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Abstract: Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive
muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading
frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide
(AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially
functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two
decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being
developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein
designed a series of 15mer and 20mer AONs, consisting of 2′O-Methyl (2′OMe)- and locked nucleic
acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency
in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice.
We demonstrate that LNA/2′OMe AONs with a 30% LNA composition were significantly more
potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a
previously tested 2′OMe AON and LNA/2′OMe chimeras with lower or higher LNA compositions.
These results underscore the therapeutic potential of LNA/2′OMe AONs, paving the way for further
experimentation to evaluate their benefit-toxicity profile following systemic delivery.

Keywords: DMD; exon skipping; antisense oligonucleotides; LNA/2′OMe; mdx

1. Introduction

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder characterised
by progressive muscle wasting, loss of ambulation in early adolescence and premature mor-
tality due to cardiorespiratory complications. The disorder is mainly caused by nonsense
or frame-shift mutations in the dystrophin gene, which disrupt the open reading frame,
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leading to lack of functional dystrophin protein in the sarcolemma of muscle fibres [1,2].
A milder variant of DMD is Becker Muscular Dystrophy (BMD), caused by deletions in
the dystrophin gene that maintain the open reading frame, resulting in the production of a
shorter but partially functional dystrophin protein [3]. This variation in the genetic etiology
and severity of the two disorders inspired the development of a powerful therapeutic tool,
the antisense oligonucleotides (AONs), which induce the skipping of the mutated exon
changing the deletion from out-of-frame (severe DMD phenotype) to in-frame (mild BMD
phenotype) [4–6]. Theoretically, AON-mediated exon skipping is applicable to at least
70% of DMD patients, where the skipping of a single exon is required, rising up to 90%
if multiexon skipping is achieved. An important challenge lies in the fact that AONs are
mutation specific, which means that different AON sequences need to be designed in order
to target the numerous DMD mutations that have been identified. Nonetheless, mutations
clustered in exons 43 to 55 can be strategically targeted using multiexon skipping to benefit
over 50% of DMD patients, while AON-induced skipping of exon 51 alone can benefit
13–14% of DMD individuals [7,8].

Over the last two decades, a substantial number of chemically modified AONs have
been developed for DMD therapy with encouraging results. AON chemistries include
modifications to the phosphodiester (PO) backbone (e.g., phosphorothioate and phospho-
rodiamidate morpholino) and/or the sugar ring (e.g., 2′-O-Methyl, locked nucleic acid
and tricyclo-DNA) and aim at increasing binding affinity to the target sequence, as well
as resistance to nuclease degradation in the serum and cytoplasm. One of the first two
AONs to be tested in clinical trials for DMD therapy was based on the phosphorodiamidate
morpholino (PMO) chemistry, which consists of charge neutral phosphorodiamidate link-
ages and a morpholine moiety in the place of the sugar ribose. Because of their non-ionic
nature, PMO AONs show increased tissue accumulation in vivo as they do not interact
undesirably with cellular components [9]. After a 3.5-year clinical assessment, the PMO
oligomer targeting exon 51 (Eteplirsen, brand name: Exondys 51) demonstrated a 0.9%
increase in dystrophin levels and a slower decline in ambulation in treated individuals
compared to historical controls [10–13]. Based on these results, Eteplirsen was granted
accelerated FDA approval making it the first drug to be approved for DMD therapy in
the U.S. [14–16]. Subsequent clinical trials have shown that long-term treatment with
Eteplirsen attenuates respiratory decline and stabilizes cardiac and upper limb function in
both patients who remain ambulatory and patients who lose ambulation during the course
of the treatment [17,18]. Three more PMO-based drugs have subsequently been approved
in the U.S. for DMD treatment (under the accelerated approval program), offered to pa-
tients amenable to exon 45 (Casimersen, brand name: Amondys 45) or exon 53 (Golodirsen,
brand name: Vyondys 53 and Viltolarsen, brand name: Viltepso) skipping [19–25].

The second exon 51-targeting AON to be tested in clinical trials consisted of 2′-O-
Methyl (2′OMe)-modified nucleosides on a negatively charged phosphorothioate (PS)-
modified backbone. Despite promising pre-clinical data, long-term subcutaneous delivery
of the 2′OMePS AON drisapersen in DMD patients showed minimal to no functional benefit
and caused adverse injection-site and systemic reactions [26–29]. Consequently, the U.S.
Food and Drug Administration (FDA) denied drug approval. AONs with phosphorothioate
(PS) backbones have long been reported to show dose-dependent side-effects in vivo,
inferring that the side-effects seen after drisapersen treatment in DMD patients may be
caused by the PS modification [30]. Despite increasing AON stability, PS linkages reduce
the binding affinity of an oligonucleotide towards its target sequence, leading to a decrease
in AON specificity. Indeed, in vitro studies have shown that PS AONs associate with
key cellular proteins in a sequence-independent manner, resulting in nucleolar stress, p53
activation and apoptotic cell death [31–36].

Recently developed AONs for DMD therapy are based on the third-generation sugar
modifications tricyclo-DNA (tcDNA) and locked nucleic acid (LNA), which demonstrate re-
markably higher thermodynamic stability (binding affinity) compared to second-generation
2′-O-alkyl chemistries and increased resistance to nuclease degradation. Systemic delivery
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of a tcDNA/PS AON in mdx mice resulted in high restoration of dystrophin expression in
skeletal muscle, heart and diaphragm tissues, and to a lower extent in the brain, leading to
both functional and neurobehavioral improvement. Notably, tcDNA/PS was more efficient
than the PMO and 2′OMePS AONs and demonstrated an encouraging safety profile with
minimal histological changes and slight differences in serum and urinary levels of renal
toxicity biomarkers [37,38].

