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Abstract: Antibiotic resistance is a major health problem worldwide, causing more deaths than
diabetes and cancer. The dissemination of vertical and horizontal antibiotic resistance genes has
been conducted for a selection of pan-resistant bacteria. Here, we test if the aerobic and anaero-
bic bacteria from human feces samples in health conditions are carriers of beta-lactamases genes.
The samples were cultured in a brain–heart infusion medium and subcultured in blood agar in
aerobic and anaerobic conditions for 24 h at 37 ◦C. The grown colonies were identified by their
biochemical profiles. The DNA was extracted and purified by bacterial lysis using thermal shock
and were used in the endpoint PCR and next generation sequencing to identify beta-lactamase
genes expression (OXA, VIM, SHV, TEM, IMP, ROB, KPC, CMY, DHA, P, CFX, LAP, and BIL). The
aerobic bacterias Aeromonas hydrophila, Citrobacter freundii, Proteus mirabilis, Providencia rettgeri,
Serratia fonticola, Serratia liquefaciens, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumo-
niae, Pantoea agglomerans, Enterococcus faecalis, and Enterobacter cloacae, the anaerobic bacteria:
Capnocytophaga species, Bacteroides distasonis, Bifidobacterium adolescentis, Bacteroides ovatus,
Bacteroides fragilis, Eubacterium species, Eubacterium aerofaciens, Peptostreptococcus anaerobius,
Fusobacterium species, Bacteroides species, and Bacteroides vulgatus were isolated and identified.
The results showed 49 strains resistant to beta-lactam with the expression of blaSHV (10.2%), blaTEM
(100%), blaKPC (10.2%), blaCYM (14.3%), blaP (2%), blaCFX (8.2%), and blaBIL (6.1%). These data
support the idea that the human enteric microbiota constitutes an important reservoir of genes for
resistance to beta-lactamases and that such genes could be transferred to pathogenic bacteria.

Keywords: microbiome; beta-lactams; beta-lactamases; resistome

1. Introduction

The indiscriminate and unconscious use of antibiotics in the clinic, agriculture, and
livestock have been increased the selection pressure in the worldwide microbiome, inducing
resistant, multiresistant, and pan-resistant pathogen bacteria selection [1–3]. This problem
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reached a maximal level during the last two years where the antibiotic use has increased
drastically due to the pandemic spread of SARS-CoV-2, since more than 70% of COVID-19
patients have received complimentary treatment with antibiotics drugs [4,5].

Bacterial resistance to antibiotics is a situation that has been increasing during the
last decades, converting into a wide world public health problem [6,7], that complicates
the treatment of the infection while increases the mortality rate in both nosocomial or
community-acquired infectious diseases [8,9]. This resistance is reaching a critical point, as
the increase in these resistant, multi-resistant, and pan-resistant pathogenic strains causes
serious medical complications [10].

The lactam groups of molecules are integrated into four families, i.e., beta-lactam [11],
gamma-lactam [12], delta-lactam [13], and epsilon-lactam [14], with a specific action and
not necessarily like antibiotics. Specifically, the beta-lactams drugs show antibiotic effects
in a wide bacterial variety. They are characterized by a beta-lactam ring presence, which
confers the antimicrobial effect by the transpeptidases and carboxypeptidases inactivation
(the proteins responsible for the biosynthesis of the cell wall) through their binding to Peni-
cillin Binding Protein (PBPs) receptors [15]. The beta-lactam family is made up of various
members, such as penicillins B and G, amoxicillin, ampicillin, cephalosporins (cephalothin,
cephalexin, ceftriaxone, and cefepime), carbapenems (imipenem, meropenem, ertapenem),
aztreonbactam, monobactam, and some others. The indiscriminate and unconscious
use of these antibiotics in daily clinical practice has caused an increase in multiresistant
Enterobacteriaceae strains, especially Escherichia coli and Klebsiella pneumoniae, turn-
ing this situation into a serious global health problem [16]. During the last decade that
there has been a significant increase in the presence of multi-resistant strains worldwide,
mainly in the European Union. The European Read for Antimicrobial Resistance Surveil-
lance (EARSNet) has been identified pan-resistant Escherichia coli and Klebsiella pneumoniae
strains [17,18]. The bacteria have various resistance mechanisms, mainly associated with
plasmid assimilation, which allow cross-resistance against a wide range of antibiotics [19].
The most widely described mechanism of antibiotic resistance that is mediated by plasmid
transfer is the enzymatic degradation of the beta-lactam ring through the expression of beta-
lactamases [20]. The genes encoding for the beta-lactamases enzymes have been widely
spread among the bacterial population, through mobile genetic elements, which confer a
plasmid-mediated multi-resistance [21,22]. These multi-resistance bacteria complicate the
patient treatments and condition the type of antibiotics that can be administrated for the
treatment of common infections [23]. The first-line antibiotic treatment regimens for gas-
trointestinal and airway infections usually include beta-lactams drugs, such as ampicillin,
amoxicillin, or third generation cephalosporins (Ceftriaxone), but the resistance determines
the treatment that can be given to patients and decreases the effectiveness significantly of
these treatments. The Carbapenems (ertapenem, meropenem, imipenem) have been widely
used as an alternative for the treatment of these resistant bacteria, however, in recent years,
resistant bacteria strains to these antibiotics have been identified [24]. The main causes
associated with this increase in bacterial resistance are the error in the medical prescrip-
tion, self-medication, incomplete antibiotics treatment, and the use of these drugs by the
agricultural and livestock industry for the treatment of crops for human consumption [25].

For these reasons, we test the hypothesis that the Enterobacteriaceae integrating
the human gastrointestinal microbiome are carriers of beta-lactamases genes in healthy
individuals who have not received antibiotic treatment during their last year of life.

