Treating tuberculosis: New InhA inhibitors based on expanded triclosan and *di*-triclosan analogues Supplementary Information

Author information:

Sarentha Chetty¹, Tom Armstrong¹, Shalu Sharma Kharkwal¹, William C. Drewe¹,

Cristina de Matteis², Dimitris Evangelopoulos,³ Sanjib Bhakta,³

Neil R. Thomas^{1*}

¹Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park,

Nottingham NG7 2RD, UK

²School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK

³Department of Biological Sciences, Birkbeck, University of London, London, WC1E 7HX, UK

Contents

Docking of designed ligands	2
Interaction with the active site residues	5
Synthesis	
2-trans-Octenyl CoA	10
Experimental Section	
NMR Data	
References	75

Docking of designed ligands

A list of the docking results for all compounds including intermediates (Figure S1) is found in table S1.

Figure S1 Compounds tested.

GOLD CONFIGURATION FILE AUTOMATIC SETTINGS autoscale = 1POPULATION popsiz = autoselect pressure = auto n islands = auto maxops = autoniche siz = auto GENETIC OPERATORS pt crosswt = auto allele mutatewt = auto migratewt = autoFLOOD FILL radius = 10origin = 43.8601 51.7939 -82.835 do cavity = 1 $floodfill_atom_no = 0$ cavity file = /users/sarentha/2H7IcorA/cavity.atoms floodfill center = point DATA FILES ligand data file /users/sarentha/molecules-designed2/cmpd1.mol2 10 ligand data file /users/sarentha/molecules-designed2/cmpd2.mol2 10 ligand data file /users/sarentha/molecules-designed2/compound 5.mol2 10 ligand data file /users/sarentha/SN2 analogues/SN2 M1.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M2.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M3.mol2 10 ligand data file /users/sarentha/SN2 analogues/SN2 M4.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M5.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M6.mol2 10 ligand data file /users/sarentha/SN2 analogues/SN2 M7.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M8.mol2 10 ligand_data_file /users/sarentha/SN2_analogues/SN2_M9.mol2 10 ligand data file /users/sarentha/SN2 analogues/SN2 M10.mol2 10 ligand_data_file /users/sarentha/Methylated_cmpds/me001.mol2 10 ligand_data_file /users/sarentha/Methylated_cmpds/me002.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me003.mol2 10 ligand_data_file /users/sarentha/Methylated_cmpds/me004.mol2 10 ligand_data_file /users/sarentha/Methylated_cmpds/me005.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me006.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me007.mol2 10 ligand_data_file /users/sarentha/Methylated_cmpds/me008.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me009.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me010.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me012.mol2 10 ligand data file /users/sarentha/Methylated cmpds/me013.mol2 10 ligand data file /users/sarentha/Non methyl alt mols/NMA001.mol2 10 ligand data file /users/sarentha/Non methyl alt mols/NMA002.mol2 10 ligand data file /users/sarentha/Non methyl alt mols/NMA003.mol2 10 param file = DEFAULT set_ligand_atom_types = 1 set_protein_atom_types = 0 directory = /users/sarentha/Final Goldruns tordist file = DEFAULT make subdirs = 1save lone pairs = 1fit_points_file = fit_pts.mol2 read fitpts = 0FLAGS internal_ligand_h_bonds = 0 $flip_free_corners = 0$ match ring templates = 0 $flip_amide_bonds = 0$ flip_planar_n = 1 flip_ring_NRR flip_ring_NHR

 $flip_pyramidal_n = 0$ rotate_carboxylic_oh = flip use_tordist = 1postprocess_bonds = 1 rotatable_bond_override_file = DEFAULT $solvate_all = 1$ TERMINATION $early_termination = 1$ n_{top} solutions = 3 rms_tolerance = 1.5 CONSTRAINTS force_constraints = 0 COVALENT BONDING covalent = 0SAVE OPTIONS save_score_in_file = 1 save_protein_torsions = 1 FITNESS FUNCTION SETTINGS initial_virtual_pt_match_max = 3 relative_ligand_energy = 1 gold_fitfunc_path = consensus_score start_vdw_linear_cutoff = 6 score_param_file = DEFAULT docking_fitfunc_path = goldscore
docking_param_file = DEFAULT rescore_fitfunc_path = chemscore rescore_param_file = DEFAULT RUN TYPE run_flag = CONSENSUS PROTEIN DATA protein_datafile = /users/sarentha/2H7IcorA/____protein.mol2

Mol	Fitness	S(hb_ext)	S(vdw_ext)	S(hb_int)	S(int)
31	90.79	0.85	70.20	0.00	-7.97
38	86.50	0.27	65.31	0.00	-3.57
23	76.22	0.83	56.00	0.00	-1.61
22	75.80	2.74	56.47	0.00	-4.59
20	75.59	3.18	55.00	0.00	-3.21
39	72.92	0.77	58.14	0.00	-7.79
24	72.63	4.72	52.89	0.00	-4.81
21	71.55	4.07	51.52	0.00	-3.36
43	68.54	1.21	52.99	0.00	-5.53
44	62.44	1.59	47.91	0.00	-5.03
8	60.28	2.18	43.18	0.00	-1.28
40	59.03	0.00	40.14	0.00	59.03
3	58.66	0.00	44.99	0.00	-3.20
1	57.22	0.00	44.89	0.00	-2.59
12	55.62	0.00	43.42	0.00	-3.09
2	53.86	0.04	40.62	0.00	-2.04

Table S1 Fitness scores and rank list (high to low) for designed compounds and intermediates

Interaction with the active site residues

For the benzylphenyl ether/aniline target molecules, all the compounds displayed the correct orientation within the active site with the exception of **2** which had an inverted orientation. Compound **2** made an H-bond, in this case the lone pairs on the oxygen act as a HBA (Figure S2). This compound had an inverse orientation to what was expected.

Please note that the docked structures below include the lone-pairs on the hetero atoms of ligands.

Figure S2 Interactions with the active site with benzylphenyl derivative 2.

The active site residues (blue), NAD⁺ (magenta) and ligand (Atoms, C-green, O-red, H-white). Hydrogen bonds (orange).

Compound **8** had the best docking and inhibition data from the benzyl phenyl ether and benzyl phenyl aniline analogue series. It displayed 63 % inhibition in the isolated enzyme assay. Inspection of the docked structures, revealed that compound **8** (Figure 5) had an orientation similar to TCS, with a hydrogen bond occurring between the amine linker and the 2'-OH of the cofactor, where the amine acts as an H-bond donor. Beside H-bond interactions, a π -stacking interaction with NAD⁺ and a van der Waals interaction with Phe149 (cation- π interaction) was also observed.

Figure S3. A view of the docking of **8** into the InhA active site. The active site residues (blue), NAD⁺ (magenta) and ligand (green).

Mol	Fitness	Tyr158 ^a	Phe149 ^o	NAD ^{+a}	NAD ^{+c}	Additional
	score					interactions
12	55.21	Ν	Y	Y	Y	Ν
1	57.22	Ν	Y	Ν	Y	Ν
2 ^e	53.86	Ν	Y	Y	Ν	Ν
3	58.66	Ν	Y	Ν	Y	Leu218 ^d
8	60.28	Ν	Y	Y	Y	Ν

Table S2 Summary of the interactions of the benzylphenyl analogues with the InhA active site.

^{*a*} Hydrogen bond, ^{*b*} van der Waals interaction, ^{*c*} л-interaction, ^{*d*} hydrophobic interactions,

^e Inverted orientation

Overall similar fitness scores were displayed for the triazole linked series of compounds. The compound that had the best docking results was **23** (Figure S3).

Figure S4 Docking of 23 into the InhA active site. The active site residues (blue), NAD⁺ (magenta) and ligand.

Mol	Fitness	Tyr158 ^a	Phe149 ^b	NAD ^a	NAD ^c	Additional
	score					interactions
20	75.59	Ν	Y	Ν	Y	Leu218 ^d
21	71.55	N	Y	Ν	Y	Leu218 ^d
22	75.80	Ν	Y	Ν	Y	Leu218 ^{d}
23	76.22	Ν	Y	Ν	Y	Leu 218 ^d
24	72.63	Ν	Y	Y	Y	Leu 218 ^d

A summary of the docking results is shown in Table S3.

Table S3 Summary of the interactions of the triazole linked analogues with the InhA active site.

^{*a*} Hydrogen bond, ^{*b*} van der Waals interaction, ^{*c*} л-interaction, ^{*d*} hydrophobic interactions.

Overall similar fitness scores were displayed for the bi-triclosan series of compounds. Compound

31 had the best fitness score (Figure S4).

Figure S5. A view of the docking of **31** into the InhA active site. The active site residues (blue), NAD⁺ (magenta) and ligand (green).

A summary of the docking results is shown in Table S4

Fitness	Tyr158 ^a	Phe149 ^b	NAD ^a	NAD ^c	Additional
score					interactions
90.79	Ν	Y	Ν	Y	Phe91 ^{<i>b</i>} , Leu218 ^{<i>d</i>} ,
					Glu219 ^{<i>d</i>} , Pro196 ^{<i>b</i>} ,
86.50	N	Y	Y	Y	Leu218 ^{<i>d</i>} , Ile215 ^{<i>d</i>}
72.92	Ν	Y	Ν	Y	Phe91 ^{<i>b</i>}
	Fitness score 90.79 86.50 72.92	Fitness Tyr158 ^a score	Fitness Tyr158 ^a Phe149 ^b score 90.79 N Y 86.50 N Y 72.92 N Y	Fitness Tyr158 ^a Phe149 ^b NAD ^a score - <	FitnessTyr158aPhe149bNADaNADascore </th

Table S4 Summary of the interactions of the di-triclosan analogues with the InhA active site.

^a Hydrogen bond, ^b van der Waals interaction, ^c л-interaction, ^d hydrophobic interactions

Synthesis 2-*trans*-Octenyl CoA

The substrate octenyl CoA (Scheme S1) was synthesized using a one pot synthesis using the peptide coupling agent PyBOP. This substrate was used in the isolated enzyme assays.

Scheme S1 Synthesis of Octenyl CoA

a) K₂CO₃, H₂O, CoA, THF, PyBOP, rt, 5hr, 38 %

Experimental Section

4-Chloro-2-methoxy-1-[(4-methoxybenzyl)oxy]benzene (1)

Following general procedure A (1), compound **1** was synthesised from 4-chloro-2-methoxybenzyl alcohol (1.00 g, 6.31 mmol) and *p*-methoxybenzyl chloride (2.96 g, 18.92 mmol). The cream crude product was purified by flash column chromatography EtOAc/Petrol (1:19 v/v), followed by further purification by precipitation using general method E, to give white crystals (0.52 g, 29 %); M.p. 92-94°C; IR (CHCl₃): $V_{max} = 1250$, 1515, 1249 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (2 H, d, J = 8.7 Hz, H-Ar), 6.89 (2 H, d, J = 8.7 Hz, H-AR), 6.86 (1 H, d, J = 1.8 Hz, H-Ar), 6.81 (2 H, m, H-Ar), 5.04 (2 H, s, CH₂), 3.86, 3.81 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.5$ (C–Ar), 150.4 (C-Ar), 146.9 (C-Ar), 129.1 (C-Ar), 128.1 (C-Ar), 126.2 (C-Ar), 120.3 (C-Ar), 115.1 (C-Ar), 113.98 (C-Ar), 112.5 (C-Ar), 71.2 (CH₂), 56.1, 55.3 (2 x CH₃), HRMS

(ESI) required for C₁₅H₁₅³⁵ClO₃⁺ ([MNa]⁺) m/z = 301.0607 found 301.0613; C₁₅H₁₅ClO₃, requires C, 64.64; H, 5.42 % found C, 64.39; H,5.39 %.

