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Abstract: Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia that is predominantly
caused by insulin resistance or impaired insulin secretion, along with disturbances in carbohydrate,
fat and protein metabolism. Various therapeutic approaches have been used to treat diabetes,
including improvement of insulin sensitivity, inhibition of gluconeogenesis, and decreasing glucose
absorption from the intestines. Recently, a novel approach has emerged using dipeptidyl peptidase-
IV (DPP-IV) inhibitors as a possible agent for the treatment of T2DM without producing any side
effects, such as hypoglycemia and exhaustion of pancreatic β-cells. DPP-IV inhibitors improve
hyperglycemic conditions by stabilizing the postprandial level of gut hormones such as glucagon-like
peptide-1, and glucose-dependent insulinotropic polypeptides, which function as incretins to help
upregulate insulin secretion and β-cell mass. In this review, we summarized DPP-IV inhibitors and
their mechanism of inhibition, activities of those isolated from various natural sources, and their
capacity to overcome oxidative stress in disease conditions.
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1. Introduction

Diabetes mellitus, commonly identified as diabetes, is a cluster of metabolic disorders
that are distinguished by high blood glucose levels over a prolonged period of time and
associated with inadequate production of insulin by the pancreatic β-cells and insulin
resistance. Insulin aids in the uptake of glucose into the cells of the body, and is therefore
required for the utilization of glucose from digested foods. Diabetes is characterized by
chronic hyperglycemia with impaired carbohydrate, fat, or protein metabolism due to
impaired insulin secretion, insulin resistance, or both. The effects of diabetes include
long-term injury, dysfunction, and failure of various organs. Diabetes monitoring has
changed substantially during the past 70 years, and therapeutic options today are relatively
more effective and less costly than those of the past. The current pharmacological drugs
used to treat diabetes have resulted in drastic reductions in morbidity and mortality. There
are now more than 11 distinct categories of medications available for the treatment of
hyperglycemia in patients with diabetes. These medicinal drugs have been developed over
the past 90 years [1].

Currently treatments of type 2 diabetes mellitus (T2DM) include oral hypoglycemic
agents, and injectable agents. Pharmacologic treatments for T2DM allow better control
of glycemic conditions and hypertension, and reduce blood lipid concentrations [2,3].
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New treatment approaches for diabetic complications would improve if the molecular
mechanisms of diabetes pathology and related β-cell pathway genetic defects could be
understood more clearly [4]. The occurrence of T2DM in different regions of the world
shows a vast pattern in urban and rural areas. As per the World Health Organization
(WHO) and the 9th edition of the International Diabetes Federation (IDF), diabetes is the
world’s seventh leading cause of death, and every six seconds a person dies from diabetes.
Roughly, more than 463 million people of the world’s population had diabetes mellitus in
2019, which is much higher than an earlier estimate of 382 million people in 2013, and the
number of patients with diabetes is expected to rise to 700 million by 2045 [5,6].

Current existing therapies are insufficient due to several reasons, such as poor adher-
ence in patients, lack of efficacy and side effects. Several medicines are currently being
used in clinics such as metformin, sulfonylurea, thiazolidinedione, and sodium-glucose
co-transporter-2 inhibitor, but they have side effects including insulin resistance, hypo-
glycemia, hypothyroidism, weight gain, abdominal pain, obesity, and atherosclerosis [7–9].
Figure 1 shows the different pathophysiological reasons for hyperglycemia development,
such as increased hepatic glucose production, increased glucagon secretion, decreased
pancreatic α-cell and β-cell insulin production, decreased muscle glucose uptake, increased
glucose reabsorption, and decreased incretin effects.

Figure 1. Different approaches for the treatment of hyperglycemia recommended to type 2 diabetes
mellitus patients. Abbreviations: thiazolidinedione (TZD), metformin (MET), dipeptidyl peptidase-
IV inhibitor (DPP-IV), glucagon-like peptide-1 receptor antagonist (GLP-I RA), sodium-glucose
co-transporter-2 inhibitor (SGLT2).