LNA nucleoside analogues consist of a methylene bridge joining the 2′-oxygen to
the 4′-carbon, resulting in a locked C3′-endo conformation that closely resembles A-form
RNA. This conformational feature essentially pre-organizes LNA-modified AONs for RNA
binding [39]. LNA nucleotides impart impressive thermodynamic stability, the highest
among all other chemistries, increasing the Tm of a duplex by approximately 5.6 ◦C per
insert [40]. Though much more potent, LNA-modified AONs are more tolerant to mis-
matches increasing the risk of unintended, off-target interactions. In a comparative study
of chemically modified AONs targeting human exon 46, a 14mer all-LNA AON induced
the highest levels of exon skipping in both unaffected control- (85%) and patient-derived
(98%) myotubes. By contrast, a 20mer 2′OMe/PS AON was remarkably more efficient in
the DMD versus control myotubes (75 versus 20%, respectively), a finding that questioned
the sequence specificity of LNA versus 2′OMe AONs. Indeed, while demonstrating higher
skipping efficiencies, LNA AONs containing up to three mismatches showed much less
sequence specificity compared to mismatched 2′OMe AONs [41]. Consequently, recent
studies have focused on addressing the optimal design of splice-switching LNA AONs,
by altering the number of incorporated LNAs as well as the length of the oligomer se-
quence [42,43]. A 16mer LNA/DNA AON with an LNA incorporation of 60% efficiently
induced skipping of exon 51 and restored dystrophin expression in the plasma mem-
brane of patient-derived myotubes, thus highlighting the value of short LNA AONs for
splice-switching therapy [43].

Attempting to limit sequence-dependent and sequence-independent off-target inter-
actions, associated with the LNA and PS modifications, respectively, Le and colleagues
designed short mixmer AONs incorporating a combination of 2′OMe and LNA nucleotides
on a full PS backbone. The introduction of four LNAs in a 14mer 2′OMe/PS AON, show-
ing no exon skipping activity, significantly improved the yield of exon 23-skipped RNA
in cultured H2K mdx mouse myotubes, underscoring the value of short LNA/2′OMe
AONs for DMD therapy [44]. Recently, chimeric LNA/2′OMe AONs (14–18mer) have
also been evaluated for Myotonic Dystrophy type 1 (DM1) therapy, demonstrating strong
steric-blocking activities in cultured human DM1 myoblasts and in locally injected mus-
cles of DM1 mice [45]. To further evaluate the optimal length and percentage chemistry
composition of LNA/2′OMe chimeras for DMD therapy, we herein designed a series of
20mer LNA/2′OMe AONs by introducing an increasing number of LNA nucleotides to a
previously published 20mer 2′OMePS sequence targeting exon 23 of the mouse dystrophin
pre-mRNA [46,47]. Truncated (15mer) sequence analogues with similar LNA composi-
tions were also created and compared to a corresponding 2′OMe AON. The AONs were
delivered intramuscularly into the tibialis anterior (TA) muscle of mdx mice and evaluated
for targeted exon 23 skipping and rescued dystrophin protein expression. This study
represents the first in vivo evaluation of the LNA/2′OMe AON design for DMD therapy.

2. Results
2.1. Evaluation of Exon Skipping Efficiency of Chimeric LNA/2′OMe AONs after Intramuscular
Delivery in Mdx Mice

In order to address the optimal design of chimeric LNA/2′OMe AONs for exon skip-
ping activity in vivo, we created a series of 15mer (sLNA-3, sLNA-5 and sLNA-6) and
20mer (LNA-4, LNA-6 and LNA-8) LNA/2′OMe oligomers exhibiting an LNA incorpo-
ration of 20, 30 and 40% respectively, for each group, and compared their efficiencies to a
15mer and 20mer 2′OMe-modified AON. Both 2′OMe and chimeric LNA/2′OMe AONs
were synthesized on a fully modified PS backbone. An equimolar dose of each AON was
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injected into the TA muscle of 8-week-old mdx mice and evaluated for exon 23 skipping by
RT-PCR, two weeks after treatment.

Kruskal–Wallis analysis rendered an overall p-value of 0.00028, demonstrating sta-
tistically significant difference(s) among the efficiencies of the various AONs. Overall,
20mer 2′OMe and 20mer LNA/2′OMe AONs (LNA-4, LNA-6 and LNA-8) induced higher
levels of exon 23 skipping compared to their respective 15mer analogues (s2′OMe, sLNA-3,
sLNA-5 and sLNA-6; Figure 1A). AONs LNA-6 (20mer) and sLNA-5 (15mer), exhibiting
an LNA incorporation of 30%, yielded the highest levels of exon 23 skipped RNA (10 and
8% of total dystrophin RNA, respectively), followed by 20mer AON LNA-8 consisting
of 40% LNAs (5.3% exon skipping). The efficiencies of LNA-6 and sLNA-5 were found
to be statistically significantly different when compared to 2′OMe, s2′OMe or sLNA-3
separately, using Dunn’s pairwise test for multiple comparisons. While the truncation of
LNA-6 (30% LNA) to its shorter analogue sLNA-5 resulted in a relatively small decrease
in exon skipping activity (10 versus 8%, respectively), truncation of LNA-8 (40% LNA) to
generate AON sLNA-6 considerably reduced the percentage of exon skipped RNA by more
than half (5.3 versus 2.2%, respectively). Taken together, these findings demonstrate that
a relatively high incorporation of LNA nucleotides (≥40%) in a short antisense construct
significantly reduces AON potency. Nonetheless, a 20% inclusion of LNA nucleotides to
the 2′OMe and s2′OMe sequences showed minimal to no improvement in AON activity,
respectively, demonstrating that an LNA incorporation of 30%, evenly distributed at every
third or fourth position, is the optimal design to achieve maximal exon skipping efficiency.