4-Fluoro-2-methoxy-1-[(4-methoxybenzyl)oxy]benzene (2)

Following general procedure A, (1) compound **2** was synthesized from 4-fluoro-2-methoxyphenol (0.30 g, 2.11 mmol) and *p*-methoxybenzylchloride (0.99 g, 6.34 mmol). Purification was achieved by flash column chromatography EtOAC/Petrol (1:19 v/v), followed by further purification by precipitation using general method E, to give white crystals (0.26 g, 47 %); M.p. 84-85 °C; IR (CHCl₃): $V_{max} = 3007$, 1514, 1034 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (2 H, d, J = 8.7 Hz, H-Ar), 6.89 (2 H, d, J = 8.7 Hz, H-Ar), 6.80 (1 H, dd, J = 8.6 Hz, 6.4 Hz, H-Ar), 6.64 (1 H, dd, J = 6.4 Hz, 3.0 Hz), 6.52 (1 H, ddd, J = 8.6 Hz, 3.0 Hz, 1Hz), 5.01 (2 H, s, CH₂), 3.85, 3.81 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.2$ (C-Ar), 157.8 (d, J = 239.3 Hz, C-Ar), 150.8 (d, J = 9.9 Hz, C-Ar), 144.3 (C-Ar), 144.3 (d, J = 2.9 Hz, C-Ar), 129.2, 129.1, 115.3 (d, J = 22.5 Hz, C-Ar), 113.9 (C-Ar), 100.4 (d, J = 27.3 Hz, C-Ar), 71.8 (CH₂), 56.05, 55.29 (2 x CH₃); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = 120.1$ (m, 1 F); HRMS (ESI) required for C₁₅H₁₅FO₃⁺ ([M+Na]⁺) m/z = 285.0903, found 285.0897; C₁₅H₁₅FO₃ requires C, 68.69; H, 5.76 % found C, 68.52; H, 5.75 %.

4-Bromo-2-methoxy-1-[(4-methoxybenzyl)oxy]benzene (3)

Following general procedure A, (1) compound **3** was synthesized from 4-bromo-2-methoxyphenol (0.30 g, 1.50 mmol) and *p*-methoxybenzylalcohol (0.69 g, 4.50 mmol). Purification was done by flash column chromatography EtOAc/Petrol (1:19 v/v), followed by further purification by precipitation using general method E to give white crystals (0.11 g, 23 %); M.p. 110-112 °C; IR

(CHCl₃): $V_{max} = 3008$, 1615, 1586, 1248 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (2 H, d, J = 8.6 Hz), 6.99 (1 H, d, J = 2.5 Hz, H-Ar), 6.96 (1 H, dd, J = 8.5 Hz, 2.5 Hz, H-Ar), 6.89 (2 H, d, J = 8.6 Hz, H-Ar), 6.74 (1 H, d, J = 8.5 Hz, H-Ar), 5.04 (2 H, s, CH₂), 3.86, 3.81 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.5$ (C-Ar), 150.6 (C-Ar), 147.4 (C-Ar), 129,1 (C-Ar), 128.8 (C-Ar), 123.3 (C-Ar), 115.6 (C-Ar), 115.3 (C-Ar), 113.9 (C-Ar), 113.3 (C-Ar), 71.1 (CH₂), 56.1, 55.3 (CH₃); HRMS (ESI) required for C₁₅H₁₅⁷⁹BrO₃⁺ ([MNa]⁺) m/z = 345.0102, found 345.0103.

tert-Butyl(4-chloro-2-hydroxyphenyl)carbamate (5)

A literature procedure (2) was modified to synthesise compound **5**. To a suspension of 2-amino-5-chlorophenol (1.50 g, 10.50 mmol) in dioxane (30 mL), Boc anhydride (2.41 g, 11.00 mmol) was added. The solution was cooled to 0 °C, followed by the dropwise addition of a solution of NaHCO₃ (3.5 g, 41.7 mmol) in H₂O (30 mL). The brown solution was allowed to warm to room temperature and stirred overnight. Water (30 mL) was added and the solution was extracted with DCM (3 x 30 mL). The combined organic layers were washed with 1M HCl_(aq) (100 mL), brine (100 mL), and dried over MgSO₄, before the solvent was removed *in vacuo*. The dark orange crude product was purified by flash column chromatography with EtOAc/Petrol (1:19-1:9 v/v) to give a pale orange solid (1.44 g, 56 %); M.p. 136-138 °C; IR (CHCl₃): V_{max} = 3630, 1691, 1515, 1157 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (1 H, s, NH), 6.96 (2 H, m, H- Ar H-Ar), 6.82 (1 H, dd, 8.4 Hz, 2.3 Hz, H- Ar), 6.59 (1 H, s, OH), 1.53 (9 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 155.0 (C-Ar), 148.4 (C-Ar), 130.52 (C-Ar), 124.3 (C-Ar), 122.13 (C-Ar), 120.67 (C-Ar), 119.23 (C-Ar), 82.59, 28.19 (CH₃); HRMS (ESI) required for C₁₁H₁₄³⁵ClNO₄⁺ ([MNa]⁺) m/z =266.0560, found 266.0547.

tert-Butyl (4-chloro-2-methoxyphenyl)carbamate (6)

A literature procedure (3, 4) was modified to synthesise compound **6**. Under a nitrogen atmosphere K₂CO₃ (4.08 g, 29.60 mol) and iodomethane (7.37 g, 51.10 mmol) were added to a solution of the Boc protected aniline **5** (1.44 g, 5.90 mmol) in anhydrous acetone (25 mL). The suspension was heated to reflux for 6.5 h then allowed to cool to room temperature, followed by the addition of saturated NH₄Cl_(aq) (20 mL). The solvent was removed by evaporation and the mixture was extracted with EtOAc (2 x 20 mL). The combined organic layers were washed with water (100 mL) and dried over MgSO₄, and the solvent was removed *in vacuo*. Purification of a portion of the crude (100 mg) by flash column chromatography EtOAc/Petrol (1:9 v/v) gave a yellow oil (0.88 g, 82 %); IR (CHCl₃): V_{max} = 3432, 3010, 1722, 1517, 1247, 1156 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.01 (1 H, d, *J* = 8.5 Hz, H-Ar), 6.99 (1 H, s, NH), 6.91 (1 H, dd, *J* = 8.5 Hz, 2.2 Hz, H-Ar), 6.82 (1 H, d, *J* = 2.2 Hz, H-Ar), 3.858 (3H, s, CH₃), 1.517 (9 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 152.6 (C=O), 147.9 (C-Ar), 127.1 (C-Ar), 126.8 (C-Ar), 120.8 (C-Ar), 118.7 (C-Ar), 110.7 (C-Ar), 80.60 (C-8), 55.89 (C-10), 28.34 (CH₃); HRMS (ESI) required for C₁₂H₁₆³⁵ClNO₃⁺ ([MNa]⁺) *m/z* =280.0716, found 280.0703.

4-Chloro-2-methoxyaniline (7)

A literature procedure(5, 6) was modified to synthesise compound **7**. To a solution of **6** (1.38 g, 5.40 mmol) in DCM (0.8 mL) cooled to 0 °C, TFA (1.19 g, 10.7 mmol) was added slowly dropwise *via* a syringe. The brown solution was allowed to warm to room temperature and left stirring for 2 h. The solvent and TFA were removed by evaporation. Purification by flash column chromatography EtOAc/Petrol (1:9-3:7 v/v) gave a brown oil (0.71 g, 85 %); IR (CHCl₃): $V_{max} = 3459$, 1504, 1614, 1584, 1278, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.77$ (2 H, m,

H-Ar, H-Ar), 6.60 (1 H, d, J = 8.8 Hz, H-Ar), 3.84 (3 H, s, CH₃) which is consistent with the literature(7); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.0$ (C-Ar), 133.8 (C-Ar), 123.6 (C-Ar), 115.8 (C-Ar), 111.15 (C-Ar), 55.7 (CH₃); HRMS (ESI) required for C₇H₈³⁵ClNO⁺ ([MH]⁺) m/z = 158.0373, found 158.0367.

4-Chloro-2-methoxy-N-(4-methoxybenzyl) aniline (8)

To a solution of aniline 7 (0.20 g, 1.3 mmol) in anhydrous DCM (13 mL) cooled to 0 °C, triethylamine (0.26 g, 2.5 mmol) was added dropwise via a syringe. The solution was stirred at 0 °C for 10 min followed by dropwise addition of *p*-methoxybenzyl chloride (0.27 g, 1.3 mmol). The solution was allowed to warm to room temperature and was stirred for 5.5 h, followed by the addition of saturated $NH_4Cl_{(aq)}$ solution (15 mL). The phases were separated and the organic phase was then washed with water (15 mL) and brine (15 mL). The combined aqueous phases were extracted with DCM (2 x 30 mL). The combined organic phases were dried over MgSO₄, before the solvent was removed in vacuo. Purification by flash column chromatography EtOAc/Petrol (1:19 v/v), gave a waxy cream solid (43.2 mg, 12 %); M.p. 97-98 °C, IR (CHCl₃): $V_{max} = 3062$, 1512, 1246; ¹H NMR (400 MHz,CDCl₃): δ = 7.31 (2 H, d, J = 8.7 Hz, H-Ar), 6.92 (2 H, d, *J* = 8.7 Hz, H-Ar), 6.82 (1 H, dd, *J* = 8.6 z, 2.2 Hz, H-Ar), 6.77 (1 H, d, *J* = 2.2 Hz, H-Ar), 6.51 $(1 \text{ H}, \text{ d}, J = 8.6 \text{ Hz}, \text{ H-Ar}), 4.53 (1 \text{ H}, \text{ s}, \text{ NH}), 4.28 (2 \text{ H}, \text{ s}), 3.86, 3.84 (2 \text{ x} 3 \text{ H}, \text{ s}); {}^{13}\text{C} \text{ NMR}$ $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 158.9 \text{ (C-Ar)}, 147.1 \text{ (C-Ar)}, 136.8 \text{ (C-Ar)}, 131.11 \text{ (C-Ar)}, 128.8 \text{ (C-A$ 121.1 (C-Ar), 120.8 (C-Ar), 114.1 (C-Ar), 110.33 (C-Ar), 110.13 (C-Ar), 55.7, 55.3 (2 x CH₃); 47.5 (CH₂); HRMS (EI) required for $C_{15}H_{16}^{35}ClNO_2^+ m/z = 277.0870$ found 277.0864.