2. Results
2.1. Bacteria Identification

From the sampling of 20 different medicine students in healthy conditions from Mexico
City, 49 beta-lactam resistant strains were isolated, founding 27 strands of 12 different
aerobic and 22 strand of 11 different anaerobic beta-lactam resistant Enterobacteriaceae
species (Figure 1). The distribution of the identified bacteria was as follows. Aerobic:
Aeromonas hydrophila 3.7% (n = 1), Citrobacter freundii 3.7% (n = 1), Enterobacter aerogenes
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7.4% (n = 2), Enterococcus faecalis 14.8% (n = 4), Enterobacter cloacae 22.2% (n = 6), Escherichia
coli 11.1% (n = 3), Klebsiella pneumoniae 11.1%% (n = 3), Proteus mirabilis 3.7% (n = 1),
Providencia rettgeri 3.7% (n = 1), Pantoea agglomerans 11.1% (n = 3), Serratia fonticola 3.7%
(n = 1), Serratia liquefaciens 3.7% (n = 1), Anaerobic: Bacteroides distasonis 4.5% (n = 1),
Bifidobacterium adolescentis 4.5% (n = 1), Bacteroides ovatus 4.5% (n = 1), Bacteroides fragilis 4.5%
(n = 1), Bacteroides species 13.6% (n = 3), Bacteroides vulgatus 18.2% (n = 4), Capnocytophaga
species 4.5% (n = 1), Eubacterium species 4.5% (n = 1), Eubacterium aerofaciens 18.1% (n = 4),
Fusobacterium species 13.6% (n = 3) and Peptostreptococcus anaerobius 9.1% (n = 1) (Figure 1).
All these data were confirmed by whole DNA sequencing using NGS (Table 1), showing
98% of concordance with the automatized bacterial identification. All bacteria genomes
size sequenced were similar to those reported in the gene bank, observing ∆ from 1% to 8%
of differences compared with the reported sizes (Table 2).
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Figure 1. Bacterial frequency. The graph shows the frequency of beta-Lactam resistant aerobic and anaerobic Enterobacteri-
aceae isolated from feces sample of medicine student in healthy conditions.

2.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility test of beta lactam resistant bacteria showed, that
the 88.9% (n = 24) showed resistance to amoxicillin/clavulanic acid, ampicillin, and van-
comycin, followed by resistance to cefixime with 81.5% (n = 22). Resistance towards
cefuroxime and towards cephalothin occurred in both cases in 70.4% (n = 19) of the isolated
aerobic bacteria, followed by resistance towards cefazolin and cefaclor, both with 66.7%
(n = 18). 63% (n = 17) of the aerobic bacteria isolates showed resistance to piperacillin,
followed by resistance to doxycycline with 51.9% (n = 14) resistance. The lowest resistance
was observed towards piperacillin/tazobactam 18.5% (n = 5), ceftizoxime 14.8% (n = 4) and
towards meropenem and imipenem, both with 11.1% (n = 3), While 95.5% (n = 21) of the
isolated anaerobic bacteria showed resistance towards vancomycin followed by resistance
towards cefixime with 81.8% (n = 18) and towards piperacillin, cephalothin, cefaclor and
cefuroxime, each with 72.7% (n = 18). 68.2% (n = 15) of this population was resistant to
cefazolin, followed by resistance towards doxycycline 63.6% (n = 14) and towards Amoxi-
cillin/Clavulanic acid and Ampicillin, both with 54.5% (n = 12) and towards Ceftizoxime
41.5% (n = 10). The lowest resistance was observed towards Piperacillin/Tazobactam 27.3%
(n = 6) and to Meropenem and Imipenem, each with 4.5% (n = 1), and non-beta-lactam
resistance is showed in Table 3.
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Table 1. Metagenomic identification of the aerobic and anaerobic beta-lactam resistant bacteria isolated from feces cultures of humans in healthy conditions.

Bacteria Total Reads Classified Reads Domain Phylum Class Order Family Genus Species

Aerobic
Aeromonas hydrophila 4,502,897 4,412,839 (98%) 4,103,940 (93%) 3,734,586 (91%) 3,211,744 (86%) 2,697,865(84%) 2,212,249 (82%) 1,791,922 (81%) 1,361,861 (76%)

Citrobacter freundii 1,816,430 1,798,266 (99%) 1,744,318 (97%) 1,657,102 (95%) 1,491,392 (90%) 1, 327,339(89%) 1,101,691 (83%) 870,336 (79%) 539,608 (62%)
Enterobacter aerogenes 897,648 727,095 (81%) 567,134 (78%) 436,693 (77%) 331,887 (76%) 248,915 (75%) 1817,08 (73%) 130,830 (72%) 91,581 (70%)
Enterococcus faecalis 3,134,872 3,040,826 (97%) 2,852,734 (91%) 2,821,385 (90%) 2,695,990 (86%) 2,664,641 (85%) 2,539,246 (81%) 2,507,898 (80%) 2,476,549 (79%)
Enterobacter cloacae 945,761 898,473 (95%) 892,798 (94%) 871,046 (92%) 866,317 (91%) 850,239 (89%) 842,673 (89%) 836,998 (85%) 835,107 (88%)

Escherichia coli 2,361,827 2,078,408 (88%) 1,936,698 (82%) 1,865,843 (79%) 1,606,042 (68%) 1,511,569 (64%) 1,464,333 (62%) 1,440,714 (61%) 1,393,478 (59%)
Klebsiella pneumoniae 1,129,675 1,039,301 (92%) 1,016,708 (90%) 1,005,411 (89%) 994,114 (88%) 915,037 (81%) 881,147 (78%) 869,850 (77%) 835,960 (74%)

Proteus mirabilis 816,524 808,359 (99%) 805,909 (98%) 803,460 (97%) 767,533 (94%) 751,202 (92%) 743,037 (91%) 738,954 (90%) 726,706 (89%)
Providencia rettgeri 354,869 273,249 (77%) 266,152 (75%) 259,054 (73%) 255,506 (72%) 237,762 (67%) 223,567 (63%) 216,470 (61%) 191,629 (54%)

Pantoea agglomerans 497,802 438,066 (88%) 433,088 (87%) 408,198 (82%) 393,264 (79%) 388,286 (78%) 353,439 (71%) 338,505 (68%) 333,527 (67%)
Serratia fonticola 1,347,964 1,334,484 (99%) 1,267,086 (94%) 1,253,607 (93%) 1,226,647 (91%) 1,186,208 (88%) 1,145,769 (85%) 1,132,290 (84%) 997,493 (74%)