To confirm on-target specificity, a scrambled LNA/2′OMe sequence with similar
percentage nucleotide composition and 33% LNA inclusion was also injected into the TA
muscle of mdx mice under the same experimental conditions. In contrast to our LNA-6
and sLNA-5 AONs, no skipping of mouse dystrophin exon 23 was observed following
treatment with the scrambled sequence (Figure 1B). Furthermore, to determine the half
maximal effective concentration (EC50) of our most potent AON, isolated primary mdx
myoblasts were treated with increasing concentrations of LNA-6 (10, 30, 50 and 300 nM)
and evaluated for exon 23 skipping 24 h post transfection. LNA-6 induced skipping of
exon 23 in a dose-dependent manner, reaching highest efficiency (82%) at 50 nM. The EC50
value for LNA-6 was calculated at 13.9 nM (Figure 1C).
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Figure 1. Direct comparison of exon skipping efficiencies of LNA/2′OMe chimeras and corresponding
2′OMe analogues in vivo. (A) RT-PCR analysis of unskipped (+Ex) and exon 23-skipped (-Ex) dystrophin
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mRNAs in TA muscles of mdx mice treated with an equimolar dose (4.35 nmol) of the indicated AON
or saline only (representative image shown). Dystrophin expression in a WT control is also shown.
Quantification of exon 23-skipped mRNA is expressed as the percentage of total dystrophin mRNA.
n = 3–4 mice per group; values are mean ± SD. Square brackets and asterisks indicate statistically
significant differences using Dunn’s multiple comparisons test followed by Benjamini–Hochberg
adjustment. * denotes p ≤ 0.05 and ** denotes p ≤ 0.01. (B) Detection of exon 23-skipped dystrophin
mRNA in TA muscles of mdx mice injected with an equimolar dose of a scrambled LNA/2′OMe
sequence (n = 2). The contralateral TA was injected with saline only. Positive exon skipping control
AONs (LNA-6 and sLNA-5) and a WT control mouse are also shown. (C) Percentage exon 23 skipping
in isolated primary mdx myoblasts treated with increasing concentrations of 20mer LNA-6 AON
(30% LNAs). RNA extraction was carried out 24 h post transfection. Values are mean ± SD from
three independent transfection experiments.

2.2. Evaluation of Dystrophin Restoration after Intramuscular Delivery of Chimeric LNA/2′OMe
AONs in Mdx Mice
2.2.1. Immunofluorescence: Number of Dystrophin Positive Fibres in Muscle Section

We subsequently evaluated the efficiency of LNA/2′OMe AONs to induce dystrophin
restoration in vivo, by immunofluorescence staining of TA cryosections using a polyclonal
antibody against the C-terminal domain of dystrophin. Dystrophin restoration was mea-
sured as the number of dystrophin-positive fibres in the whole muscle section and reported
as a percentage of the WT (Figure 2). Kruskal–Wallis analysis rendered an overall p-value
of 0.0001, demonstrating statistically significant difference(s) among the efficiencies of
the various AONs. In agreement with the exon skipping data, 20mer LNA-6 and 15mer
sLNA-5 AONs, both consisting of 30% LNAs, showed the highest percentages of dys-
trophin positive fibres (22 and 19% of WT, respectively), while 15mer AONs s2′OMe and
sLNA-3 (20% LNAs) induced significantly lower dystrophin restoration corresponding to
~5% of the WT (adjusted p-values ≤ 0.01 for each pairwise comparison: LNA-6–s2′OMe,
LNA-6–sLNA-3, sLNA-5–s2′OMe and sLNA-5–sLNA-3). LNA-8 and sLNA-6, exhibit-
ing the highest percentage of LNA incorporation, were less efficient compared to their
respective AONs containing 30% LNAs, underscoring again the negative impact of an
increased LNA inclusion on AON activity. Notably, while inducing minimal (2%) skipping
of exon 23 in TA muscles, AON LNA-4 containing 20% LNAs showed a 14% increase
in dystrophin positive fibres relative to the WT. This result reflects on the interpretive
bias of the immunofluorescence analysis since the number of dystrophin positive fibres is
not necessarily proportional to the levels of dystrophin expression; i.e., a larger number
of dystrophin positive fibres may respectively express lower levels of the protein and,
conversely, a smaller number of dystrophin positive fibres may respectively express higher
levels of the protein.