4-Fluoro-2-methoxy-1-nitrobenzene (10)

A literature procedure (3, 4) was modified to synthesise compound 10. Under a nitrogen atmosphere, K₂CO₃ (13.20 g, 95.5. mol) and iodomethane (27.11 g, 190.9 mmol) were added to a solution of compound 9 (3 g, 19.0 mmol) in anhydrous acetone (81 mL). The mixture was heated to reflux for 5 h. The yellow solution was allowed to cool to room temperature, followed by the addition of saturated NH₄Cl_(aq) solution (100 mL). The solution was extracted with EtOAc (3 x 100 mL). The combined organic layers were washed with water (100 mL) and dried over MgSO₄, before the solvent was removed in vacuo. Purification by flash column chromatography EtOAc/Petrol (1:4 v/v) gave a bright yellow powder (2.64 g, 81 %); M.p. 97-98 °C; IR (CHCl₃): $V_{max} = 1623$, 1527, 1352, 1291 cm⁻¹ which is consistent with literature values(8); ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (1 H, app. dd, *J* = 9.0, 5.9 Hz, H-Ar), 6.79 (1 H, app. dd, *J* = 10.2, 2.5, H-Ar), 6.73 (1 H, m, H-Ar), 3.97 (3 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.8$ (d, J = 256.1 Hz, C-Ar), 155.3 (d, J = 11.3 Hz, C-Ar), 135.9 (C-Ar), 128.2 (d, J = 11.3 Hz, C-Ar), 107.3 (d, J = 23.6 Hz, C-Ar), 56.8 (CH₃); ¹³C and ¹H NMR data is consistent with literature values considering difference in chemical shifts due to the usage of a different solvent (acetone).(8) ¹⁹F NMR (376 MHz): $\delta = -100.4$ (1 F); HRMS (ESI) required for $C_7H_6FNO_3^+$ ([MNa]⁺) m/z = 194.0229, found m/z = 194.0209.

4-Fluoro-2-methoxyaniline (11)

A literature procedure (9) was modified to synthesise compound **11**. To a solution of **10** (2.30 g, 13.44 mmol) in MeOH (230 mL), ammonium formate (8.48 g, 13.4 mmol) was added followed by the addition of 10 % Pd/C catalyst (0.23 g, 0.1 w/w equiv) (added very slowly with **CAUTION**). The solution was allowed to stir overnight at room temperature then filtered through a bed of celite.

The solvent was removed by evaporation and the residue was dissolved in chloroform (10 mL) and washed with 5 % aqueous ammonia (3 x 10 mL) and brine (3 x 10 mL). The organic layer was dried over MgSO₄, before the solvent was removed *in vacuo* to give an orange oil (1.90 g, 13.4 mmol, 100 %); IR (CHCl₃): V_{max} = 3452, 3369, 1614, 1591, 1034, 946.29, 834 cm⁻¹ which is consistent with literature values(10); ¹H NMR (400 MHz,CDCl₃): δ = 6.21 (1 H, dd, *J* = 8.5 , 5.7 Hz, H-Ar), 6.56 (1H, dd, *J* = 2.6 Hz, 10.3 Hz, H-Ar), 6.49 (1 H, m, H-Ar), 3.84 (3 H, s, CH₃), 3.62 (2 H, s, NH₂) which is consistent with literature values(7); ¹³C NMR (100 MHz, CDCl₃): δ = 156.4 (d, *J* = 236.2 Hz, C-Ar), 147.8 (d, *J* = 9.5 Hz, C-Ar), 131.9 (C-Ar), 114.7 (d, *J* = 9.5 Hz, C-Ar), 106.4 (d, *J* = 21.9 Hz, C-Ar), 98.6 (d, *J* = 26.7 Hz, C-Ar), 55.7 (CH₃) which is consistent with literature values(11); ¹⁹F NMR (376 MHz): δ = -124.2 (1 F); HRMS (ESI) required for C₇H₇FNO⁺ ([MH]⁺) *m*/*z* = 142.0668, found *m*/*z* = 142.0654.

4-Fluoro-2-methoxy-*N*-(4-methoxybenzyl) aniline (12)

Following general procedure B,(12) compound **12** was synthesised from aniline **11** (0.30 g, 2.03 mmol) and *p*-methoxybenzylchloride (0.33 g, 2.1 mmol). Purification was performed in two steps with initial purification by flash column chromatography EtOAc/Petrol (1:9 to 3:7 v/v) to give a waxy cream solid which was further purified by precipitation using general method E to give white crystals (0.08 g, 14 %); M.p. 96-97 °C; IR (CHCl₃): $V_{max} = 3007, 1515, 1249, 1035$ cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.29$ (2 H, d, J = 8.7 Hz, H-Ar), 6.88 (2 H, d, J = 8.7 Hz, H-Ar), 6.52 (3 H, m,3 x H-Ar), 4.33 (1 H, s, NH), 4.24 (2 H, s, CH₂), 3.82, 3.81 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.7$ (d, J = 226.6 Hz, C-Ar), 154.26 (C-Ar), 147.3 (d, 9.5 Hz, C-Ar), 134.4 (C-Ar), 131.4 (C-Ar), 128.8 (C-Ar), 113.9 (C-Ar), 109.7 (d, J = 9.0 Hz, C-Ar), 106.1 (d, J = 21.5 Hz, C-Ar), 98.5 (d, J = 27.2 Hz, C-Ar), 55.6, 55.30 (2 x CH₃), 47.9 (CH₂); ¹⁹F NMR

(376 MHz): $\delta = 126.4$ (1 F) HRMS (ESI) required for C₁₅H₁₆FNO⁺ ([MH]⁺) m/z = 262.1243, found m/z = 262.1231.

4-Fluoro-2-methoxy-N-(4-bis-methoxybenzyl) aniline (13)

Following general method B, (12) compound **13** was synthesised from aniline **11** (0.30 g, 2.03 mmol) and *p*-methoxybenzylchloride (0.99 g, 6.38 mmol). Purification was done in two steps with initial purification by flash column chromatography EtOAc/Petrol (1:9 to 3:7 /vv) gave a yellow oil, followed by a second purification by flash column chromatography EtOAc/Petrol (1:9 v/v) gave a colourless oil (0.29 g, 36 %); IR (CHCl₃): $V_{max} = 3009$, 1611, 1511, 1247, 1035 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.15$ (4 H, d, J = 8.8 Hz, H-Ar), 6.79 (4 H, d, J = 8.8 Hz, H-Ar), 6.63 (2 H, m, 2 x H-Ar), 6.42 (1 H, m, H-Ar), 4.08, (4 H, s, CH₂), 3.90 (3 H, s, CH₃), 3.77 (6 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.0$ (d, J = 240.0 Hz, C-Ar), 154.5 (d, J = 9.9 Hz, C-Ar), 135.6 (d, J = 3.1 Hz, C-Ar), 130.8 (C-Ar), 129.7 (C-Ar), 122.9 (d, J = 9.9 Hz, C-Ar), 113.4, 105.9 (d, J = 21.5 Hz), 99.9 (d, J = 26.3 Hz), 55.7 (2 x CH₂, 2 x CH₃), 55.2 (CH₃); ¹⁹F NMR (376 MHz): $\delta = -118.9$ (m, 1 F); HRMS (ESI) required for C₂₃H₂₄FNO₃⁺ ([MH]⁺) m/z = 382.1818, found m/z = 382.1816.

4-Chloro-2-methoxy-1-(prop-2-yn-1-yloxy) benzene (14)

Following general method B, (12) compound **14** was synthesised from 4-chloro-2-methoxyphenol (1.0 g, 7.20 mmol) and propargyl bromide (1.06 g, 8.70 mmol) Purification was by flash column chromatography EtOAc/Petrol (1:9 v/v), to give white crystals (1.07 g, 75 %); M.p. 43-44°C; IR (CHCl₃): $V_{max} = 3307$, 3011, 1594, 1252 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.95$ (1 H, m, H-Ar), 6.88 (2 H, m, H-Ar), 4.73 (2 H, d, 2.4 Hz, CH₂), 3.86 (s, 3 H, H-10), 2.51 (t, 2.4 Hz, 1 H,

CH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.4$ (C-Ar), 145.5 (CH), 127.2 (C-Ar), 120.2 (C-Ar), 115.5 (C-Ar), 112.5 (C-Ar), 78.2 (C-Ar), 76.1 (CH), 57.1 (CH₂), 56.1 (CH₃); HRMS (EI) required for C₁₀H₉³⁵ClO₂⁺ m/z = 196.0291, found 196.0279.

4-Fluoro-2-methoxy-1-(prop-2-yn-1-yloxy) benzene (15)

Following general method B, (12) compound **15** was synthesised from 4-fluoro-2-methoxyphenol (0.50 g, 3.5 mmol) and propargyl bromide (0.50 g, 4.2 mmol). Purification by flash column chromatography EtOAc/Petrol (1:9 v/v), gave a white solid (0.38 g, 75 %); M.p. 36-37 °C; IR (CHCl₃): $V_{max} = 3308$, 3010, 1612, 1506, 1467, 1192 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.97$ (1 H, dd, J = 8.8 Hz, H-Ar), 6.65 (1 H, dd, J = 2.8 Hz, 10.1 Hz, H-Ar), 6.59 (1 H, m, H-Ar), 4.71 (2 H, d, J = 2.4 Hz, CH₂), 3.85 (3 H, s, CH₃), 2.49 (1 H, t, J = 2.4 Hz, CH) which are consistent with literature values(15); ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.4$ (d, J = 240.0 Hz, C-Ar), 150.9 (d, J = 22.7 Hz, C-Ar), 142.9 (d, J = 2.6 Hz, C-Ar), 116.0 (d, J = 9.9 Hz, C-Ar), 105.9 (d, J = 22.7 Hz, C-Ar), 100.4 (d, 24.5 Hz, C-Ar), 78.6 (CH), 75.8, 57.6 (CH₂), 56.0 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃): -118.79 (m, 1 F); HRMS (EI) required for C₁₀H₉FO₂⁺ m/z = 180.0587; found m/z = 180.0587; C₁₀H₉FO₂ requires C, 66.66, H, 5.03 %, found C, 66.71 %; H, 5.03 %.