Serratia liquefaciens 256,789 190,024 (74%) 182,320 (71%) 179,752 (70%) 174,617 (68%) 159,209 (62%) 156,641 (61%) 154,073 (60%) 133,530 (52%)
Anaerobic

Bacteroides distasonis 845,168 752,201 (89%) 726,844 (86%) 718,393 (85%) 693,038 (82%) 667,683 (79%) 659,231 (78%) 625,424 (74%) 608,521 (72%)
Bifidobacterium adolescentis 748,751 718,801 (96%) 715,806 (95%) 704,575 (94%) 700,082 (93%) 689,600 (92%) 687,353 (91%) 682,861 (91%) 658,901 (88%)

Bacteroides ovatus 965,743 905,867 (94%) 902,004 (94%) 898,141 (93%) 893,312 (92%) 888,484 (91%) 830,539 (86%) 743,622 (77%) 637,390 (66%)
Bacteroides fragilis 986,241 976,379 (99%) 966,516 (98%) 956,654 (97%) 951,723 (96.4%) 946,791 (96.1%) 927,067 (94.3%) 917,204 (93%) 915,232 (92.6%)
Bacteroides species 567,284 486,162 (85.7%) 483,893 (85.3%) 482,759 (85.1%) 481,624 (84.9%) 478,788 (84.4%) 478,220 (84.3%) 477,086 (84.1%) 474,817 (83.7%)

Bacteroides vulgatus 928,712 911,995 (98.2%) 911,066 (98.1%) 833,055 (89.7%) 830,269 (89.4%) 828,411 (89.2%) 825,625 (88.9%) 819,124 (88.2%) 816,338 (87.9%)
Capnocytophaga species 349,817 319,733 (91%) 315,535 (90.2%) 313,471 (89.6%) 312,911 (89.4%) 312,282 (89.2%) 312,212 (89.1%) 299,793 (85.7%) 295,211 (84.3%)

Eubacterium species 567,492 542,522 (95.6%) 541,387 (95.4%) 540,309 (95.2%) 539,685 (95.1%) 537,982 (94.8%) 536,280 (94.5%) 535,712 (94.4%) 534,010 (94.1%)
Eubacterium aerofaciens 814,927 620,974 (76.2%) 616,085 (75.5%) 604,676 (74.2%) 599,786 (73.6%) 595,712 (73.1%) 594,082 (72.9%) 581,043 (71.3%) 576,968 (70.8%)
Fusobacterium species 237,491 204,717 (86.2%) 203,292 (85.6%) 192,843 (81.2%) 191,418 (80.6%) 189,755 (79.9%) 187,855 (79.1%) 186,193 (78.4%) 185,955 (78.3%)

Peptostreptococcus anaerobius 729,358 686,691 (94.1%) 686,399 (94.1%) 683,044 (93.6%) 682,314 (93.5%) 679,251 (93.1%) 677,282 (92.8%) 612,442 (83.9%) 587,498 (80.5%)
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Table 2. Whole-genome sequencing characteristics of aerobic and anaerobic Enterobacteriaceae rods isolated from human
feces in healthy conditions.

Bacteria CDS Number of Sequence Contigs
Genome Size (bp)

Assembled Reported Difference

Aerobic
Aeromonas hydrophila 4,428 1,124 5,124,487 4,911,246 213,241

Citrobacter freundii 5,064 789 5,343,952 5,297,052 46,900
Enterobacter aerogenes 4,545 1,484 5,578,724 5,280,350 298,374
Enterococcus faecalis 2,969 951 3,111,017 3,038,914 72,103
Enterobacter cloacae 4,545 1,484 4,982,176 4,772,910 209,266

Escherichia coli 5,704 1,561 5,689,156 5,615,389 73,767
Klebsiella pneumoniae 5,071 583 5,479,173 5,315,120 164,053

Proteus mirabilis 3,772 584 4,183,869 4,209,445 25,576
Providencia rettgeri 4,497 638 4,954,326 4,780,676 173,650

Pantoea agglomerans 4,255 738 4,090,220 4,047,712 42,508
Serratia fonticola 5,945 916 6,483,043 6,000,511 482,532

Serratia liquefaciens 4,936 495 5,706,987 5,395,544 311,443
Anaerobic

Bacteroides distasonis 3,896 603 4,952,323 4,812,038 140,285
Bifidobacterium adolescentis 1,742 418 2,173,720 2,089,645 84,075

Bacteroides ovatus 4,803 756 6,425,267 6,472,489 47,222
Bacteroides fragilis 4,100 1,025 5,188,967 5,474,541 285,574
Bacteroides species 2,401 904 2,658,624 2,628,345 30,279

Bacteroides vulgatus 5,055 406 5,311,454 5,681,290 369,836
Capnocytophaga species 2,208 502 2,614,527 2,837,214 222,687

Eubacterium species 2,197 505 2,628,803 2,450,450 178,353
Eubacterium aerofaciens 1,887 1,548 2,128,754 2,264,854 136,100
Fusobacterium species 2,113 738 2,159,799 2,185,897 26,098

Peptostreptococcus anaerobius 1,793 847 1,989,753 2,106,123 116,370

Table 3. Whole antibiograms characteristics of beta-lactam resistant bacteria isolated from feces cultures of humans in
healthy conditions.