2.2.2. Mass Spectrometry Quantification of Dystrophin

To confirm dystrophin expression, we carried out a targeted mass spectrometry (MS)-
based protein quantification assay using aliquots of 100 ng total protein extract from WT
control and AON-treated mdx mice. Protein quantification was carried out using two
custom dystrophin peptides: IFLTEQPLEGLEK, used as quantifier, and LLAEELPLR,
used as qualifier. To assess linearity of our assay, three WT concentration standards were
prepared (10, 50 and 100% of WT extract) and used for the relative quantification of
dystrophin levels in AON-treated mdx samples. As evident in Figure 3A, our assay shows
linearity over a wide dynamic range (10 to 100%): peak area values for each product ion
of the quantifier peptide increase proportionally to the input amount of WT protein, i.e.,
a 5-fold increase in peak area is observed from 10 to 50% of input protein and a 2-fold
increase from 50 to 100%. Therefore, dystrophin levels in AON-treated mdx samples were
determined using the sum peak area of all three product ions of the quantifier peptide.
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Figure 2. Evaluation of dystrophin restoration by immunofluorescence. (A) Representative images
of dystrophin immunostaining on transverse muscle cryosections from a WT control and mdx mice
treated with an intramuscular injection of the indicated AONs or saline only (mdx; scale bar = 100 µm).
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(B) Quantification of the number of dystrophin positive fibres, expressed as a percentage of the WT,
in TA muscle cross sections from mdx mice treated with an intramuscular injection of the indicated
AONs. n = 3 mice per group; values are mean± SD. Square brackets and asterisks indicate statistically
significant differences using Dunn’s multiple comparisons test followed by Benjamini–Hochberg
adjustment. * denotes p ≤ 0.05 and ** denotes p ≤ 0.01.

Figure 3. Targeted MS quantification of total dystrophin protein in WT and AON-treated mdx
TA muscles. (A) Quantification of the IFLTEQPLEGLEK peptide in WT protein concentration
standards (10, 50 and 100%) showing the peak area values of its three product ions (y11+, y10+ and
y7+). The peak area of each product ion, as well as the sum peak area of all three transitions (last
column), increase proportionally to the concentration of the WT standard (table values and bar chart).
(B) Quantification of dystrophin expression, plotted as a percentage of the WT, in TA muscles of mdx
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mice after intramuscular delivery with the indicated AONs. n = 3 mice per group; values are
mean ± SD. Square brackets and asterisks indicate pairwise p-values ≤ 0.05 using Dunn’s multiple
comparisons test followed by Benjamini–Hochberg adjustment.

As expected, AONs LNA-6 and sLNA-5 consisting of 30% LNAs induced the highest
levels of dystrophin restoration (4.2 and 4% of WT, respectively; Figure 3B, Figure S1), fol-
lowed by AONs LNA-8 and sLNA-6 with 40% LNA inclusion and 20mer LNA-4 containing
20% LNAs; all of the latter three showed similar levels of restored dystrophin expression
corresponding to ~1.8% of the WT (overall p-value of 0.009 using Kruskal–Wallis analysis).
Notably, efficiency differences among LNA/2′OMe chimeras were more pronounced for
exon 23 skipping (Figure 1A) compared to rescued dystrophin expression: at the RNA
level, increasing the percentage of LNA composition from 20 to 30% resulted in a 5- and
16-fold increase in AON activity for the 20mer and 15mer AONs, respectively, compared
to a 2- and 3-fold rise when evaluating protein restoration by MS. Similarly, while 20mer
and 15mer LNA/2′OMe AONs with 20 and 40% LNA compositions showed similar levels
of rescued protein expression, exon skipping activity of LNA-8 (20mer with 40% LNAs)
and sLNA-6 (15mer with 40% LNAs) increased by 2.5- and 5-fold, respectively, compared
to their corresponding AONs with 20% LNA composition. These findings reflect highly
on the sensitivity of the techniques and how RNA data may correlate with corresponding
data at the protein level.

2.2.3. Western Blot Quantification of Dystrophin

Dystrophin restoration was further evaluated by chemiluminescent Western blotting
using a multi-point standard curve to assess for potential oversaturation on the gels, which
would lead to overestimation of protein levels at the low end of the range. A four-point
standard curve was constructed by spiking quantified aliquots of a WT protein extract (2.5,
5, 10 and 20 µg) into mdx lysates to produce 2.5, 5, 10, and 20% concentration standards,
respectively (Figure 4A). Data were analysed by linear regression, generating a coefficient
of determination (R2) value of 0.9726, and the identified equation (y = 0.1043x) was used to
calculate the amount of restored dystrophin in AON-treated mdx samples. The standard
curve demonstrates good linearity of the chemiluminescent signal over the indicated
concentration range (2.5 to 20%), which corresponds to the percentage range of dystrophin
positive fibres observed in muscles sections of AON-treated mice (Figure 3B). In contrast to
the protein expression profiles obtained by immunofluorescence and targeted MS analysis,
chemiluminescent detection of Western blot products revealed a 2.8- and 11-fold decrease
in the efficiencies of 15mer LNA/2′OMe AONs consisting of 30 or 40% LNAs, respectively,
compared to their corresponding 20mer analogues (Figure 4B; overall p-value of 0.0026
using Kruskal–Wallis analysis). Nonetheless, in agreement with the exon skipping data,
20mer and 15mer LNA/2′OMe AONs consisting of 30% LNAs were more potent than their
respective 2′OMe/PS and LNA/2′OMe counterparts exhibiting a higher (40%) or lower
(20%) percentage LNA composition.
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Figure 4. WB quantification of total dystrophin protein in WT and AON-treated mdx TA muscles.
(A) A four-point standard curve for WT dystrophin was created, with concentration range of 2.5 to
20%, by spiking pooled WT protein extracts into pooled mdx lysates to maintain equal loading of
protein (100 µg). The dystrophin signal (bottom bands in top gel; n.s. = non-specific band) normalized
to the intensity of the vinculin signal (bottom gel) was graphed in linear format. The identified
equation and R2 value of the linear regression analysis are shown on the graph. (B) Detection and
quantification of total dystrophin protein in TA muscles of mdx mice, 2 weeks after intramuscular
injection with the indicated AONs (representative image shown). To minimize saturation issues
on the gel, the dystrophin band signal in the WT lane corresponds to only 10 µg of loaded protein
(i.e., 10% of total protein extract loaded for saline and AON-treated samples). Dystrophin band
signals were normalised to the intensity of the respective vinculin signals and the amount of rescued
protein, expressed as a percentage of the WT, was calculated using the equation identified in the
linear regression analysis. n = 3 mice per group; values are mean ± SD. Square brackets and
asterisks indicate pairwise p-values ≤ 0.05 using Dunn’s multiple comparisons test followed by
Benjamini–Hochberg adjustment.