4-Bromo-2-methoxy-1-(prop-2-yn-1-yloxy) benzene (16)

Following general method B, (12) compound **16** was synthesised from 4-bromo-2-methoxyphenol (0.50 g, 2.50 mmol) and propargyl bromide (0.35 g, 2.90 mmol). Purification by column chromatography EtOAc/Petrol (1:9 v/v), gave a cream solid (0.43 g, 71 %); M.p. 43-44 °C, IR (CHCl₃): $V_{max} = 3307, 3011, 1592, 1501, 1250 \text{ cm}^{-1}$; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.02$ (2 H, m, H-Ar, H-Ar), 6.91 (1 H, d, J = 8.4 Hz, H-Ar), 4.74 (2 H, d, J = 2.4 Hz, CH₂), 3.86 (3 H, s, CH₃),

2.51 (1 H, t, J = 2.4 Hz, CH); ¹³C NMR (100 MHz, CDCl₃): $\delta = 150.5$ (C-Ar), 145.9 (C-Ar), 123.3 (C-Ar), 123.3 (C-Ar), 115.9 (C-Ar), 115.3 (C-Ar), 114.4 (C-Ar), 78.1, 76.1 (CH), 56.9 (CH₂), 56.1 (CH₃); HRMS (EI) required for C₁₀H₉⁷⁹BrO₂⁺ m/z = 239.9786, found [C₁₀H₉O₂]⁺ [M⁺-Br⁻], m/z = 161.0587; C₁₀H₉BrO₂ requires C, 49.82; H, 3.76 % found C, 49.99, H, 3.77 %.

4-Chloro-2-methoxy-N-(prop-2-yn-1-yl) aniline (17)

Following general method B, (12) compound **17** was synthesised from 4-chloro-2-methoxyaniline (0.30 g, 1.9 mmol) and propargyl bromide (0.27 g, 2.3 mmol). Purification by flash column chromatography EtOAc/Petrol (1:9 v/v) gave a yellow oil (0.09 g, 71 %); IR (CHCl₃): V_{max} = 3461, 3377, 3008, 1613, 1505, 1278, 879 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =6.87 (1 H, dd, J = 8.4 Hz, 2.2 Hz, H-Ar), 6.76 (1 H, d, J = 2.2 Hz, H-Ar), 6.59 (1 H, d, J = 8.4 Hz, H-Ar), 4.42 (1 H, bs, NH), 3.94 (2 H, s, CH₂), 3.84 (3 H, s, CH₃), 2.21 (1 H, t, J = 2.5 Hz, CH); ¹³C NMR (100 MHz, CDCl₃): δ = 147.7 (C-Ar), 135.4 (C-Ar), 120.7 (C-Ar), 111.1 (C-Ar), 110.4 (C-Ar), 80.7, 71.3 (CH), 55.7 (CH₃), 33.2 (CH₂); HRMS (EI) required for C₁₀H₁₀³⁵ClNO⁺ m/z = 195.0451, found 195.0441.

4-Fluoro-2-methoxy-N-(prop-2-yn-1-yl) aniline (18)

Following general procedure B, (12) compound **18** was synthesised from 4-fluoro-2methoxyaniline (0.30 g, 2.10 mmol) and propargyl bromide (0.31 g, 2.50 mmol). Purification was by flash column chromatography EtOAc/Petrol (1:9 v/v), followed by a second purification of a portion (0.072 g) of the crude by column chromatography DCM/Petrol (2:8 v/v) to give a yellow oil (0.06 g, 30 %); IR (CHCl₃): V_{max} = 3425, 3307, 3011, 1610, 1518, 1454, 1252, 1119 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 6.59 (3 H, m, H-Ar), 4.25 (1 H, bs, NH), 3.94 (2 H, d, *J* = 2.4 Hz, CH₂), 3.83 (3 H, s, H-10), 2.20 (1 H, t, J = 2.4 Hz, H-9); ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.1$ (d, J = 235 Hz, C-Ar), 147.9 (d, J = 9.5 Hz, C-Ar), 132.9 (C-Ar), 110.7 (d, J = 9.3 Hz, C-Ar), 106.2 (d, J = 21.5 Hz, C-Ar), 98.7 (d, J = 27.2 Hz, C-Ar), 81.0, (C), 81.2 (CH₃), 55.7 (CH), 33.7 (CH₂); ¹⁹F NMR (376 MHz, CDCl₃): -124.9 (m, 1 F); HRMS (EI) required for C₁₀H₁₀FNO⁺ m/z = 179.0746, found 179.0739.

1-Azido-4-methoxybenzene (19)

Following general procedure C, (13) compound **19** was synthesised from *p*-methoxyaniline, NaNO₂ (2.52 g, 36.6 mmol) and NaN₃ (2.38 g, 36.60 mmol). Purification by column chromatography EtOAc/Petrol (1:9 v/v) gave a brown solid (2.99 g, 82 %); M.p. 40-42 °C; IR (KBr): $V_{max} = 2106$, 1505, 1245 cm⁻¹; ¹H NMR (400 MHz,CDCl₃): $\delta = 6.94$ (2 H, d, J = 9.0 Hz, 2 x H-Ar), 6.89 (2 H, d, J = 9.0 Hz, H-Ar), 3.79 (3 H, s, CH₃), which is consistant with literature values(14); ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.9$ (C-Ar), 132.3 (C-Ar), 119.9 (C-Ar), 115.1 (C-Ar), 55.5 (CH₃).

4-[(4-Chloro-2-methoxyphenoxy) methyl]-1-(4-methoxyphenyl)-1-H-1,2,3 triazole (20)

Following general method D, (9) compound **20** was synthesised from the propargyl analogue **14** (0.10 g, 0.6 mmol) and azide **19** (0.25 g, 1.7 mmol). Purification was done by flash column chromatography EtOAc/Petrol [1:9 v/v to EtOAc/MeOH (one drop)] to give an orange powder (0.14 g, 74 %); M.p. 144-145 °C; IR (CHCl₃): V_{max} = 3009, 1519, 1503, 1254, 1037, 834 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (1 H, s, CH), 7.61 (2 H, d, *J* = 9.0 Hz, H-Ar), 7.0 (2 H, m, 2 x H-Ar), 6.87 (2 H, m, 2 x H-Ar), 5.32 (2 H, s, CH₂), 3.86 (2 x 3H, s, 2 x CH₃), ¹³C NMR (100 MHz, CDCl₃): δ = 159.9 (C-Ar), 150.2 (C-Ar), 146.3 (C-Ar), 130.4 (C-Ar), 126.8 (C-Ar), 122.28 (C-

Ar), 121.4 (CH), 120.4 (C-Ar), 115.1 (C-Ar), 114.8 (C-Ar), 112.5 (C-Ar), 63.3 (CH₂), 56.1, 55.6 (2 x CH₃); HRMS (ESI) required for $C_{17}H_{16}{}^{35}ClN_3O_3{}^+$ ([MNa]⁺) m/z = 368.0778, found m/z = 368.0768.

4-[(4-Fluoro-2-methoxyphenoxy) methyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole (21)

Following general method D, (9) compound **21** was synthesised from propargyl analogue **15** (0.20 g, 1.2 mmol) and azide **19** (0.54 g, 3.6 mmol) Purification by flash column chromatography EtOAc/Petrol [(1:9 v/v) to EtOAc/MeOH (one drop)] gave an orange powder (0.14 g, 77 %); M.p. 127-128 °C; IR (CHCl₃): $V_{max} = 3087$, 1612, 1466, 1519, 1035, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (1 H, s, CH), 7.64 (2 H, d, J = 9.0 Hz, H-Ar), 7.03 (3 H, m, H-Ar), 6.68 (1 H, dd, J = 10.1 Hz, 2.9 Hz, H-Ar), 6.61 (1 H, m, H-Ar), 5.33 (2 H, s, CH₂), 3.89, 3.86 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.9$ (C-Ar), 158.1 (d, J = 240.0 Hz, C-Ar), 150.7 (d, J = 9.9 Hz, C-Ar), 143.8 (d, J = 3.0 Hz, C-Ar), 130.6 (C-Ar), 122.3 (CH), 115.4 (d, J = 9.9 Hz, C-Ar), 106.0 (d, J = 22.7 Hz, C-Ar), 100.7 (d, J = 27.4 Hz, C-Ar), 63.9 (CH₂), 56.1, 55.6 (2 x CH₃); ¹⁹F NMR (376 MHz, CDCl₃): -119.3 (m, 1 F); HRMS (ESI) required for C₁₇H₁₆FN₃O₃⁺ ([MNa]⁺) m/z = 352.1073, found m/z = 352.1058.

4-[(4-Bromo-2-methoxyphenoxy) methyl-1-(4-methoxyphenyl)-1H-1,2,3-triazole (22)

Following general method D, (9) compound **22** was synthesised from propargyl analogue **16** (0.20 g, 0.9 mmol) and azide **19** (0.39 g, 2.6 mmol). Purification by flash column chromatography EtOAc/Petrol (1:9v/v) to EtOAc, gave an orange powder (0.29 g, 83 %); M.p. 145-146 °C; IR (CHCl₃): $V_{max} = 3012$, 1680, 1465, 1519, 1252 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (1 H, s, CH), 7.61 (2 H, d, J = 6.9 Hz, H-Ar), 6.99 (4 H, m, H-Ar), 5.33 (2 H, s, CH₂), 3.86 (6 H, s, 2 x

CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.9$ (C-Ar), 150.33 (C-Ar), 146.8 (C-Ar), 144.4 (C-Ar), 130.4 (C-Ar), 123.5 (C-Ar), 122.3 (C-Ar), 121.4 (C-9), 115.5 (C-Ar), 115.2 (C-Ar), 114.8 (C-Ar), 113.9 (C-Ar), 63.3 (CH₂), 56.1, 55.6 (2 x CH₃); HRMS (ESI) required for C₁₇H₁₆⁷⁹BrN₃O₃⁺ ([MNa]⁺) m/z = 412.0273, found m/z = 412.0257.

4-Chloro-2-methoxy-*N*-[(1-4-methoxyphenyl)-1*H*-1,2,3 triazol-4-yl]methyl aniline (23)

Following general method D, (9) compound **23** was synthesised from propargyl analogue **17** (0.08 g, 0.4 mmol) and azide **19** (0.09 g, 0.6 mmol). Purification by flash column chromatography EtOAc/Petrol [(1:9 v/v) to EtOAc/ MeOH (one drop)] gave an orange powder (0.12 g, 84 %); M.p. 130-131°C; IR (CHCl₃): $V_{max} = 3011$, 1679, 1519, 1256 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79$ (1 H, s, CH), 7.59 (2 H, d, J = 9.1 Hz, H-Ar), 6.99 (2 H, d, J = 9.1 Hz, H-Ar), 6.82 (1 H, dd, J = 2.2 Hz, 8.4 Hz, H-Ar), 6.75 (1 H, d, J = 2.2 Hz, H-Ar), 6.58 (1 H, d, J = 8.4 Hz, H-Ar), 4.75 (1 H, s, NH), 4.53 (2 H, s, CH₂), 3.85, 3.84 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.8$ (C-Ar), 147.5 (C-ar), 146.7 (C-Ar), 136.2 (C-Ar), 130.5 (C-Ar), 122.2 (C-Ar), 121.9 (CH), 120.8 (C-Ar), 119.9 (C-Ar), 114.8 (C-Ar), 110.6 (C-Ar), 110.3 (C-Ar), 55.7, 55.6 (2 x CH₃), 39.7 (CH₂); HRMS (EI) required for C₁₇H₁₇³⁵ClN₄O₂+ *m*/*z* = 344.1040, found 344.1023.