Antibiotic Families Drugs Aerobics Anaerobic

Frequency % Frequency %

Beta-Lactam

Amoxicillin/Clavulanic acid (AmC-30) 24 88.9 12 54.5
Piperacillin (PIP-100) 17 63.0 16 72.7

Piperacillin/Tazobactam (TZP-110) 5 18.5 6 27.3
Doxycycline (D-30) 14 51.9 14 63.6

Ampicillin 10(AM-10) 24 88.9 12 54.5
Cephalothin 1◦ (CF-30) 19 70.4 16 72.7

Cefazolin 1◦ (CZ-30) 18 66.7 15 68.2
Cefaclor 2◦ (CEC-30) 18 66.7 16 72.7

Cefuroxime 2◦ (CXM-30) 19 70.4 16 72.7
Cefixime 3◦ (CFM-5) 22 81.5 18 81.8

Ceftizoxime 3a (ZOX-30) 4 14.8 10 45.5
Meropenem (MEM-10) 3 11.1 1 4.5

Imipenem (IPM-10) 3 11.1 1 4.5

2.3. Beta-Lactamases Gene Family Identification

The endpoint PCR results showed that 100 % of the obtained bacterial strain carries at
least a gene of Beta-Lactamases, identified the gene families transcribed and the phenotype
responsible for Beta-Lactam resistance: 49 strains were positive to blaTEM (100%), five
positive strains for the blaSHV (10.2%), five positive strains for blaKPC (10.2%), seven
positive strains for blaCYM (14.3%), one positive strain for blaP (2%), four positive strain
for blaCFX (8.2%), and three positive strains for blaBIL (6.1%) gene families (Table 4). No
members of gene families blaOXA, blaVIM, blaIMP, blaROB, blaCTX, blaDHA, and blaLAP
were found in all obtained strains from feces of human and healthy conditions. These data
were also confirmed by whole-genome sequencing of isolated strains (Tables 3 and 4).
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Table 4. Frequency of beta-lactamase gene families identified by endpoint PCR in roads cultured
from gut microbiota in healthy conditions.

Gene Family Positive
Strains (n) % Gene Family Positive

Strains (n) %

blaTEM 49 100.0 blaBIL 3 6.1
blaSHV 5 10.2 blaP 1 2.0
blaKPC 5 10.2 blaCFX 4 8.2
blaCYM 7 14.3

The isolated strains from human feces in healthy conditions showed a restricted
pattern of resistance to beta-lactam drugs. The individual analysis showed that of the
blaTEM was present in all (100% n = 49) of isolated strains, from these the 77.5% (n = 38)
was carrier only for this gene family, the other 25.5% of isolated strains showed a mixed
genotype for multiple gene families encoding beta-lactamase and specific for each strain,
conformed from two (blaTEM + blaBIL, blaTEM + blaCYM, or blaTEM + blaP) to five
(blaTEM + blaSHV + blaKPC + blaCYMX + blaDHA + blaBIL) gene families of beta-lactamases
(Table 5).

Table 5. Beta-Lactamases (bla) gene families carried by the aerobic and anaerobic Enterobacteria of humans in healthy conditions.

Aerobic Bacteria
Beta-Lactamases Families

Anaerobic Bacteria
Beta-Lactamases Families

TEM SHV KPC CYM BIL CFX TEM CYM BIL P

Aeromonas
hydrophila + + + Capnocytophaga species +

Citrobacter freundii + Bacteroides distasonis + +

Proteus mirabilis + + + + Bifidobacterium
adolescenti +

Providencia rettgeri + Bacteroides ovatus +
Serratia fonticola + + Bacteroides fragilis + +

Serratia liquefaciens + Eubacterium species +
Enterobacter

aerogenes + + Eubacterium aerofaciens +

Escherichia coli + + + + Peptostreptocuccus
anaerobius +

Klebsiella
pneumoniae + + + + + Fusobacterium species + +

Pantoea
agglomerans + + Bacteroides vulgatus + +

Enterococcus faecalis + + Bacteroides species +
Enterobacter cloacae + + + + +

(+) Positive for the beta-lactamase gene family.

2.4. Beta-Lactamases Genotype

The NGS sequencing showed seven members of the TEM beta-lactamases gene family
including blaTEM-1, blaTEM-2, blaTEM-3, blaTEM-10, blaTEM-12, blaTEM-24, and blaTEM-
52 distributed in the 49 blaTEM positive strains, two members of KPC beta-lactamases
gene family (blaKPC-2 and blaKPC-3), only one member of each one of CYM (blaCMY-2),
BIL (blaBIL-1), CFX (blaCTX-M-15), and P (blaP) beta-lactamases gene families were found
(Table 4).

The mixed gene expression pattern was present some aerobic of Enterobacteriaceae
species: Aeromonas hydrophila (blaTEM-1 + blaSHV-12 + blaBIL-1), Enterobacter aerogenes
(blaTEM-1 + blaKPC-2), Enterococcus faecalis (blaTEM-1 + blaSHV-1), Enterobacter cloacae
(blaTEM-12 + blaSHV-1), Escherichia coli (blaTEM-52 + blaSHV-12 + blaCMY-2 + blaCTX-M-
15), Klebsiella pneumoniae (blaTEM-10 + blaSHV-12 + blaKPC-3 + blaCMY-2 + blaCTX-M-15),
Proteus mirabilis (blaTEM-1 + blaKPC-2 + blaCMY-2 + blaCTX-M-15), Pantoea agglomer-
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ans (blaTEM-1 + blaCMY-2), Serratia fonticola (blaTEM-1 + blaKPC-2), while the anaerobic
bacteria that express mixed genotype were: Bacteroides distasonis (blaTEM-1 + blaBIL-1),
Bacteroides fragilis (blaTEM-2 + blaCMY-2), Bacteroides vulgatus (blaTEM-1 + blaCMY-2), and
Fusobacterium species (blaTEM-12 + blaP). The NGS analyses for all the bacterial strains
tested were negative to blaOXA, blaVIM, blaIMP, blaROB, blaCTX, blaDHA, and blaLAP
(Table 6).

Table 6. Mixed Genotype of the beta-lactam antibiotic resistome identified by next-generation sequencing in the aerobic
and anaerobic Enterobacteria from feces of humans in healthy conditions.