Pharmaceuticals 2021, 14, 1113 11 of 18

3. Discussion

AON-mediated exon skipping has been in the forefront of DMD therapeutic research
for the past 20 years. Two chemically modified oligonucleotide designs, a PMO and a
2′OMe/PS AON, have entered clinical trials, with the former receiving provisional FDA
approval based on minor increases in rescued dystrophin expression. By contrast, the
2′OMe/PS AON was associated with adverse systemic and injection-site reactions and
was therefore withdrawn from consideration. Attempting to limit the toxicity associated
with the PS modification, Le et al. designed a series of truncated 2′OMe/PS AONs, relying
on the introduction of LNA nucleotide monomers to retain a high RNA binding affinity.
Indeed, the introduction of four LNAs in a 14mer 2′OMe/PS AON, showing no exon
skipping activity, significantly improved the yield of exon 23-skipped RNA in H2K mdx
mouse myotubes [44]. To further evaluate the optimal length and percentage chemistry
composition of LNA/2′OMe chimeras for DMD therapy, we created a series of 15mer and
20mer AONs, with variable LNA compositions (20–40%), and compared their efficiencies
in inducing exon 23 skipping and rescued protein expression in locally injected muscles of
mdx mice.

When optimising novel oligonucleotide designs for clinical therapy, the sensitivity of
the various methodologies is crucial for determining subtle differences in the efficiency
of the tested AONs. In the present study, AON efficacy was assessed at RNA level by
densitometric analysis of PCR products and at protein level by semi-quantitative im-
munofluorescent analysis, quantitative MS analysis and quantitative chemiluminescent
WB. While comparing the data obtained by the various methodologies, we observed that
efficiency differences among LNA/2′OMe chimeras with variable LNA compositions were
significantly more prominent for exon skipping percentages analysed by RT-PCR and
rescued protein levels determined by WB. Considering that dystrophin gene expression
is rather low in healthy tissues, accurate quantification of low exon-skipping samples
would be particularly challenging. The highest exon skipping percentage reported in this
study was 10%, for 20mer LNA-6 (30% LNAs), and the lowest was 0.4%, for 15mer AONs
s2′OMe and sLNA-3 (20% LNAs). In a comparative study of different methodologies to
quantify exon skipping percentages in AON-treated mdx muscle tissues, samples with
exon skipping percentages between 4 and 10%, as determined by an absolute quantification
method, showed a 30–50% value variation following densitometric analysis of ethidium
bromide-stained PCR products [48]. Notably, this was not observed for samples with
reference exon skipping values between 28 and 30%. Therefore, while relatively accurate,
densitometric analysis of PCR products could lead to an under- or over-estimation of the
real values in samples with low exon skipping percentages.

While LNA-6 (20mer with 30% LNAs) and sLNA-5 (15mer with 30% LNAs) AONs
showed similar levels of rescued dystrophin expression by MS analysis, WB quantification
of dystrophin levels revealed a 2.8-fold decrease in the efficiency of the sLNA-5 AON
compared to its longer analogue. WB followed by chemiluminescent detection has served
as a golden standard for dystrophin quantification in both clinical and pre-clinical studies;
yet, the robustness of this method is limited by poor transfer qualities, saturation issues
and poor reproducibility. During an assessment of dystrophin levels in patients treated
with eteplirsen, researchers identified an average coefficient of variation of 16% while
performing sample duplicates in separate gels [49]. This highlights the importance of
performing at least two technical replicates per biological replicate, something that was
not carried out in the present study. Furthermore, while MS shows higher reproducibility
compared to WB, it has been reported to demonstrate low resolution for dystrophin values
under 5% of WT (dystrophin values obtained by MS analysis in the present study were
between 0.5 and 4.5%) [49]. Considering all of the aforementioned limitations, and based
on the results of the present study, we recommend that dystrophin restoration should
always be quantified using all three methodologies, to allow for a more robust correlation
between RNA and protein expression profiles and thus a more accurate comparison of
AON efficiencies during pre-clinical assessment.
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Collectively, the data obtained demonstrate that 15mer and 20mer LNA/2′OMe AONs
consisting of 30% LNAs, evenly distributed at every third or fourth position, are signifi-
cantly more potent in inducing exon 23 skipping and restoring dystrophin expression in lo-
cally injected mdx muscles, compared to a previously tested 2′OMe AON and LNA/2′OMe
chimeras with lower or higher LNA compositions. In agreement with current findings,
recently published work from our laboratory has shown that 14–18mer LNA/2′OMe AONs
with a 33% LNA composition and a full PS backbone, targeting the expanded CTG-repeat
mutation that causes DM1, were more efficient in correcting DM1 molecular defects in vitro
compared to an 18mer LNA/2′OMe AON containing half the number of LNA nucleotides
and LNA/DNA mixmers of similar or higher percentage LNA composition [45]. More
importantly, systemic delivery of the 14mer and 18mer LNA/2′OMe chimeras in DM1 mice
resulted in relatively high levels of AON accumulation in skeletal muscles, diaphragm and
heart tissue, with no profound histological toxicity.