4-Fluoro-2-methoxy-N-[(1-4-methoxyphenyl)-1H-1,2,3 triazol-4-yl]methyl aniline (24)

Following general method D, (9) compound **24** was synthesised from propargyl analogue **18** (0.14 g, 0.9 mmol) and azide **19** (0.2 g, 1.31 mmol). Purification by flash column chromatography EtOAc/Petrol [(1:9 v/v) to (1:1 v/v)] gave a cream solid (0.22 g, 77 %); M.p. 138-139 °C; IR (CHCl₃): $V_{max} = 1609$, 1519, 1287, 1036, 834 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79$ (1 H, s, CH), 7.59 (2 H, d, J = 9.1 Hz, H-Ar), 6.99 (2 H, d, J = 9.1 Hz, H-Ar), 6.57 (3 H, m, H-Ar), 4.68

(1 H, s, NH), 4.52 (2 H, s, CH₂), 3.86, 3.84 (2 x 3 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.8$ (C-Ar), 155.8 (d, J = 236.6 Hz, C-Ar), 147.7 (d, J = 9.3 Hz, C-Ar), 146.9 (C-Ar), 133.8 (C-Ar), 130.6 (C-Ar), 122.2 (CH), 120.0 (C-Ar), 114.7 (C-Ar), 110.1 (d, J = 9.0 Hz, C-Ar), 106.2 (J = 21.8 Hz, C-Ar), 98.7 (d, J = 27.2 Hz, C-Ar), 40.21 (CH₂), 55.7-55.6 (2 x CH₃); ¹⁹F NMR (376 MHz, CDCl₃): -125.4 (m, 1 F); HRMS (ESI) required for C₁₇H₁₇FN₄O₂⁺ ([MNa]⁺) m/z = 351.1233, found m/z = 351.1222.

4-Iodo-phenyl-methanol (26)

Compound **26** was prepared following literature procedure.(16) Under a nitrogen atmosphere, 4iodobenzoic acid (**25**) (2.00 g, 8.10 mmol, 1.0 eq.) was dissolved in anhydrous THF (16 mL). To this reaction mixture a 1 M solution of BH₃.THF (16 mL, 1.37 g, 0.016 mmol) was added slowly dropwise *via* a cannula over 15 minutes. The solution was left stirring at room temperature overnight followed by quenching by the dropwise addition of 2 M HCL (10 mL). The product was extracted with DCM (2 x 15 mL). The combined organic layers were washed with saturated NaHCO₃ solution (2 x 16 mL) and brine (2 x 16 mL) and then dried over MgSO₄ before removal of the solvent *in vacuo*. The crude product was purified by flash column chromatography EtOAc/Petrol (1:9 v/v) to yield a white powder (1.72 g, 91 %); M.p. 74-77°C; IR (CHCl₃): $V_{max} = 3610, 3010, 1485, 1006 \text{ cm}^{-1}; {}^{1}\text{H}$ NMR (400 MHz; CDCl₃): $\delta = 7.68$ (2 H, d, J = 8.0 Hz, H-Ar), 7.11 (2 H, d, J = 8.0 Hz, H-Ar), 4.65 (2 H, d, J = 5.8 Hz, CH₂), 1.66 (1 H, t, J = 5.8 Hz, OH) which is consistent with literature values(16); ${}^{13}\text{C}$ NMR (100MHz, CDCl₃): $\delta = 140.4$ (C-Ar), 137.6 (C-Ar), 128.8 (C-Ar), 93.0 (C-Ar), 64.6 (CH₂) which is consistent with literature values(16); HRMS (ESI) required for C₇H₆IONa⁺([M+Na]⁺) m/z = 256.9439, found 256.9436.

tert-Butyl-[4-iodo-benzyloxy)dimethylsilane (27)

A solution of (4-iodophenyl)methanol (**26**) (3.00 g, 12.82 mmol) in DCM (128 mL) was cooled to 0 °C followed by the addition of TBDMSCI (2.02 g, 15.38 mmol) and imidazole (1.92 g, 28.00 mmol). The solution was brought to room temperature and left stirring overnight. Saturated NH₄Cl_(aq) solution (100 mL) was added and the phases were separated. The organic phase was washed with brine (2 x 100 mL). The combined aqueous phases were extracted with DCM (2 x 100 mL). The combined organic phases were dried over MgSO₄, before the solvent was removed *in vacuo*. The product was purified by flash column chromatography EtOAc/Petrol (1:10 v/v) and concentrated *in vacuo* to give white crystals (4.20 g, 12.04 mmol, 94 %); M.p. 36-38 °C; IR (CHCl₃): V_{max} (CHCl₃): 3010, 2456, 2859, 1483, 1084, 1472, 840 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (2 H, d, *J* = 8.5 Hz, H-Ar), 7.07 (2 H, d, *J* = 8.5 Hz, H-Ar), 4.67 (2 H, s, CH₂), 0.93 (9 H, s, 3 x CH₃), 0.09 (6 H, s, 2 x CH₃); ¹³C NMR (100MHz, CDCl₃): δ = 141.1 (C-Ar), 137.2 (C-Ar), 128.0 (C-Ar); 91.9 (C-Ar), 64.3 (C-Ar), 25.9 (CH₃), 18.3 (CH₃), -5.3; HRMS (EI) required for C₁₃H₂₁IOSi is 348.0406 found [M-Bu]⁺, 290.9689; C₁₃H₂₁IOSi required C,44.83; H,6.08 %, found C,44.69; H,6.04 %.

tert-Butyl-[4-(4-chloro-2-methoxy-phenoxy)-benzyloxy-dimethylsilane (28)

A literature procedure (18) was modified to synthesise compound **28**. Under a nitrogen atmosphere, the silane **27** (3 g, 8.61 mmol), 4-chloro-2-methoxyphenol (2.73 g, 17.20 mmol), Cs_2CO_3 (5.61 g, 17.22 mmol), CuI (0.082 g, 0.40 mmol), ethyl acetate (0.03 µL, 0.29 mmol), 1-naphthoic acid (2.08 g, 12.10 mmol), powdered molecular sieves (4 Å) (0.04g) and dry toluene (6 mL) were added to an oven dried sealed tube and heated to 107 °C for 3 days until almost complete consumption of the halide had occurred. The dark purple suspension was allowed to cool

to room temperature followed by the addition of DCM (10 mL). The product was filtered and DCM (2 x 20 mL) was added with stirring to remove any residue. The combined organic phases were washed with 5 % NaOH_(aq) (100 mL). Purification by flash chromatography EtOAc/Petrol (1:20 v/v) gave a yellow oil (1.80 g, 41 %); IR (CHCl₃): V_{max} = 3080, 1497, 1260, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.25 (2 H, d, *J* = 8.6 Hz, H-Ar), 6.97 (1 H, s, H-Ar), 6.89 (2 H, d, *J* = 8.6 Hz, H-Ar), 6.87-6.86 (2 H, m, H-Ar), 4.69 (2 H, s, CH₂), 3.82 (3 H, s, CH₃), 0.93 (9 H, s3 x CH₃), 0.09 (6 H, s, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 156.4 (C-Ar), 151.8 (C-Ar), 144.2 (C-Ar), 135.9 (C-Ar), 129.3 (C-Ar), 127.5 (C-Ar), 121.3 (C-Ar), 120.8 (C-Ar), 117.1 (C-Ar), 113.3 (C-Ar), 64.5 (CH₂), 56.1 (CH₃), 25.9 (CH₃), 25.6 (CH₂), 18.4 (CH₃); HRMS (ESI) required for C₂₀H₂₇³⁵ClO₃Si⁺ [(MNa)⁺] *m*/*z* = 401.1316, found 401.1090.

[4-(4-Chloro-2-methoxyphenoxy)phenyl] methanol (29)

A solution of silyl ether **28** (0.48 g, 1.30 mmol) in THF (6 mL) was cooled to 0 °C followed by the addition of TBAF (0.40 g, 1.51 mmol). The brown solution was allowed to warm to room temperature and left stirring for 4.5 hr. The solvent was removed *in vacuo*. Purification by flash chromatography EtOAc/Petrol (1:3 v/v) gave a colourless powder (0.26 g, 79 %); M.p. 65-68 °C; IR (CHCl₃) V_{max} = 3692, 3692, 3059, 1422, 896 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (1 H, d, J = 8.6 Hz, H-Ar), 6.91 (2 H, d, 8.6 Hz, H-Ar), 6.92 (1 H, s, H-Ar), 6.90 (2 H, m, H-Ar), 4.65 (2 H, s, CH₂), 3.83 (3 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 157.2 (C-Ar), 151.9 (C-Ar), 143.7 (C-Ar), 135.3 (C-Ar), 129.7 (C-Ar), 128.6 (C-Ar), 121.7 (C-Ar), 120.9 (C-Ar), 117.2 (C-Ar), 113.4 (C-Ar), 64.9 (CH₂), 56.2 (CH₃); HRMS (EI) required for C₁₄H₁₃³⁵ClO₃: *m/z* = 264.0548, found 264.0560.

4-Chloro-1-[4-(chloromethyl)phenoxy]-2-methoxybenzene (30)

A solution of alcohol **29** (0.14 g, 0.53 mmol) in DCM (5.3 mL) was cooled to 0 °C, followed by the addition of triethylamine (0.13 g, 1.27 mmol). The reaction mixture was left stirring for 5 minutes followed by the dropwise addition of methanesulfonylchloride (0.10 g, 0.64 mmol). The reaction mixture was allowed to warm to room temperature followed by stirring for 4 h. Saturated NH₄Cl_(aq) solution (5 mL) was added and the phases were separated. The organic layer was washed with brine (2 x 10 mL) and the combined organic layers were extracted with DCM (2 x 10 mL) and dried over MgSO₄, before the solvent was removed *in vacuo*. The crude product was purified by flash chromatography EtOAc/Petrol (1:9 v/v) to give a sticky colourless solid (0.23 g, 0.74 mmol, 65 %); M.p. 83-86 °C; IR (CHCl₃): V_{max} = 3043, 2666, 1497, 1266, 854 cm⁻¹; ¹H NMR (400 MHz; CDCl₃): δ = 7.31 (2 H, d, *J* = 8.7 Hz, H-Ar), 6.99 (1 H, s, H-Ar), 6.92 (2 H, m, H-Ar), 6.87 (2 H, d, *J* = 8.7Hz, H-Ar), 4.57 (2 H, s, CH₂), 3.81 (3 H, s, CH₃), ¹³C NMR (100 MHz, CDCl₃): δ = 157.8 (C-Ar), 154.9 (C-Ar), 152.1 (C-Ar), 143.2 (C-Ar), 131.7 (C-Ar), 130.1 (C-Ar), 122.2 (C-Ar), 121.0 (C-Ar), 116.9 (C-Ar), 113.5 (C-Ar), 56.2 (CH₃), 45.9 (CH₂); HRMS (EI) calculated for C₁₄H₁₄³⁵Cl₂O₂ m/z = 282.0214, found 282.0214.