Bacteria
Phenotype of Beta-Lactamases

TEM SHV KPC CYM BIL CFX P

Aerobic
Aeromonas hydrophila blaTEM-1 blaSHV-12 blaBIL-1

Citrobacter freundii blaTEM-2
Enterobacter aerogenes blaTEM-1 blaKPC-2
Enterococcus faecalis blaTEM-1 blaSHV-1
Enterobacter cloacae blaTEM-12 blaSHV-1

Escherichia coli blaTEM-52 blaSHV-12 blaCMY-2 blaCTX-M-15
Klebsiella pneumoniae blaTEM-10 blaSHV-12 blaKPC-3 blaCMY-2 blaCTX-M-15

Proteus mirabilis blaTEM-1 blaKPC-2 blaCMY-2 blaCTX-M-15
Providencia rettgeri blaTEM-24

Pantoea agglomerans blaTEM-1 blaCMY-2
Serratia fonticola blaTEM-1 blaKPC-2

Serratia liquefaciens blaTEM-12
Anaerobic

Bacteroides distasonis blaTEM-1 blaBIL-1
Bifidobacterium adolescentis blaTEM-1

Bacteroides ovatus blaTEM-1
Bacteroides fragilis blaTEM-2 blaCMY-2
Bacteroides species blaTEM-1

Bacteroides vulgatus blaTEM-1 blaCMY-2
Capnocytophaga species blaTEM-1

Eubacterium species blaTEM-1
Eubacterium aerofaciens blaTEM-1
Fusobacterium species blaTEM-12 blaP-1

Peptostreptococcus
anaerobius blaTEM-1

3. Discussion

The wide use of antibiotics in the clinic, agriculture, and livestock induce a high
selection pressure in the worldwide microbiome allowing the resistant, multi-resistant,
and pan-resistant bacteria selection and colonization of the gut of human and some other
animals including insects and seafoodn [1–3]. In the same way, contamination affects
vegetables for human consumption [26–37]. Even though many of these bacteria do not
produce pathology, they are capable of transferring these antibiotic resistances mechanisms
to human gut microbiota members and pathogenic bacteria, making it a reservoir for
antibiotic resistance genes [37]. Following this idea, our research group characterized
the beta-Lactam resistome carried by the aerobic and anaerobic Enterobacteriaceae from
healthy medical students of Mexico City.

3.1. Enterobacteriaceae Characterization

The data analysis demonstrates the presence of multiple members of aerobic and
anaerobic beta-lactam resistant Enterobacteriaceae, the identified bacteria distribution was
as follows. Aerobic: Aeromonas hydrophila, Citrobacter freundii, Proteus mirabilis, Providencia
rettgeri, Serratia fonticola, and Serratia liquefaciens. Each one represents 3.7% of all beta-lactam
resistant aerobic Enterobacteriaceae, the Enterobacter aerogenes represent 7.4%, Enterococcus
faecalis was present in 14.8%, Enterobacter cloacae were in the 22.2% of all isolated strands,
the more abundant Enterobacteriaceae were Escherichia coli, Klebsiella pneumoniae in and
Pantoea agglomerans were found in the 11.1% each one (Figure 1, Tables 1 and 2). The
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founded species from human feces are in concordance with previous results were reported
the repertoire and variations of human gut microbiota, they characterized 113 different
bacteria, including Gram-positive bacteria (Bifidobacterium, Eubacterium, Peptostreptococcus,
Ruminococcus, Lactobacillus, and Clostridium genera) and Gram-negative bacteria (Bac-
teroides, Fusobacteria genera) [38]. All our bacterial culture data were corroborated by
NGS sequencing show 98% of concordance in the final bacterial identification. These data
are supported by previously published works. Our NGS data are in concordance with
other NGS studies that found 71% of all bacterial community was conformed by Firmicutes,
9% was Actinobacteria, while Bacteroidetes, Proteobacteria, and Cyanobacteria represent a
relatively low abundance ranging from 3% to 7%, the bacterial families found were: Lacto-
bacillacea, Ruminococcacea, Lancnospiraceacea, Clostridiaceacea. Streptococceacea, Streptophyta,
Staphylococceacea, Verrucomicrobiaceace, and Enterobacteriaceae among others [39]. However,
the composition of the intestinal microbiota varies depending on the type of diet [40].
The obtained results from feces samples reveal the potentially pathogenic enterobacteria
presence in the human digestive tract in healthy conditions, their presence as the gastroin-
testinal resident microbiome, and not necessarily associated with an active gut infection.
To determine the potential of these batteries to cause infection, it would be necessary to
study other factors, such as virulence and pathogenesis genes expressed by each bacterium,
bacterial load, and subjects’ immunological status.

3.2. Beta-Lactam Gene Families

Due to the isolated Enterobacteriaceae being isolated in presence of the beta-Lactam
drug in the culture media (Table 2), all strains were expected to be carriers at least one
member of the different gene families that code for beta-Lactamases. The endpoint PCR
identified the gene families transcribed and the phenotype responsible for Beta-Lactam
resistance: 100% of the isolated strain were positive to blaTEM, 10.2% positive for the
blaSHV, 10.2% positive to blaKPC, 10.2% positive for blaCYM (14.3%), 2% positive to
blaP, 8.2% positive to blaCFX and 6.1 positive blaBIL gene family (Tables 3 and 4), no
strand positives to members of blaOXA, blaVIM, blaIMP, blaROB, blaCTX, blaDHA, and
blaLAP gene families were found (Tables 3 and 4). These results accord with previous
works, finding that Enterobacteriaceae expressed a member of blaCTX, blaSHV, and blaTEM
genes families [41], while around the world the main reported beta-lactamase families in
the multidrug-resistant Enterobacteriaceae are: blaKPC, blaTEM, blaOKP, blaOXA, blaSHV,
blaVIM and blaNDM [42], in agreement with our results.