Efficient delivery of AONs to the cardiac tissue is of great therapeutic relevance, as
almost all DMD patients will manifest signs of cardiomyopathy by the age of 18. Con-
sequently, failure of dystrophin restoration in cardiac tissue, in the presence of rescued
protein expression in skeletal muscles, may exacerbate any subclinical heart failure due
to increased voluntary muscle activity [50,51]. Delivery to the heart and skeletal muscle
tissues has been improved by conjugating positively charged arginine-rich peptides to
charge neutral PMOs [52–54]. Therefore, future systemic evaluation of our LNA/2′OMe
chimeras may be further exploited using a combination of muscle-homing, hydrophobic
ligands that would potentially enhance AON accumulation and efficacy in all target tissues.
While intramuscular delivery may be sufficient to screen a larger number of AON designs
with different chemical compositions, it has limited capacity in providing solid evidence
on the therapeutic efficacy of an antisense sequence. Systemic delivery of our two most
potent AONs, LNA-6 and sLNA-5, is further warranted to evaluate the benefit-toxicity
profile of the respective LNA/2′OMe sequences for DMD therapy.

4. Materials and Methods
4.1. Antisense Oligonucleotides

All AONs used in the study, listed in Table 1, were designed and produced by the
laboratory of Professor Jesper Wengel. We have chosen the most efficient 2′OMe/PS AON
sequence from previous studies, which targets the donor splice site of exon 23 in the mouse
dystrophin pre-mRNA [46,47]. For simplicity of nomenclature, the AON was named 2′OMe.
A varying number of LNA nucleotides was introduced throughout the 20mer 2′OMe
sequence to generate chimeric LNA/2′OMe AONs with LNA percentage incorporations
of 20, 30 and 40%. These were named LNA-4, LNA-6 and LNA-8, respectively, to refer to
the number of LNA nucleotides introduced in the sequence. Truncated, 15mer analogues
of the 2′OMe and LNA/2′OMe oligonucleotides were also generated, distinguished by
the letter ‘s’ at the beginning of the AON name. All AONs were kept on a fully modified
PS backbone. An 18mer CAG-repeat LNA/2′OMe AON with a full PS backbone and an
LNA incorporation of 33% was also included in the study to serve as a control scrambled
sequence.

4.2. Animal Experiments

Dmd mdx mutant mice (also known as mdx), carrying a spontaneous nonsense
mutation (C to T transition) in exon 23 of the mouse dystrophin gene, where purchased from
Jackson Laboratories. Animal studies were carried out at the Transgenic Mouse Facility
of the Cyprus Institute of Neurology & Genetics, following evaluation by the “National
Committee for the Protection of Animals Used for Scientific Purposes” and approval by
the Cyprus Veterinary Services (project license approval number: CY/EXP/PR.L2/2014).
The AONs were delivered into the TA muscle of 8-week-old mdx mice, under general
anaesthesia. For the injections, 4.35 nmoles of each AON, calculated based on the molecular
weight, were diluted in 30 µL total volume of saline. The contralateral TA was injected
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with 30 µL of saline only. Two weeks after the injection, the mice were sacrificed by cervical
dislocation, the muscles were isolated and snap-frozen in liquid nitrogen-cooled isopentane,
and stored at −80 ◦C for further experimentation. Aged-matched C57BL10 mice (wild
type, WT) that lack the DMD mutation were used as a control.

Table 1. Oligonucleotide nomenclature, sequence and chemistries.

AON ID Sequence (5′ → 3′) and Modifications Length % LNA

2′OMe mG* mG* mC* mC* mA* mA* mA* mC* mC* mU* mC* mG* mG* mC* mU* mU* mA* mC* mC* mU 20mer 0
LNA-4 mG* G* mC* mC* mA* mA* A* mC* mC* mU* mC* G* mG* mC* mU* mU* A* mC* mC* mU 20mer 20
LNA-6 mG* G* mC* mC* A* mA* mA* C* mC* mU* mC* G* mG* mC* mU* T* mA* mC* C* mU 20mer 30
LNA-8 mG* G* mC* mC* A* mA* A* mC* C* mU* mC* G* mG* C* mU* T* mA* mC* C* mU 20mer 40
s2′OMe mA* mA* mC* mC* mU* mC* mG* mG* mC* mU* mU* mA* mC* mC* mU 15mer 0
sLNA-3 mA* mA* mC* C* mU* mC* mG* G* mC* mU* mU* A* mC* mC* mU 15mer 20
sLNA-5 mA* A* mC* mC* T* mC* mG* G* mC* mU* T* mA* mC* C* mU 15mer 33
sLNA-6 A* mA* mC* C* mU* C* mG* mG* C* mU* T* mA* mC* C* mU 15mer 40

CAG-scrambled C* mA* mG* C* mA* mG* C* mA* mG* C* mA* mG* C* mA* mG* C* mA* mG 18mer 33