Di-[(4'-chloro-2'-methoxy-)4-phenoxy] dibenzylether (31)

A literature procedure(19) was modified to synthesise compound **31**. To a suspension of NaH (60 % dispersion in mineral oil, 0.018 g, 0.44 mmol) in DMF (1 mL), a solution of alcohol **29** (0.08 g, 0.29 mmol) in DMF (2 ml) was added, and left stirring for 30 min at room temperature. The solution was cooled to 0 °C, followed by the addition of a solution of compound **30** (0.10 g, 0.29 mmol) in DMF (2 mL). The solution was left stirring at room temperature for 4.5 h followed by the addition of water (5 mL). The solution was extracted with DCM (3 x 10 mL). The combined

organic extracts were dried over MgSO₄, before the solvent was removed *in vacuo*. Purification by flash column chromatography EtOAc/Petrol (1:4 v/v) gave a yellow oil (0.12 g, 79 %), IR (CHCl₃): $V_{max} = 3009$, 1491, 1271, 912, 858 cm⁻¹; ¹H NMR (400 MHz; CDCl₃): $\delta = 7.28$ (4 H, d, J = 8.7 Hz, H-Ar), 6.98 (2 H, m, H-Ar), 6.90 (8 H, m, H-Ar), 6.89, 4.49 (4 H, s, CH₂), 3.82 (6 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.1$ (C-Ar), 151.9 (C-Ar), 143.7 (C-Ar), 132.6 (C-Ar), 129.6 (C-Ar), 129.3 (C-Ar), 121.6 (C-Ar), 120.8 (C-Ar), 117.0 (C-Ar), 113.4 (C-Ar), 71.6 (CH₂), 56.1 (CH₃); HRMS (ESI) calculated for C₂₈H₂₄³⁵Cl₂O₅N ([M+NH₄])⁺: *m/z* = 528.1339, found 528.1349.

4-(4-Chloro-2-methoxyphenoxy)benzaldehyde (32)

4-Chloro-2-methoxyphenol (5.00 g, 31.50 mmol) was dissolved in anhydrous DMF (40 mL), 4fluorobenzaldehyde (4.30 g, 34.60 mmol) and K₂CO₃ (4.79 g, 34.60 mmol) were sequentially added and the reaction mixture was heated to 130 °C and stirred for 18 h. The reaction mixture was then allowed to cool to room temperature before being diluted with H₂O (100 mL) and extracted with EtOAc (3 × 100 mL). The combined organic layers were then washed sequentially with saturated NaHCO₃ (aq) solution, H₂O and Brine (100 mL). The organic layer was then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc (3:1) gave a dense orange oil (7.31 g, 89 %) ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H, CHO), 7.80 – 7.64 (m, 2H, H-Ar), 6.96 – 6.93 (m, 2H, H-Ar), 6.91 – 6.86 (m, 3H, H-Ar), 3.69 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 190.7 (CHO), 163.2 (C-Ar), 152.4 (C-Ar), 141.6 (C-Ar), 131.9 (C-Ar), 131.4 (C-Ar), 131.2 (C-Ar), 123.3 (C-Ar), 121.2 (C-Ar), 116.2 (C-Ar), 113.7 (C-Ar), 56.1 (CH₃). HRMS (ESI) *m*/*z* calcd for C₁₄H₁₂³⁵ClO₃ [M + H]⁺, 263.0469, found 263.0469

4-(4-Chloro-2-hydroxyphenoxy)benzaldehyde (33)

Compound **33** (8.00 g. 30.50 mmol) was suspended in AcOH (30 ml, 0.52 mol) followed by the addition of 47 % HBr (aq) (12 mL, 0.10 mol). The reaction mixture was then heated to 110 °C and stirred for 18 h. The reaction mixture was allowed to cool to room temperature before being concentrated *in vacuo*, the mixture was then neutralised by careful addition of NaHCO₃ before being diluted in H₂O (200 mL) and extracted with EtOAc (3×200 mL). The combined organic layers were then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc ($0 \rightarrow 21$ %) gave a light yellow solid (2.20 g, 29 %). ¹H NMR (400 MHz, MeOD) δ 9.81 (s, 1H, CHO), 7.85 – 7.78 (m, 2H, H-Ar), 7.03 – 6.94 (m, 4H, H-Ar), 6.85 (dd, J = 8.6, 2.5 Hz, 1H, H-Ar). ¹³C NMR (101 MHz, MeOD) δ 191.5 (CHO), 163.4 (C-Ar), 150.3 (C-Ar), 140.7 (C-Ar), 131.7 (C-Ar), 131.1 (C-Ar), 130.8 (C-Ar), 123.2 (C-Ar), 119.9 (C-Ar), 117.3 (C-Ar), 116.0 (C-Ar). HRMS (ESI) *m*/*z* calcd for C₁₃H₈O₃³⁵Cl [M - H]⁻, 247.0167, found 247.0175

4-(4-(4-Chloro-2-(methoxymethoxy)phenoxy)benzaldehyde (34)

Compound **33** (2.20 g, 8.90 mmol) was dissolved in CH₂Cl₂ (40 mL) under a nitrogen atmosphere. DIPEA (3.43 g, 26.54 mmol) and MOMCl (1.07 g, 13.29 mmol) were added sequentially and the reaction mixture was allowed to stir for 18 h. The reaction mixture was then diluted with saturated NH₄Cl (aq) solution (40 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc (3:1) gave a light yellow oil (2.41 g, 92 %). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H, CHO), 7.75 – 7.63 (m, 2H, H-Ar), 7.17 (dd, J = 2.1, 0.5 Hz, 1H, H-

Ar), 6.94 - 6.81 (m, 4H, H-Ar), 4.98 (s, 2H, CH₂), 3.22 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 190.1 (CHO), 163.1 (C-Ar), 149.8 (C-Ar), 142.4 (C-Ar), 131.8 (C-Ar), 131.3 (C-Ar), 131.2 (C-Ar), 123.5 (C-Ar), 122.7 (C-Ar), 117.6 (C-Ar), 116.2 (C-Ar), 95.0 (CH₂), 56.3 (CH₃). HRMS (ESI) m/z calcd for C₁₅H₁₃O₄³⁵ClNa [M + Na]⁺, 315.0395, found 315.0398.

(4-(4-Chloro-2-(methoxymethoxy)phenoxy)phenyl)methanol (35)

Compound **34** (2.41 g, 8.25 mmol) was dissolved in MeOH (50 mL) and cooled to 0 °C. NaBH₄ (0.47 g, 12.38 mmol) was added portion-wise and the reaction mixture was allowed to warm to room temperature and stirred for 4 h. The reaction was quenched by the addition of H₂0 (40 mL) and was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc (3:1) gave a light yellow oil (2.09 g, 86 %). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.07 (m, 3H, H-Ar), 6.88 (dd, J = 8.6, 2.4 Hz, 1H, H-Ar), 6.85 – 6.80 (m, 3H, H-Ar), 5.05 (s, 2H, CH₂), 4.52 (s, 2H, CH₂OH), 3.32 (s, 3H, CH₃), 2.47 (bs, 1H, OH). ¹³C NMR (101 MHz, CDCl₃) δ 157.1 (C-Ar), 149.4 (C-Ar), 144.6 (C-Ar), 135.6 (C-Ar), 129.6 (C-Ar), 128.5 (C-Ar), 122.6 (C-Ar), 122.0 (C-Ar), 117.9 (C-Ar), 117.1 (C-Ar), 95.3 (CH₂), 64.6 (CH₂OH), 56.3 (CH₃). HRMS (ESI) *m*/*z* calcd for C₁₅H₅O₄³⁵ClNa [M + Na]⁺, 317.0551, found 317.0558

4-Chloro-1-(4-(chloromethyl)phenoxy)-2-(methoxymethoxy)benzene (36)

Compound **35** (0.35 g, 1.17 mmol) and Et_3N (0.24 g, 2.34 mmol) were dissolved in CH_2Cl_2 (7 mL) and cooled to 0 °C. Methanesulfonyl chloride (0.20 g, 1.75 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for 4 h. The reaction

mixture was diluted with saturated NH₄Cl (aq) solution (10 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc (4:1) gave a light yellow oil (0.20 g, 56 %). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 2H, H-Ar), 7.30 – 7.26 (m, 1H, H-Ar), 7.03 – 6.95 (m, 2H, H-Ar), 6.94 – 6.89 (m, 2H, H-Ar), 5.16 (s, 2H, CH₂), 4.59 (s, 2H, CH₂Cl), 3.42 (s, 3H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (C-Ar), 149.6 (C-Ar), 144.0 (C-Ar), 131.8 (C-Ar), 130.1 (C-Ar), 122.6 (C-Ar), 122.6 (C-Ar)-, 117.8 (C-Ar), 117.0 (C-Ar), 95.3 (CH₂), 56.4 (45CH₃), 45.9 (CH₂Cl). HRMS (ESI) *m*/*z* calcd for C₁₅H₁₄O₃³⁵Cl₂Na [M + Na]⁺, 335.0212, found 335.0213

4,4'-(((Oxybis(methylene))bis(4,1-phenylene))bis(oxy))bis(1-chloro-3-

(methoxymethoxy)benzene) (37)

Compound **36** (0.13 g, 0.43 mmol) was dissolved in anhydrous DMF (5 mL) and cooled to 0 °C. NaH (60 % dispersion in mineral oil, 33 mg, 0.83 mmol) was added in a single portion and the reaction mixture was allowed to stir for 1 h. Compound **35** (0.20 g, 0.65 mmol) in DMF (2 mL) was then added dropwise and the reaction mixture was allowed to warm to room temperature before being stirred for a further 18 h. The reaction mixture was quenched by the addition of H₂O (5 mL) before being extracted with EtOAc (3×10 mL). The combined organic layers were then washed sequentially with saturated NaHCO₃ (aq) solution, H₂O and Brine (20 mL). The organic layer was then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by flash column chromatography Hexane/EtOAc (3:1) gave a light yellow oil (0.11 g, 45 %). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.30 (m, 4H, H-Ar), 7.29 – 7.27 (m, 2H, H-Ar), 7.01 – 6.97 (m, 2H, H-Ar), 6.96 – 6.91 (m, 6H, H-Ar), 5.17 (s, 4H, OCH₂O), 4.52 (s, 4H, ArCH₂), 3.44 (s, 6H, CH₃). ¹³C