3.3. Beta-Lactam Phenotypes

The sequencing data shows that 83.7% of all resistant Enterobacteriaceae was a carrier
of blaTEM gene family including blaTEM-1, blaTEM-2, blaTEM-10, blaTEM-12, blaTEM-24,
and blaTEM-52 members, like a unique or multiple beta-lactam resistance mechanisms, for
the blaSHV and blaKPC gene family we found only two members of each family including
blaSHV-1, blaSHV-12, blaKPC-2 and blaKPC-3, while for families blaCMY, blaBIL, blaCTX,
and blaP we only find a member of each one of them including blaCMY-2, blaBIL-1, blaCTX-
M-15, and blaP-1, all of these beta-lactamases genes were found in combination with a
member of the blaTEM gene family. In specific, we found that blaTEM-1 a non-xtended-
spectrum beta-lactamase (ESBL) was dominant in unique beta-lactamase gene expression,
while the 16.3% of all resistant Enterobacteriaceae was carrier of mixed phenotype with an
ESBL, in specific in Aeromonas hydrophila (blaTEM-1 + blaSHV-12 + blaBIL-1), Enterobacter
aerogenes (blaTEM-1 + blaKPC-2), Enterococcus faecalis (blaTEM-1 + blaSHV-1), Enterobacter
cloacae (blaTEM-12 + blaSHV-1), Escherichia coli (blaTEM-52 + blaSHV-12 + blaCMY-2 +
blaCTX-M-15), Klebsiella pneumoniae (blaTEM-10 + blaSHV-12 + blaKPC-3 + blaCMY-2 +
blaCTX-M-15), Proteus mirabilis (blaTEM-1 + blaKPC-2 + blaCMY-2 + blaCTX-M-15), Pantoea
agglomerans (blaTEM-1 + blaCMY-2), Serratia fonticola (blaTEM-1 + blaKPC-2), while the
anaerobic bacteria that express mixed genotype were: Bacteroides distasonis (blaTEM-1
+ blaBIL-1), Bacteroides fragilis (blaTEM-2 + blaCMY-2), Bacteroides vulgatus (blaTEM-1 +
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blaCMY-2) and Fusobacterium species (blaTEM-12 + blaP), in the NGS analysis, all bacterial
strains tested were negative to blaOXA, blaVIM, blaIMP, blaROB, blaDHA and blaLAP
(Table 5). These results are in agreement with a Korean report were they found that the
blaTEM-1 is the most prevalent beta-lactamase expressed by the stool Enterobacteriaceae of
healthy human [43]. In the same way, the Swiss study conducted with Enterobacteriaceae
isolated from healthy humans found that the blaCTX-M-14 and blaCTX-M-15 are the most
ESBL prevalent and are generally expressed as unique genes. Here, too, it is reported that
blaTEM-1 + blaCTX-M1, blaTEM-1 + blaCTX-M-14 and blaTEM-1 + blaCTX-M-14 phenotypes
are the most prevalent [44], in agreement with our results, which found that blaCTX-M-15
is always expressed in mixed genotype.

The bacterial isolates obtained were identified with simple or complex beta-lactam re-
sistome. This is especially relevant since the resistance gene can be transmitted from among
a wide range of Enterobacteriaceae through plasmid and mobile genetic elements, confer-
ring antibiotic resistance to pathogenic bacteria that are causing gastrointestinal and sys-
temic infection, complicating their treatment. These findings are especially important since
the complex resistome expressed by the Enterobacteriaceae were integrated by one member
of blaTEM gene family, including blaTEM-1, blaTEM-2, blaTEM-10, blaTEM-12, blaTEM-24,
and blaTEM-52, unique or in combination one or more member of blaSHV, blaKPC, blaCMY,
blaBIL, blaCTX, and blaP gen families, including blaSHV-1, blaSHV-12, blaKPC-2, blaKPC-3,
blaCMY-2, blaBIL-1, blaCTX-M-15, or blaP-1 (Tables 3 and 4), which confer resistance to
ampicillin, penicillins including oxacillin, extended-spectrum cephalosporins (cefotaxime,
ceftazidime), cephamycin, carbapenems, and monobactams characteristics that limit the
therapeutic option of infections caused by bacterial carriers of these genes.

The data analysis showed multiple members of aerobic and anaerobic Enterobacteri-
aceae that show multi-resistance molecular mechanisms to beta-lactams drugs, mediated
by unique resistance genes or conforming a beta-lactam resistome, in asymptomatic indi-
viduals. This can be widely explained by mechanisms such as antibiotics self-medication,
abuse, and error in their medical prescription, as well as lack of adherence to antibi-
otic treatment, including via the consumption of contaminated water [45–47] or foods,
mainly meats [48,49], fruits [50], and vegetables [26,51]. Moreover, the agriculture [52]
and livestock industries [53,54] indiscriminately use the beta-lactam drugs to maximize
production [55,56].

4. Materials and Methods
4.1. Bioinformatic Analysis and Primer Design

The bioinformatic analysis and primer design were previously described and re-
ported by our research group [26]. Briefly, we obtained the beta-Lactamases integrons and
DNA sequences from the GenBank of NCBI, all reported sequences of beta-lactamases
we found were used to design primer for the PCR. The DNA sequence alignments
were made with ClustalW v.2 software (http://www.clustal.org/clustal2/ accessed on
10 April 2021) [27–29], to obtain the phylogenetic trees by using FigTree V1.4.0 software
(http://tree.bio.ed.ac.uk/software/figtree/ accessed 10 April 2021) [30]. The conserved
sequences found in the alignment were used to design a set of specific and degenerate
primers (PerPrimer v1.1.21 Software, http://perlprimer.sourceforge.net accessed 10 April
2021 [31] under astringent criteria, length (18–25 bp), Tm (60–62 ◦C), GC (40–60 %), ∆T◦

(1 ◦C), Amplicons (83–230 bp) [26].

4.2. Sampling

Twenty volunteers (10 men and 10 women) were selected for this study. All of
them were medicine students from Mexico City enrolled at the Anahuac University, aged
between 20 and 22 years, with no history of beta-lactam antibiotics treatment in the last
year or have been suffering diarrhea during that period. Donors were provided with
the sample collection material, which consisted of plastic containers, gloves, a cardboard
paper sheet, and wooden spatulas; all the material was sterile. The donors were asked to

http://www.clustal.org/clustal2/
http://tree.bio.ed.ac.uk/software/figtree/
http://perlprimer.sourceforge.net
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deposit a portion of their stool on the cardboard sheet and from this, they collect with the
wooden spatula, an approximate volume of 10 cubic cm, and place it in the sterile container.
The time elapsed from when the sample was taken to its beginning of processing in the
laboratory was not more than 2 h, this in order not to alter, as far as possible, the bacterial
viability. Then, five g of each human feces samples were weighed and cultured in BHI
(brain and heart infusion broth) (Becton Dickinson, Franklin Lakes, NJ) incubated at 37 ◦C
for 24 h, in both aerobic and anaerobic conditions.