The usual manifestation of untreated diabetes is weight loss, increased urination
(polyuria), excessive thirst (polydipsia), increased hunger (polyphagia), and blurred vi-
sion [10]. Lack of proper treatment can lead to certain complications such as nephropathy
which may cause renal failure and increases the risk of foot ulcers, retinopathy with
blindness, and autonomic dysfunction, including sexual dysfunction [11]. Diabetes com-
plications and pathophysiology are usually accompanied by immoderate production of
reactive oxygen species by mitochondria, the respiratory chain, non-enzymatic glycation,
and metabolic disorders. Increased reactive oxygen species (ROS) production due to the
overproduction of free radicals or decreased levels of enzymes, such as superoxide dismu-
tase (SOD), catalase, and glutathione reductase, leads to impaired antioxidant defenses
antioxidant defenses that are needed to inhibit or scavenge the free radicals that are gen-
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erated by metabolic disorders and oxidative stress and promote good health [12]. These
molecules significantly reduce the damage caused by oxidant molecules by scavenging or
neutralizing free radicals before they can attack cells. These mechanisms prevent damage
to lipids, proteins, enzymes, carbohydrates, and nucleic acids. A novel approach to control
diabetes is based on the use of glucagon-like peptide-1 (GLP-1), an incretin/gut hormone,
which has been shown to reduce postprandial and fasting glycemia in type 2 diabetes
mellitus (T2DM) [13,14]. However, GLP-1 is rapidly degraded in blood plasma by the
dipeptidyl peptidase-IV enzyme (DPP-IV). Therefore, DPP-IV inhibitors might be resulting
in the prolongation of the half-life of GLP-1 by inhibiting DPP-IV and the increase in GLP-1
levels. Hence, the mode of action relies on inhibiting the degradation of GLP-1 and increase
in GLP-1 levels in the blood that lead to an increase in the secretion of insulin from the
pancreas in the body and maintains the glucose homeostasis. In this review, we discussed
the traditional medicinal plants and animal by-products that contain naturally occurring
DPP-IV inhibitors and their antioxidant properties, for the treatment of T2DM.

2. T2DM Treatment Strategy Based on DPP-IV Serine Protease Inhibition

Dipeptidyl peptidase-IV (DPP-IV) enzyme inhibitors have provided a unique thera-
peutic perspective for the treatment of T2DM [15]. Furthermost, mechanisms based on gut
hormones, glucagon-like peptide-1 (GLP-I), glucose-dependent insulinotropic-polypeptide
(GIP), and gastric inhibitory polypeptide, have been shown to reduce postprandial and
fasting glycemia in patients with T2DM and provide therapeutic potential for T2DM. The
role of these hormones has significant importance in β-cell survival, and in increasing
β-cell mass and insulin production. They also regulate glucose homeostasis by enhanc-
ing insulin levels in the blood [16–18]. However, GLP-1 and GIP are constantly broken
down in blood plasma by DPP-IV, leading to their inactivation and reduction in their
half-life from five minutes to two minutes. Hence, they no longer promote insulin secretion
from β-cells. Therefore, DPP-IV enzyme inhibitors play a significant role in improving
the half-life of incretin hormones, i.e., by prolonging their blood circulation via DPP-IV
inhibition. Consequently, preventing the cleavage of gut incretins GLP-1 and GIP has
drawn attention as a beneficial management strategy for T2DM. Figure 2 briefly represents
the mechanism of DPP-IV inhibitors. After consuming meals, GLP-1 incretin hormone is
released in the gastrointestinal (GI) tract and cleaved by the DPP-IV enzyme. However, if a
DPP-IV inhibitor is present in the blood, it protects GLP-1 cleavage by inhibiting DPP-IV
enzyme and thereby regulates blood glucose levels by promoting insulin secretion from the
pancreas. Certain FDA-approved drugs such as vildagliptin and sitagliptin are competitive,
orally active, and fully reversible DPP-IV inhibitors. DPP-IV inhibitors are also the first
incretin-based class of antidiabetic drugs to gain regulatory consent for the treatment of
T2DM [19–21].