NMR (101 MHz, CDCl₃) δ 157.3 (C-Ar), 149.4 (C-Ar), 144.7 (C-Ar), 132.7 (C-Ar), 129.6 (C-Ar), 129.4 (C-Ar), 122.6 (C-Ar), 122.1 (C-Ar), 117.9 (C-Ar), 117.1 (C-Ar), 95.4 (OCH₂O), 71.6 (ArCH₂), 56.4 (CH₃). HRMS (ESI) *m*/*z* calcd for C₃₀H₂₈O₇³⁵Cl₂Na [M + Na]⁺, 593.1104, found 593.1088

Di-[(4'-chloro-2'-hydroxy-)4-phenoxy] dibenzylether (38)

Compound **37** (0.11 g, 0.19 mmol) was dissolved in MeOH (7 mL) followed by the addition of 6 M HCl (0.2 mL, 1.2 mmol). The reaction mixture was heated to reflux and stirred for 2 h. The reaction mixture was then allowed to cool to room temperature before being concentrated *in vacuo*, the reaction mixture was then diluted with saturated NaHCO₃ (aq) solution (10 mL) and extracted with EtOAc (3×15 mL). The combined organic layers were then dried over MgSO₄ before the solvent was removed *in vacuo*. Purification by reverse-phase high performance liquid chromatography (Method B) gave an off-white solid (0.04 g, 44 %). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 4H, H-Ar), 7.07 (d, J = 2.2 Hz, 2H, H-Ar), 7.04 – 6.98 (m, 4H, H-Ar), 6.86 – 6.78 (m, 4H, H-Ar), 5.80 (s, 2H, OH), 4.56 (s, 4H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 156.1 (C-Ar), 148.1 (C-Ar), 142.4 (C-Ar), 133.8 (C-Ar), 129.7 (C-Ar), 129.5 (C-Ar), 120.6 (C-Ar), 119.5 (C-Ar), 118.0 (C-Ar), 116.7 (C-Ar), 71.6 (CH₂). HPLC r.t. ~ 17 min (Method B) HRMS (ESI) *m/z* calcd for C₂₆H₂₀Os³⁵Cl₂Na [M + Na]⁺, 505.0580, found 505.0594. LC-MS Purity = 92 %

4-Chloro-2-methoxy-1-(4-[4-methoxybenzyl] oxy] methyl phenoxy) benzene (39)

A literature procedure (19) was modified to synthesise compound **39**. To a suspension of NaH (60 % dispersion in mineral oil, 0.02 g, 0.4 mmol) in DMF (1 mL), a solution of (4-methoxyphenyl)methanol (0.04 g, 0.3 mmol) in DMF (2 ml) was added and left stirring for 30 min

at room temperature. The solution was cooled to 0 °C, followed by the addition of a solution of compound **31** (0.10 g, 0.3 mmol) in DMF (2 mL). The solution was left stirring at room temperature for 4.5 h followed by the addition of water (5 mL). The reaction mixture was extracted with DCM (3 x 10 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography EtOAc/Petrol (1:19 v/v) to give a colourless oil (0.08 g, 67 %), IR (CHCl₃): $V_{max} = 3011$, 1612-1597, 1464, 1251, 1118, 1032, 844 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (4 H, d, J = 8.6 Hz, H-9, H-14), 7.00 (1 H, m, H-Ar), 6.92 (6 H, m, H-Ar), 4.51, 4.49 (2 x2 H, s, 2 x CH₂), 3.84, 3.83 (s, 2 x3 H, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.2$ (C-Ar), 157.1 (C-Ar), 151.9 (C-Ar), 143.9 (C-Ar), 132.8 (C-Ar), 130.3 (C-Ar), 129.6 (C-Ar), 129.4 (C-Ar), 121.6 (C-Ar), 120.9 (C-Ar), 117.1 (C-Ar), 113.8 (C-Ar), 113.4 (C-Ar), 71.78, 71.35 (C-Ar), 56.2 (2 x CH₂), 55.3 (2 x CH₃); HRMS (ESI) required for C₂₂H₂₁³⁵ClO₄ ([M+Na])⁺: m/z = 407.1026, found 407.1024.

Di-1,1'(4-Iodo-phenyl)-dimethylether (40)

A literature procedure was modified to synthesise compound **40** (17). Under a nitrogen atmosphere, to a suspension of NaH (60 % dispersion in mineral oil, 0.31 g, 17.67 mmol) in anhydrous THF (13 mL), a solution of (4-iodophenyl)methanol (0.20 g, 0.86 mmol) in anhydrous THF (16 mL) was added at 0 °C and stirred for 30 min at room temperature. A solution of 4-iodobenzylbromide (0.50 g, 1.71 mmol) in dry THF (4 mL) was added to the solution at 0 °C. The solution was heated to reflux overnight and cooled to room temperature, followed by dropwise addition of water (13 mL), and extraction with EtOAc (3 x 25 mL). The combined organic layers were dried over MgSO₄, before the solvent was removed *in vacuo*. The crude product was purified by flash column chromatography EtOAc/Petrol (1:9 v/v) to give a white powder (0.28 g, 71 %);

M.p. 103 – 105 °C; IR (CHCl₃): $V_{max} = 2860$, 1083, 1488 cm⁻¹; ¹H NMR (400 MHz; CDCl₃): $\delta = 7.68$ (4 H, m, H-Ar), 7.09 (4 H, m, H-Ar), 4.48 (4 H, s, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 137.7$ (C-Ar), 137.5 (C-Ar), 129.5 (C-Ar), 93.2 (C-Ar), 71.5 (CH₂); HRMS (EI) required for $C_{14}H_{12}I_2O^+$ is 449.8970. No parent ion was observed found [M-C₇H₇IO]⁺, 217.9595 and [M– $C_7H_6I]^+$, 232.9468

4-(Chloromethyl)benzylmethanesulfonate (42)

To a solution of (4-methoxyphenyl)methanol (5.00 g, 40.3 mmol) in DCM (400 mL) at 0 °C, triethylamine (19.53 g, 193.00 mmol) was added, and the solution was left stirring for 5 min, followed by the addition of methanesulfonyl chloride (18.5 g, 161.00 mmol). The solution was allowed to warm to room temperature and stirred for 4 h, followed by the addition of saturated NH₄Cl_(aq) solution (400 mL). The phases were separated and the organic phase was washed with brine (3 x 200 mL). The combined aqueous phases were extracted with DCM (3 x 200 mL). The combined organic phases were dried over MgSO₄, before the solvent was removed *in vacuo*. Purification by flash column chromatography EtOAc/Petrol (1/9 v/v) gave yellow crystals (4.92 g, 44 %); M.p. 40-42 °C; IR (CHCl₃): $V_{max} = 1505$, 1375, 1150, 872 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.47$ (2 H, d, J = 8.7 Hz, H-Ar), 7.30 (2 H, d, J = 8.7 Hz, H-Ar); 4.61 (2 H, s, H-Ar), 3.18 (3 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 148.9$ (C-Ar), 130.3 (C-Ar), 122.3 (C-Ar), 45.1 (CH₃), 37.5 (CH₂); HRMS (EI) required for C₈H₉³⁵ClO₃S is 219.9961 found 219.9955.

4-[(2-Acetyl-4-chlorophenoxy)methyl]phenylmethanesulfonate (43)

Following general procedure B,(12) compound **43** was synthesised from ketone **41** (0.30 g, 1.80 mmol) and mesylate **42** (0.43 g, 2.10 mmol). Purification by flash column chromatography

EtOAc/Petrol (1:9 to 3:7 v/v) gave cream flakes (0.28 g, 51 %); M.p. 97-98°C, IR (CHCl₃): $V_{max} = 1679, 1375, 1151, 873 \text{ cm}^{-1}; {}^{1}\text{H} \text{NMR}$ (400 MHz, CDCl₃): $\delta = 7.71$ (1 H, d, J = 2.8 Hz, H-Ar), 7.48 (2 H, d, J = 8.7 Hz, H-Ar), 7.39 (1 H, dd, J = 2.8 Hz, 8.9 Hz, H-Ar), 7.33 (2 H, d, J = 8.7 Hz, H-Ar), 6.94 (1 H, d, J = 8.9 Hz, H-Ar), 5.15 (2 H, s, CH₂), 2.98 (3 H, s, CH₃), 2.58 (3 H, s, CH₃); ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 198.2$ (C-14), 156.1 (C-Ar), 148.9 (C-Ar), 135.1 (C-Ar), 133.1 (C-Ar), 130.3 (C-Ar), 129.9 (C-Ar), 129.1 (C-Ar), 126.7 (C-Ar), 122.5 (C-Ar), 114.3 (C-Ar), 70.2 (CH₂), 37.6 (CH₃), 31.9 (CH₃). HRMS (micOTOF) required for C₁₆H₁₅³⁵ClO₅S⁺ ([MNa]⁺) m/z = 377.0226, found m/z = 377.0222.

4-[(2-Acetyl-4-chlorophenoxy) methyl] phenylmethanesulfonate (44)

A literature procedure (20) was adapted to synthesise compound **44**. To a solution of ketone **43** (0.28 g, 1.01 mmol) in chloroform (2 mL) *m*-CPBA (70-75 % purity) (0.87 g, 5.10 mmol), was added. The white suspension was left stirring at room temperature overnight. The reaction was quenched by the addition of saturated NaS₂SO_{4(aq)} solution (5 mL). The aqueous layer was extracted with DCM (3 x 10mL). The combined organic layers were dried over MgSO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography EtOAc/Petrol (1:9 to 3:7 v/v) gave a white solid (0.25 g, 68 %); M.p. 132-133 °C; V_{max} : (CHCl₃): 1764, 1498, 1373, 1150, 873 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (2 H, d, *J* = 8.7 Hz, H-Ar), 7.30 (2 H, d, *J* = 8.7 Hz, H-Ar), 7.14 (1 H, dd, *J* = 2.5 Hz, 8.7 Hz, H-Ar), 7.09 (1 H, d, *J* = 2.5 Hz, H-Ar), 6.89 (1 H, d, *J* = 8.7 Hz, H-Ar), 5.07 (2 H, s, CH₂), 3.16 (3 H, s, CH₃), 2.28 (3 H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 148.8 (C-13), 140.6 (C-Ar), 135.7 (C-Ar), 128.7 (C-Ar), 126.7 (C-Ar), 126.0 (C-Ar), 123.5 (C-Ar), 122.3 (C-Ar), 114.7 (C-Ar), 70.1 (CH₂), 37.5 (CH₃), 20.6 (CH₃);

HRMS (ESI) required for $C_{16}H_{15}{}^{35}ClO_6S^+$ ([MNa]⁺) m/z = 393.0176, found m/z = 393.0164; $C_{16}H_{15}ClO_6S$ requires C, 51.83; H, 4.08 % found C, 51.91; H, 4.15 %.