4.3. Bacterial Isolation

For the anaerobic conditions, the BHI tubes containing samples were immediately
placed in the BD BBL ™ GasPak ™ anaerobic jar, one envelope of BD BBL ™ CO2 gas
generators and another of BD BBL ™ GasPak ™ anaerobic indicator were placed on
them. Later they were incubated at 37 ◦C during 24 h. For the aerobic conditions, the
tubes with BHI containing the samples were directly incubated at 37 ◦C for 24 h. After
is incubation, 10 µL from the BHI were taken, subcultured in MacConkey agar (Becton
Dickinson, Franklin Lakes, NJ, USA), and incubated at 37 ◦C for 24 h. The obtained
colonies were subcultured in blood agar and incubated at 37 ◦C for 24 h, in both aerobic or
anaerobic conditions.

4.4. Biochemical Bacterial Identification

The automatized bacterial identification was made according to previously reported
by our research group. Briefly, bacterial suspensions were made, by depositing two or
three medium-sized colonies (2 to 3 mm) in BBL™ Crystal™ Inoculum Broth (Becton
Dickinson, Franklin Lakes, NJ, USA). Said inoculum was adjusted to a Mac Farland
1.0 scale (Expected CFU/mL 3.0 × 108). The inoculum was deposited in BBL™ Crystal™
Enteric/Nonfermenter or Anaerobe ID Kit plates, incubated at 37 ◦C for 18 h, without CO2
and 40–60% humidity. Finally, the plates were read by the BBL™ Crystal™ AutoReader
(Becton Dickinson, Franklin Lakes, NJ, USA) and the results were analyzed with the BBL™
Crystal™ MIND v.5.05 Software (Becton Dickinson, Franklin Lakes, NJ, USA) [26].

4.5. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility testing was done following a previously reported
method [26]. Briefly, the pure colonies obtained from blood agar were resuspended in
bacterial suspensions, and were made depositing two or three medium-sized colonies
(2 to 3 mm) in BBL Crystal Inoculum Broth (Becton Dickinson; Franklin Lakes, NJ, USA).
The obtained inoculum was adjusted while using a Mac Farland 0.5 reading (Expected
CFU/mL 1.5 × 108), and cultured in Müeller Hinton 150 × 15 mm2 media BD BBL
(Becton Dickinson Franklin Lakes, NJ, USA). The antibiotic discs were applied with the
Sensi-Disc Designer Dispenser System. The antibiotics panel was conformed by ampi-
cillin (10 µg), ampicillin/sulbactam (10/10 µg), mezlocillin (75 µg), carbenicillin (100 µg),
piperacillin/tazobactam (100/10 µg), cefazolin (30 µg), cefaclor (30 µg), cefepime (30 µg),
cefoperazone (75 µg), and cefotetan (30 µg) from Becton Dickinson (Franklin Lakes, NJ,
USA), Müeller Hinton medium were incubated at 37 ◦C for 24 h in both aerobic and anaer-
obic conditions. In anaerobic conditions, the media were placed in an anaerobic jar (BD
BBL™ GasPak™), with a C02 gas generators envelope (BD BBL™) and another envelope
of BD BBL™ GasPak™ anaerobic indicator placed on them.

4.6. DNA Extraction
4.6.1. Crude Extract

Five mL of Luria-Bertani broth (LB) were inoculated with an isolated bacterial colony
and incubated overnight at 37 ◦C with continuous shaking (200 rpm), the bacterial culture
was centrifuged at 4000 rpm for five minutes at room temperature, bacterial the pellet was
resuspended on 1 mL of sterile free-RNAse and free-DNAse deionized water, the bacterial
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suspension was heated at 94 ◦C for 10 min followed by ice shock. Finally, the sample of
lysed bacterial was kept at –80 ◦C until use [26].

4.6.2. Genomic DNA Extraction

The DNA extraction was done following a previously reported method [26]. Briefly,
500 µL of bacterial culture was obtained from a tested single bacterial colony for genomic
DNA isolation by RTP pathogen kit (Invitek, Germany) following the manufacturer’s
instruction. The eluted DNA solution was quantified by absorbance and its integrity was
verify by 2% agarose gel electrophoresis. The sample was kept at –20 ◦C until use.

4.6.3. Plasmid DNA Extraction

The plasmid DNA extraction was done following a previously reported method [26],
by using plasmid DNA isolation by using PureLink HiPure Plasmid DNA Purification Kit
(Invitrogen, USA) following the manufacturer’s instructions. Plasmid DNA solution was
quantified by digital spectrophotometry by using a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA) and its integrity was verified by electrophoresis in
2 % agarose gel, the sample was kept at –20 ◦C until use.

4.7. Endpoint PCR

The endpoint PCR to identify the β-Lactamases gene families was made by using
previously reported specific and degenerated primes (Table 7) [26]: Amplification was
made in 25 µL of the reaction mixture containing 2.5 µL of 10x PCR buffer (100 mM
TRIS•HCI, 15 mM MgCl2, and 500 mM KCl, pH 8.3), 200 nM each dNTP, 10 µM each
primer, 1 U Taq DNA polymerase (Invitrogen; Carlsbad, CA, USA), and 2 µL of crude
extract or 10 ng of DNA (genomic or plasmidic). The PCR conditions were 94 ◦C for 5 min,
then 35 cycles of 94 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 30 s, and finally 72 ◦C for 10 min.
The PCR products were analyzed by electrophoresis in a 2% Agarose gel prestained with
ethidium bromide and the image was digitized in a GelLogistic 3000 photodocumenter.