Medicines based on incretin-based mechanisms have been proposed as treatments
for T2DM and include DPP-IV inhibitors and GLP-1 antagonists. DPP-IV inhibition has
a unique mechanism that is associated with a lack of hypoglycemia, weight loss, and
minimal side effects. These characteristics may facilitate better therapeutic treatment and
help to achieve our aim. Table 1 summarizes synthetic DPP-IV inhibitors that have been
approved by the FDA.
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Figure 2. Diagrammatic representation of the mechanism of DPP-IV and potential role of protecting
incretin hormone degradation by DPP-IV enzyme to maintain the homeostatic blood glucose level.
Abbreviations: gastrointestinal tract (GI), dipeptidyl peptidase-IV inhibitor (DPP-IV), glucagon-like
peptide-1 (GLP-1).

Table 1. Currently used DPP-IV inhibitors approved by the respective country or which are undergo-
ing clinical trials.

Generic Name Country Brand Name

Sitagliptin Europe, US, Japan Januvia

Vildagliptin Europe, US, Japan Galvus, Equa

Saxagliptin Europe, Japan Onglyza

Linagliptin Europe, US Trajentra, Tradjenta, Trazenta

Alogliptin Europe, US, Japan Vipidia, Nesina

Anagliptin Japan Suiny

Teneligliptin Japan Tenelia

Gemigliptin Korea Zemiglo

Omarigliptin Japan Marizev

Gosogliptin Russia Pfizer

Denagliptin USA, Finland Glaxo

Melogliptin Europe, US, Japan Glenmark

Trelagliptin Europe, US Takeda

Retagliptin China ———

Evogliptin Korea Suganon

Carmegliptin Switzerland ——–

3. DPP-IV Structure and Background

DPP-IV is classified as a serine protease with a serine, histidine, and aspartic acid
catalytic triad of amino acids. The DPP-IV enzyme (DPP-IV, EC 3.4. 14. 5; CD26) was
discovered by Hopsu-Havu and Glenner [22–24]. Collagen has a Gly-Pro amino acid
sequence, and DPP-IV (also known as CD26) is incapable of cleaving Pro–Pro or Pro–Hyp
bonds; thus, cleavage frequently follows the Gly–Pro sequence in collagens. Notably, the
physiological functions of DPP-IV have remained unclear for many years [25,26]. Exo-
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peptidases that cleave N-terminal or C-terminal amino acid residues from peptides and
proteins are known as amino- and carboxy-peptidases respectively [27].
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(N-terminus) (Penultimate amino acid) DPP-IV (Dipeptide)

DPP-IV has the potential to cleave peptide bonds to form a penultimate amino acid
proline and release proline-containing dipeptides from the N-terminus of the polypeptide
chain [28,29]. It contains a small number of enzymes that are able to simply absorb proline-
rich proteins. DPP-IV is generally expressed by cells in the intestinal brush border, and
aids in the complete breakdown of proline-containing dietary proteins, such as casein
and gluten. Some proteins that are particularly allergenic and opposed to hydrolysis
by the other proteolytic enzymes have shown a variety of unfavorable food reactions
and may cause enteropathic manifestations, such as celiac disease [28,30]. The soluble
DPP-IV/sCD26 increases the expression of inducible nitric oxide synthase (iNOS), the
production of proinflammatory cytokines in LPS treated macrophages, and is also reported
to stimulate ROS production and activate the receptor for advanced glycation end product
gene expression [31,32]. Additionally, sCD26 has the potential to enhance an innate immune
response. THP-1 cells and monocytes were stimulated with a combination of sCD26 and
LPS, which increased the expression of c-Fos, NF-kB p65, NF-kB p50, and CUX1 [33].