2-trans-Octenyl CoA

Using an method adapted from the literature(21), The reaction vessel was covered with foil. The addition of the starting materials was done in the dark: potassium carbonate (35 mg, 63.6 µmol) was dissolved in water (2.5 mL), followed by the addition of coenzyme A (50 mg, 63.6 µmol) and 2-trans-octenoic acid (Alfa Aesar, 94%) (16 µl, 110 µmol). THF (2.5 mL) was added followed by the addition of PyBOP (0.053 g, 102 µmol). The solution was left stirring at room temperature for 5 h and completion of the reaction was monitored with DTNB (to determine free CoA thiol). The organic layer was removed by evaporation and the water was removed by lyophilisation to give a crude cream solid. The crude product was dissolved in distilled water and purified by HPLC using 20 mM ammonium acetate (pH 5.8) (A) and acetonitrile (B). Gradient elution over 25 minutes 100 % A (0-1 min), 0-10 % B (1.01-2min), 10 % B (1.01-2 min), 10-20 % B (2-2.01 min), 20 % (2.01-5 min), 20-25 % B (5-5.01 min) 25-30 % B (5.01-15 min), 30-95 % B (15.01 min), 95 % (15.01-17 min),95-0 % B (17-20 min), 100 % A (20-25 min) at a flow rate of 2 mL/min gave an eluted product which was lyophilised thrice to give a white powder (27.7 mg, 24.3 µmol, 38 %); V_{max} (KBr): 3412, 2359, 2927, 1652, 1239, 1078, 951 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.43$ (1 H, s, H-Ar), 8.14 (1 H, s, H-Ar), 6.84 (1 H, m, CH), 6.04 (2 H, m, 2 x CH), 4.7 (2 H, m, 2 x CH), 4.47 (1 H, s, CH), 4.14 (bs, 2 H, CH₂), 3.91 (s, 1 H, CH), 3.72 (1 H, m, CH_B), 3.46 (1 H, m, CH_A), 3.32 (2 H, m, CH₂), 3.24 (2 H, m, CH₂), 2.92 (2 H, m, CH₂), 2.3 (2 H, m, CH₂), 2.06 (2 H, m, CH₂), 1.29 (2 H, m, CH₂), 1.13 (4 H, m, 2 x CH₂), 0.78 (3 H, s, CH₃), 0.73 (3 H, m, CH₃), 0.65 (3 H, s, CH₃); ³¹P-NMR (162 MHz, D₂O): -0.6, -11.3 (2 P); ¹³C NMR (100 MHz, D₂O): $\delta = 193.7, 174.$

173.91, 152.3, 148.9, 148.2, 141.2, 127.6, 118.5, 86.8, 83.4, 74.0, 73.9, 71.8, 65.1, 38.6, 38.3, 38.2, 35.4, 35.3, 31.6, 30.5, 30.4, 27.7, 26.7, 21.7, 20.8, 18.1, 13.2; HRMS (ESI) required for $C_{29}H_{47}N_7O_{17}P_3S^-$: m/z = 890.2040, found 890.1869.

NMR Data

(see below)

4-chloro-22-methoxy-1-[(4-methoxybenzyl)oxy]benzene

129.08 128.80 126.17

120.25

150.39 146.89

71.16

56.11 55.29

4-fluoro-2-methoxy-1-[(4-methoxybenzyl)oxy]benzene

UserID F-NMR	s_che	SampleID	147pure	SupervisorII	thoma 120.00 -120.00 -120.00 -120.00	Lab Phone	No. 67990	D S NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE	s_che.147pure 1 20101114 12.22 av400 5 mm PABBO BB- 2g 262144 CDC13 64 2 75187.969 Hz 0.286819 Hz 1.7433076 sec 2048 6.650 usec 6.50 usec 6.50 usec
								TE D1 TD0 P1 PL1 SF01 SSB LB GB PC	298.2 K 2.00000000 sec 1 CHANNEL f1 19F 10.00 usec 3.00 dB 4.67061329 W 376.4644798 MHz 262144 376.4983670 MHz EM 0 0.80 Hz 0 1.00
		-40 -€		-100 -	120 –1	40 –160	-180	- ppm	

4-bromo-2-methoxy-1-[(4-methoxybenzyl)oxy]benzene

Ô.

4-[(4-chloro-2-methoxyphenoxy)methyl]-1-(4-methoxyphenyl)-1-H-1,2,3 triazole

			песпохурп	enyi)-in-i	.,2,5-01820	le		(\sim
-119.2	-119.4	ppm	7-119.26	-119.28	55.01 11 - J			NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 TD0 TE D1 TD0 TE D1 TD0 TE D1 TD0 SSB LB GB PC	S_cne.102P_2 1 20110309 8.21 av400 5 mm PABBO BB- 2g 262144 CDC13 16 2 75187.969 Hz 0.286819 Hz 1.7433076 se 2298.8 6.650 us 298.2 K 2.00000000 se 1 CHANNEL f1 ===== 19F 10.00 us 3.00 dB 4.67061329 W 376.4644798 MH 262144 376.4983670 MH EM 0 0.80 Hz 0 1.00
			 				 		21

Bis [(4'-chloro-2'-methoxy)-4-phenoxy]dibenzyl ether

100 1		137.65	129.53			93.16 ——	77.32 77.00 77.64			NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 D11 D11	sc016b 1 20080701 20.03 spect 5 mm QNP 1H/13 zgp30 65536 CDC13 1024 4 23980.814 0.365918 1.3664756 1024 20.850 6.50 298.2 2.00000000 0.03000000	Hz Hz sec usec K sec sec
	 *****			*****	 *****				 	 NUC1 P1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02 SI SF WDW SSB LB GB PC	1 CHANNEL f1 ==== 13C 8.12 0.00 100.6228298 1 CHANNEL f2 ==== waltz16 1H 80.00 18.00 18.00 400.1316005 1 32768 100.6127757 1 EM 0 1.00 1 0 1.00 1 0 0	ISEC IB IN ISEC IB IB IB IB IB IB IB IB IB IB IB IB IB

References

1. Thomas NR, Yang, Y, Drew, W.C, inventor; Lees, K.J, assignee. Biomolecular Labelling using multifunctional biotin analogues. United Kingdom patent WO 2010/106347 A2 2010.

2. Isaad AL, Barbetti F, Rovero P, D'Ursi AM, Chelli M, Chorev M, et al. N-alpha-Fmoc-Protected omega-Azido- and omega-Alkynyl-L-amino Acids as Building Blocks for the Synthesis of "Clickable" Peptides. *Eur J Org Chem.* 2008, 5308-14.

3. Vyas GN, Shah.N.M. Quinacetophene monomethy ether. *Org. Synth.* 1963, IV, 836-9.

4. Mackenzie.A.R. MCJ. Synthesis of bacterial coenzyme methoxatin. *Tetrahedron*. 1986, 42, 3259-68.

5. Van Benthem RATM, Hiemstra H, Speckamp WN. Synthesis of *N*-Boc-protected 1-amino-3-alken-2-ols from allylic carbamates via palladium(II)-catalyzed oxidative cyclization. *J Org Chem*. 1992, 57, 6083-5.

6. Connell RD, Rein T, Aakermark B, Helquist P. An efficient, palladium-catalyzed route to protected allylic amines. *J Org Chem*. 1988, 53, 3845-9.

7. Balestra MB, H.; Chen. D; Egle, I.; Forest, J.; Frey, J.; Isaac, M.; Ma, F.; David, N.; Slassi, A.; Steeleman, G.; Sun, G.; Sundar, B.; Ukkiramapandian, R.; Urbanek, R.A.; Walsh, S.; , inventor; Astrazeneca AB, NPS Pharma Inc, assignee. Pyrazolone compounds as metabotropic glutamate receptor agonists for the treatment of neurological and psychiatric disorders patent WO 2006071730. 2006.

8. Ouellet SG, Bernardi A, Angelaud R, O'Shea PD. Regioselective S(N)Ar reactions of substituted difluorobenzene derivatives: practical synthesis of fluoroaryl ethers and substituted resorcinols. *Tetrahedron Lett*. 2009, 50, 3776-9.

9. Drewe WC, Neidle S. Click chemistry assembly of G-quadruplex ligands incorporating a diarylurea scaffold and triazole linkers. *ChemComm*. 2008, 5295-7.

10. Adachi KA, Y.; Hanano, T.; Morimoto, H.; Hisadome, M, inventor; Mitsubishi Pharma Corp., assignee. Piperazine compounds and medicinal use thereof patent US 6455528 (B1). 2002.

11. Lee JWL, B.Y.; Kim, C.S, Lee, S.K.; Song, K.S.; Lee, S.J.; Shim, W.J.; Hwang, M.S., inventor; Yuhon Corp, assignee. Pyrimidine derivatives and processes for the preparation thereof patent US 6352993. 2002.

12. Pal M, Parasuraman K, Yeleswarapu KR. Palladium-Catalyzed Cleavage of O/N-Propargyl Protecting Groups in Aqueous Media under a Copper-Free Condition. *Org Lett.* 2003, 5, 349-52.

13. Spletstoser JT, Flaherty PT, Himes RH, Georg GI. Synthesis and Anti-Tubulin Activity of a 3-(4-Azidophenyl)-3-dephenylpaclitaxel Photoaffinity Probe. *J Med Chem*. 2004, 47, 6459-65.

14. Zhu W, Ma DW. Synthesis of aryl azides and vinyl azides via proline-promoted Cul-catalyzed coupling reactions. *ChemComm*. 2004, 888-9.

15. Schaetzer JN, K.; Stoller, A.; Hall, R.G.; Wenger, J.; Bondy, S.S.; Comer, D.D.; Penzotti, J.E.; Grootenhuis, P.D.J., inventor; Syngenta Participations, assignee. Novel Herbicides patent WO 2004002981. 2004.

16. Gibson SE, Mainolfi N, Kalindjian SB, Wright PT, White ALP. A new class of non-racemic chiral macrocycles: A conformational and synthetic study. *Chem Eur J.* 2005, 11, 69-80.

17. Murer PK, Lapierre JM, Greiveldinger G, Seebach D. Synthesis and properties of first and second generation chiral dendrimers with triply branched units: A spectacular case of diastereoselectivity. *Helv Chim Acta*. 1997, 80, 1648-81.

18. Marcoux J-FD, Sven; Buchwald, Stephen L. A General Copper-Catalyzed Synthesis of Diaryl Ethers. *J Am Chem Soc.* 1997, 119, 10539–40.

19. Manoury PM, Binet JL, Rousseau J, Lefevreborg FM, Cavero IG. Synthesis of a Series of Compounds Related to Betaxolol, a New Beta-1-Adrenoceptor Antagonist with a Pharmacological and Pharmacokinetic Profile Optimized for the Treatment of Chronic Cardiovascular-Diseases. *J Med Chem.* 1987, 30, 1003-11.

20. Nahm MR, Potnick JR, White PS, Johnson JS. Metallophosphite-catalyzed asymmetric acylation of alpha, beta-unsaturated amides. *J Am Chem Soc.* 2006, 128, 2751-6.

21. Kopp F, Linne U, Oberthur M, Marahiel MA. Harnessing the chemical activation inherent to carrier protein-bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. *J Am Chem Soc.* 2008, 130, 2656-66.