bold = LNA, m = 2′OMe, * = PS linkages

4.3. RNA Extraction and RT-PCR

Frozen tissues were cryosectioned in the transverse plane at 5 µm thickness and
100 µm intervals. Intervening muscle sections were collected for immunofluorescence,
Western blot and targeted mass spectrometry analysis. Sections were homogenized in
TRIzol reagent using a Precellys tissue homogenizer and total RNA was then extracted
according to the manufacturer’s instructions. RT-PCR was carried out using 300 ng of
total RNA in a 50 µL reaction, using the One-step RT-PCR kit (Qiagen, Hilden, Ger-
many) and external primers Ex20F (5′-CAGAATTCTGCCAATTGCTGAG-3′) and Ex26R
(5′-TTCTTCAGC TTGTGTCATCC-3′). The cycling conditions were 95 ◦C for 1 min, 55 ◦C
for 1 min and 72 ◦C for 2 min for 30 cycles. PCR products were examined by electrophore-
sis on a 2% agarose gel and densitometric analysis was carried out using Image J. The
percentage of exon skipping was calculated as the percentage of transcripts in which
exon 23 is skipped relative to the sum of non-skipped and exon 23-skipped dystrophin
transcripts. The RT-PCR experimental procedure was implemented according to Spitali
et al., 2010: “Accurate quantification of dystrophin mRNA and exon skipping levels in
Duchenne muscular dystrophy” [48]. To detect exon skipping in AON-transfected primary
mdx myoblasts (see section below), total RNA was extracted by TRIzol reagent and 300 ng
were subjected to RT-PCR analysis using 27 cycles of amplification instead of 30.

4.4. Isolation of Primary Mdx Myoblasts and Transfection

The protocol for isolating satellite cells from single muscle fibres was adapted from
Rosenblatt and colleagues [55]. In brief, extensor digitorum longus (EDL) muscles were
isolated from 8-week-old mdx mice and incubated in 0.2% type I collagenase (Sigma-
Aldrich, St. Louis, MS, USA) in Dulbecco’s Modified Eagle Medium (DMEM, high glucose,
pyruvate, no glutamine; Thermo Fisher Scientific, Waltham, MA, USA), supplemented
with 1× penicillin-streptomycin (PS; Thermo Fisher Scientific) and 1× glutamax solution
(Thermo Fisher Scientific), at 37 ◦C for 1 h. Following digestion, single muscle fibres were
liberated by repeatedly triturating the EDL muscle using a wide-mouth glass pipette. Viable
single muscle fibres were carefully transferred to a new culture dish, in three rounds of
washing, in order to discard hypercontracted fibres and tissue debris. Finally, viable muscle
fibres were transferred to a new culture dish coated with 1 mg/mL Matrigel (Corning) in
DMEM (1× PS/1× glutamax) and incubated in ‘plating medium’ (DMEM supplemented
with 1× PS, 1× glutamax, 10% horse serum (HS; Thermo Fisher Scientific), 0.5% chick
embryo extract (CEE; MP Biomedicals)) at 37 ◦C for 3 days, to allow myogenic satellite cells
to dissociate from their fibre. Three days after plating, the muscle fibres were removed from
the dish and the ‘plating medium’ was replaced with ‘proliferation medium’ consisting of
20% fetal bovine serum (FBS; Thermo Fisher Scientific), 10% HS, 1% CEE and 2.5 ng/mL
recombinant murine fibroblast growth factor-basic (FGF-b; PeproTech, London, UK) in
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DMEM (1× PS/1× glutamax). Myogenic cells were allowed to grow in 5% CO2 and 37 ◦C
for 2–3 days, before plating for transfection. For the dose–response study, primary mdx
myoblasts were seeded in 12-well plates, at 60% confluency, and transfected with increasing
concentrations of AON LNA-6 (10, 30, 50 and 300 nM), complexed with Lipofectamine 3000
reagent in Opti-MEM Reduced Serum Medium. Exon skipping efficiency was measured
24 h post transfection by RT-PCR for exon 23 skipping. Gel bands were measured using
Image J and half-maximal effective concentration (EC50) was calculated using the sigmoid
Emax dose–response model in the DoseFinding R package (Date: 5 July 2019).

4.5. Immunofluorescence

Transverse cryosections of 7 µm thickness were examined for dystrophin expression
using a rabbit polyclonal anti-dystrophin antibody (1:400 dilution, RB-9024-P Thermo Sci-
entific), which was detected using the Alexa Fluor 594 goat anti-rabbit antibody (molecular
probes ref 37117). Dystrophin-labelled sections were imaged at low magnification (5×) and
composite images of the entire transverse section were constructed from overlapping im-
ages. The number of dystrophin positive fibres in the entire muscle cross section was then
counted using the cell count function in Image J (3 sections per TA muscle were counted).
The percentage of dystrophin positive fibres for each AON was calculated relative to the
average number of dystrophin positive fibres in WT control sections.

4.6. Sample Preparation for Mass Spectrometry

Intervening cryosections from WT control and AON-treated mdx muscle tissues were
lysed in protein homogenization buffer (refer to Section 4.8) and aliquots of total protein
extract were further processed using a modified filtered-aided sample preparation (FASP)
protocol [56]. Briefly, 100 ng of protein was transferred to a centrifugal filter (Pall Nanosep,
30 kDa MWCO), washed with urea buffer, then reduced with 100 µL DTT (8 mM in 50 mM
ammonium bicarbonate) for 15 min at 60 ◦C and alkylated with 100 µL iodoacetamide
(50 mM in 50 mM ammonium bicarbonate) for 20 min in the dark, at room temperature.
Finally, the samples were washed with 100 µL of 50 mM ammonium bicarbonate (×3) and
digested with 2 µg trypsin (proteomics grade, Roche Diagnostics GmbH, Mannheim, Ger-
many) at 37 ◦C for 18 h. Peptides were collected by centrifugation for 10 min at 11,000× g,
acidified with TFA to a final concentration of 0.2% and desalted using reverse phase solid
phase extraction cartridges (Sep-Pak C18, Waters, UK). Eluates were lyophilized using a
centrifugal vacuum concentrator. Peptide pellets were re-dissolved in 1% acetonitrile, 0.1%
formic acid to yield an approximate concentration of 250 ng/µL (determined by NanoDrop
measurement at 280 nm).

