AD by reducing the dose of active principle.	[92]	2018
	Betamethasone Valerate incorporate in lipid carriers	In vitro formulation and characterisation Ex vivo and preclinical testing	•	Permeation studies Anti-inflammatory testing	 Enhancement permeation ratio compared to plain gel. Significant extended anti-inflammatory effect 	The developed formulation is efficient in a once a day dose in therapy for AD.	[93]	2018
	Hyaluronic acid (HA) decorated tacrolimus-loaded nanoparticles (TCS-CS-NPs)	In vitro formulation and characterisation Ex vivo and in vivo NC/Nga mice skin	•	Drug permeation Evaluation of therapeutic efficacy	 Sustained release pattern Efficient dermal targeting Improved therapeutic efficacy 	This formula may be a promising therapeutic approach for rationalised management of AD, particularly in children as well as in adults with steroid phobia.	[94]	2018
	Dendritic Core-Multishell Nanocarriers (CMS)	In vitro formulation and characterisation in vivo SKH-1 mice (AD induced by oxazolone)	•	Topical Application Subcutaneous Injection	 Topical Application accumulate in the <i>Stratum Corneum</i> only Biocompatibility No evidence of toxicity 	Suitable candidates for drugs encapsulation targeting stratum corneal without carrier penetration and thus without biological effects by the carrier itself	[95]	2017

ARTICLES (NPs)	Cationic polymeric chitosan nanoparticles (CSNPs) loaded with hydrocortisone (HC) and hydroxytyrosol (HT)	In vitro formulation and characterisation and antimicrobial activity In vivo Albino Wistar rats	Sub-chronic dermal toxicity	 Significant target delivery Lower systemic drug absorption than the commercial formulation Improved drug accumulation and bioavailability 	Beneficial and safe for patients with AD	[96]	2016
	Nanocarrier-based transcutaneous co-delivery of hydrocortisone (HC) and hydroxytyrosol (HT)	In vitro formulation and characterisation In vivo NC/Nga mice (AD lesion induced by 1–chloro–2, 4–dinitrobenzene) (DNCB)	 Clinical efficacy Immunological studies Histological examinations 	 Improve SCORAD Decrease in IgE and PGE₂expression Reduced histamine and VEGF-α levels in serum and skin homogenates Inhibition of inflammatory cell chemotaxis and infiltration. 	Alternative therapeutic approach in the management of dermatosis.	[97]	2014
	Silver-nanolipid complex (sNLC)	In vitro formulation, characterisation and antimicrobial activity In vivo BALB/c mice murine animal (model of AD)	Anti-inflammatory activity evaluation	High adhesivity to skin and bacterial surfaces, Locally high concentrations of silver ion killing the bacteria Restoration of the distorted skin barrier, much more effective than silver alone	NLC incorporation makes the drugs more effective (penetration enhancement) and simultaneously exploits the skin normalisation ability.	[16]	2014

NANOPARTICLES Hydrocortisone-loaded chitosan nanoparticles	In vitro formulation and characterisation in vivo NC/Nga mice (AD lesion induced by 1–chloro–2, 4–dinitrobenzene) (DNCB)	 Evaluation of dermatitis severity Relative expression of IgE, histamine, PGE₂ and VEGF-α Procarta® immunoassay 	 Improvement SCORAD Decrease in IgI PGE₂expression Reduced histamin VEGF-α levels in and skin homogena Inhibition inflammatory chemotaxis infiltration at the inflammation. 	serum ates of cell and	Effective therapeutic approach to manage dermatitis.	[98]	2014	
---	--	---	--	------------------------	--	------	------	--

Table S2 DDS for AD treatment (Continued. B) Liposomes, ethosomes and vesicles

LIPOSOMES, ETHOSOMES AND VESICLES	Ultra-flexible lipid vesicles to deliver Cyclosporin (CyA)	In vitro formulation and characterisation Franz diffusion cell (human heat-separated epidermis)	Absorption study	• Formulations facilitated CyA permeation through the epidermis	Topical delivery of CyA is possible using the formulations designed as an alternative to the current oral or parenteral routes	[102]	2019
	β- cycloethosomes with Fluocinolone acetonide (FA)	In vitro formulation and characterisation Ex vivo Albino Wistar rat skin	Skin permeability	Able to reach the required target flux without the help of an additional penetration enhancer	Stable and efficient vesicular carrier for topical delivery with higher entrapment efficiency and stability than reference vesicles.	[103]	2018
	Liposomal polyvinylpyrrolidone-iodine hydrogel	Clinical trial (Adults)	Several skin conditions including AD	Well tolerated formulation and led to improvements in pain, quality of life, eczema area and severity	Potential use as an effective treatment for inflammatory skin conditions associated with bacterial colonisation.	[104]	2017
	Nanoethosomal glycolic vesicles of triamcinolone acetonide	In vitro formulation and characterisation Ex vivo Franz diffusion cell (Wistar rat skin)	Skin permeability	 High permeation Non-irritant potential	Stable and efficient carrier for enhanced topical delivery that exhibited higher entrapment efficiency, and stability than reference ethosomal vesicles.	[105]	2017
	Ethosomes-based topical delivery system of cetirizine	In vitro formulation and characterisation In vivo and Ex vivo BALB/c mice (AD lesion induced by oxazolone)	Skin permeation and depositionSkin sensitivityPharmacodynamic evaluation	Reduction in scratching score, erythema score, skin hyperplasia and dermal eosinophil count	Formulation of effective carriers for dermal delivery of antihistaminic drug, cetirizine, for the treatment of AD.	[106]	2014
	Levocetirizine based on flexible vesicles (FVs)	In vitro formulation and characterisation In vivo and Ex vivo BALB/c mice (AD lesion induced by oxazolone)	Skin permeation and depositionPharmacodynamic evaluation	Reduction in scratching score, erythema score, as well as dermal eosinophil count.	A novel FV based topical formulation developed for treatment of AD.	[107]	2014