4.8. Whole and Plasmid DNA Sequencing

The DNA sequencing was performed following a previously reported method by our
research group [26], the indexed libraries that were prepared using a standard Illumina
Nextera XT DNA Sample Preparation Kit (FC-131-1096) for small genomes and were
sequenced on the MiSeq platform (Illumina; San Diego, CA, USA). Adapters and barcodes
were trimmed by the default setting in the Illumina experiment manager, generating
300-bp paired-end reads. The quality of the unprocessed reads was assessed using FastQC
High Throughput Sequence QC Report v:0.11.5 (Babraham Bioinformatics, Babraham
Institute; Cambridge, UK) [32]. A minimum Q score of more than 30 for at least 85% of all
reads was attained. All reads were mapped using BWA-MEM aligner version 0.7.7-r441
(Wellome trust, Sanger Institute, Hinxton, UK) [33] and SAMtools version 1.3.1 (Wellome
trust, Sanger Institute, Hinxton, UK). The NOVO genome assembly was done using the
SPAdes Genome Assembler software version 3.11 (CAB, St. Petersburg State University,
St. Petersburg, Russia) [34]. The metagenomic analysis for the taxonomic classification of
bacteria was done by using the software Kraken taxonomic sequence classification system
Version 0.10.5-beta (CCB, Johns Hopkins University, Baltimore, MD, USA) [35]. The beta-
lactamase genes were identified by the comparative analysis while using the Basic Local
Alignment Search Tool (BLAST, NCBI-NIH, Bethesda, MD, USA) [36].
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Table 7. Primers sequences and amplicon size for beta-lactamase gene family [26].

Gene Family Primer Name Primer Sequence (5’ to 3’) Tm (◦C) Position Amplicon (bp)

blaOXA
BlaOXA-FW GGTTTCGGTAATGCTGAAATTGG 61.18 214–236

114BlaOXA-RW GCTGTGTATGTGCTAATTGGGA 61.19 327–306

blaVIM
BlaVIM-FW CGACAGTCARCGAAATTCC 61.39 105–123

133BlaVIM-RW CAATGGTCTSATTGTCCGTG 61.34 238–219

blaSHV

BlaSHV-FW1 CGTAGGCATGATAGAAATGGATC 61.04 133–155
106BlaSHV-RW1 CGCAGAGCACTACTTTAAAGG 61.33 239–218

BlaSHV-FW2 GCCTCATTCAGTTCCGTTTC 61.62 399–418
141BlaSHV-RW2 CCATTACCATGAGCGATAACAG 61.22 540–518

blaTEM
BlaTEM-FW GCCAACTTACTTCTGACAACG 61.80 1699–1719

213BlaTEM-RW CGTTTGGAATGGCTTCATTC 60.13 1912–1892

blaIMP

BlaIMP-FW1 GGAATAGARTGGCTTAAYTCTCG 60.92 319–332
183BlaIMP-RW1 CYASTASGTTATCTKGAGTGTG 62.45 502–480

BlaIMP-FW2 GGTGGAATAGARTGGCTTAAYTC 61.11 316–339
192BlaIMP-RW2 CCAAACCACTACGTTATCTKGAG 61.29 508–485

blaROB
BlaROB-FW CCAACATCGTGGAAAGTGTAG 61.27 718–739

126BlaROB-RW GTAAATTGCGTACTCATGATTGC 60.90 844–821

blaKPC
BlaKPC-FW GCTAAACTCGAACAGGACTTTG 61.79 100–121

117BlaKPC-RW CTTGAATGAGCTGCACAGTG 61.90 216–197

blaCTX

BlaCTX-FW1 GATACCGCAGATAATACGCAG 60.79 161–181
116BlaCTX-RW1 CGTTTTGCGTTTCACTCTG 60.28 276–258

BlaCTX-FW2 GCTGATTCTGGTCACTTACTTC 61.02 789–810
83BlaCTX-RW2 CGCCGACGCTAATACATC 60.69 855–872

BlaCTX-FW3 CTGCTTAACTACAATCCSATTGC 62.17 314–336
226BlaCTX-RW3 GGAATGGCGGTATTKAGC 60.86 539–522

blaCMY

BlaCMY-FW1 GTTTGAGCTAGGATCGGTTAG 60.25 337–357
123BlaCMY-RW1 CTGTTTGCCTGTCAGTTCTG 61.48 460–441

BlaCMY-FW2 GAACGAAGGCTACGTAGCT 61.71 213–231
160BlaCMY-RW2 CTGAAACGTGATTCGATCATCA 61.08 372–351

blaDHA

BlaDHA-FW1 GCATATTGATCTGCATATCTCCAC 61.60 399–422
200BlaDHA-RW1 GCTGCTGTAACTGTTCTGC 61.62 598–580

BlaDHA-FW2 GCGGATCTGCTGAATTTCTATC 61.54 464–485
147BlaDHA-RW2 GCAGTCAGCAACTGCTCATAC 61.05 610–591

BlaDHA-FW3 GTAAGATTCCGCATCAAGCTG 61.74 430–450
117BlaDHA-RW3 GGGTTATCTCACACCTTTATTACTG 61.08 546–522

blaP
BlaP-FW GGAGAATATTGGGATTACAATGGC 61.74 271–294

204BlaP-RW CGCATCATCGAGTGTGATTG 61.80 474–455

blaCFX
BlaCFX-FW CCAGTCATATCATTGACAGTGAG 60.86 437–459

177BlaCFX-RW GACATTTCCTCTTCCGTATAAGC 61.16 613–591

blaLAP
BlaLAP-FW AGGGCTTGAACAACTTGAAC 61.07 249–268

126BlaLAP-RW GTAATGGCAGCATTGCATAAC 60.59 374–354

blaBIL
BlaBIL-FW GCCGATATCGTTAATCGCAC 61.65 100–119

128BlaBIL-RW GTTATTGGCGATATCGGCTTTA 60.98 227–206

5. Conclusions

The human gut bacteriome is an important reservoir and mediator for the environmen-
tal beta-lactam resistome. The cumulative beta-lactam resistome in the Enterobacteriaceae
is indicative of the indiscriminate and irrational use of beta-lactam drugs in practically all
economical worldwide activities, especially in Mexico City. The gut bacteriome express
beta-lactam resistome in healthy conditions is integrated by multiple beta-lactamases gen
families, such as blaTEM, blaSHV, blaKPC, blaCYM, blaBIL, blaCFX, blaCYM, blaBIL, and
blaP, which altogether confer resistant, multi-resistant, and pan-resistant characteristics
against beta-lactam antibiotics.
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