4.7. Mass Spectrometry Analysis

Custom dystrophin peptides LLAEELPLR and IFLTEQPLEGLEK were purchased
from GenScript Biotech (The Netherlands). Peptides were suspended in 1% LC-MS grade
acetonitrile containing 0.1% formic acid, pooled together and further diluted to a final
concentration of 10 fmol/µL. To determine the retention time of each peptide, 5 µL of
the peptide mix were loaded onto a C18 column (Acquity UPLC M-Class Peptide CSH,
75 µm × 250 mm, 1.7 µm) and separated at a flow rate of 300 nL/min using a nanoAcquity
UPLC system (Waters, UK). The mobile phases consisted of 0.1% formic acid in water
(mobile phase A) and 0.1% in acetonitrile (mobile phase B). Peptides eluted with a linear gra-
dient from 5% B to 31% B over 57 min (elution profile is shown in Supplementary Table S1).
An HD-MRM (High-Definition Multiple Reaction Monitoring) MS assay, which is based on
ion mobility mass spectrometry technique, was developed. The method employs additional
separation of peptide fragments based on their collisional cross section (CCS), followed by
high resolution MS detection and is implemented on an ion mobility-enabled quadrupole
time-of-flight hybrid mass spectrometer [57]. The targeted MS assay was implemented on
a Synapt G2Si HDMS instrument equipped with the NanoLockSpray source and operated
on the HD-MRM acquisition mode. Fragmentation was performed on the Trap T-Wave
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collision cell and fragment ions were monitored using the Wideband Enhancement mode.
For each peptide, the three highest intensity transitions were monitored. In particular, the
transition 758.9165 > 785.4403, 758.9165 > 1143.5892 and 758.9165 > 1256.6733 as well as the
527.3188 > 827.4621, 527.3188 > 756.4250 and 527.3188 > 940.5462, were used to monitor
the IFLTEQPLEGLEK and the LLAEELPLR peptides, respectively. Optimized instrument
parameters are shown in the Supplementary Table S2. Data analysis and interpretation
were performed using Skyline [58].

4.8. Western Blot

Intervening cryosections from untreated and AON-treated mdx TA muscles were
collected in Precellys CK14 tubes and lysed in 120 µL of homogenization buffer containing
1.25 mM Tris-HCl pH 6.8, 10% Glycerol, 4% SDS, 4 M Urea, 10% b-mercaptoethanol and
200 µL protease inhibitor (25x). Protein extracts were then denatured at 95 ◦C for 5 min and
centrifuged to collect the supernatant. A sample of the supernatant mixture was acetone-
treated and used to determine protein concentration using the Bradford assay (Biorad). In
total, 100 µg of protein extract from treated and untreated TA muscles were loaded on 6%
SDS-PAGE gels. The samples were electrophoresed for 3.5 h at 80 V and blotted to a PVDF
membrane at 30 V overnight at 4 ◦C. The membrane was probed overnight at 4 ◦C with
1:500 dilution of rabbit anti-dystrophin antibody (Thermo fisher 9024-P1) in 5% skimmed
milk. The bound antibody was detected by incubation with a horseradish peroxidise
conjugated goat anti-rabbit antibody (1:5000 dilution, Jackson laboratories) in 5% milk
in PBS-T and the Lumi Sensor chemiluminescent HRP Substrate kit (L00221V300). The
membranes were also probed overnight at 4 ◦C with rabbit anti-vinculin (1:1000 dilution,
Abcam ab73412) in 5% skimmed milk, which served as a loading control. Band intensities
were analysed using Image J and dystrophin values were normalised with respect to
vinculin.

To construct a standard curve for WT dystrophin, aliquots of a pooled (4 TA muscles)
WT protein extract (2.5, 5, 10 and 20 µg) were spiked into aliquots of a pooled mdx extract
(97.5, 95, 90 and 80 µg, respectively) to maintain an equal loading of protein (100 µg).
Protein homogenization, sample preparation and Western blotting were carried out as
described above. Dystrophin band signals were normalized to the intensity of the respective
vinculin signal and data were analysed by linear regression. The identified equation of
the linear regression line was used to calculate the amount of restored dystrophin in
AON-treated mdx samples.

4.9. Statistical Analysis

All data are expressed as mean ± standard deviation (SD). Statistical significance
was determined using Kruskal–Wallis one-way analysis of variance followed by Dunn’s
(1964) pairwise test for multiple comparisons. p-values were adjusted using the Benjamini–
Hochberg (false discovery rate) method.

5. Conclusions

In vivo screening of different LNA/2′OMe antisense designs for targeted exon 23 skip-
ping in mdx TA muscles revealed that AONs consisting of 30% LNAs are more potent in
inducing exon 23 skipping and restoring dystrophin protein expression, compared to a
2′OMe-modified AON and LNA/2′OMe chimeras with lower (20%) or higher (40%) LNA
compositions. Our data further demonstrate the importance of using parallel techniques
(i.e., immunohistochemistry, mass spectrometry and Western blotting) for the quantifi-
cation of dystrophin protein restoration, to allow for a more robust correlation between
RNA and protein expression profiles and a more accurate comparison of AON efficiencies
during pre-clinical assessment. Systemic evaluation is now warranted to prove the thera-
peutic potential of our most potent LNA/2′OMe design, comprising of 30% LNAs, evenly
distributed at every third of fourth position of the AON sequence.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14111113/s1, Figure S1: Representative HD-MRM chromatograms of selected transitions,
Table S1: UPLC Elution profile and LC parameters, Table S2: HD-MRM transitions and MS parameters
for dystrophin peptides.
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