4. Distribution and Expression of the DPP-IV Enzyme & Molecular Mechanisms of
the GLP-1 Receptor on the Pancreatic Endocrine System

Biological responses that inactivate bioactive peptides have been postulated for all
membrane-bound proline or alanine-specific exo-peptidases. In contrast to the X–Pro
amino-peptidase and Pro–X carboxy-peptidase, which showed constrained distributions,
most vertebrate tissues contain the DPP-IV enzyme, although its activity diverges broadly
in different tissues. DPP-IV also closely regulates blood hormones, since it is present
on endothelial cells of blood vessels and circulates as a soluble enzyme in blood plasma.
DPP-IV is also expressed on activated T-helper lymphocytes and subsets of macrophages.
In the endocrine system, these enzymes are fully expressed in the capillary epithelia, but
not frequently in parenchyma cells, except for in follicular epithelial cells of the thyroid
gland or lacteal cells. DPP-IV is also expressed in specialized fibroblasts, for example in
the skin and kidney. A previous study reported that this peptidase is often present at
sites of physiological barriers (e.g., the blood–brain barrier) [24,34]. The GLP-1 receptor
(GLP-IR) is a 456 amino acid protein with a hepta-helical G-protein coupled receptor
structure, and is extensively expressed in the kidneys, lungs, heart, pancreatic islet β-
cells, central nervous system, and peripheral nervous system [35,36]. Additionally, GLP-1
replenishes insulin storage by stimulating proinsulin gene expression. GLP-1R regulation
is dependent on glucagon secretion, in a glucose-dependent manner; which means it
reduces the risk of hyperglycemia or hypoglycemia. GLP-IR signaling activates human
pancreatic and rodent exocrine cells and initiates a program towards a more endocrine-like
phenotype, in relationship with increased expression of PDX-1, GLUT-2 and glucokinase
genes. Some reports have shown that GLP-R agonists improve β-cell proliferation and
number in islet cell lines, and counter the glucose-dependent mechanism of GLP-1 on
insulin release [37,38].

5. Importance of Antioxidants in Overcoming Oxidative Stress in Disease and Ageing

An organism is continuously exposed to significant oxidative stress as a result of an
imbalance between the antioxidative protection system and strong oxidizing substances,
including free radicals. These free radicals are defined as any atoms or molecules that
contain unpaired electrons in the form of ROS and reactive nitrogen species (RNS). Free
radicals, mostly ROS, are produced in every compartment of cell during normal metabolism
and are part of the cellular physiology system biosynthesis, cell defense, and intracellular
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and intercellular signaling [10]. An imbalance between antioxidants and ROS results in
the formation of free radicals that lead to cellular damage. There is sufficient support
in favor of the role of free radicals in various diseases, such as cardiovascular disease,
diabetes, cancer, autoimmune disorders, neurodegenerative diseases, and aging [39–43].
Antioxidants act as catalysts in the body to scavenge free radicals and suppress the damage
caused by ROS and RNS. ROS includes a combination of the superoxide anion (O2

−),
hydroxyl (OH−), hydroperoxyl (OOH−), peroxyl (ROO·), and alkoxyl (RO·) radicals,
non-free radicals include hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and
RNS mainly include nitric oxide (NO·), peroxynitrite (ONOO·) nitrogen dioxide (NO2),
ozone (O3), and singlet oxygen (O2) [44]. ROS and RNS play important roles in normal
physiological processes including cellular life cycle/death, protection from pathogens, and
various cellular signaling pathways. Furthermore, oxidative stress also contributes to the
accumulation or enhancement of damage to macromolecules and cell organelles, including
mitochondria and the Golgi body [45–47]. The imbalance of ROS/RNS and antioxidants
leads to oxidative stress in the body. Oxidative stress also generates free radicals and
damages cells and tissues.

Antioxidants are mainly of two types: enzymatic and non-enzymatic. The enzymatic
nature of antioxidants is basically endogenously included superoxide dismutase, catalase,
glutathione peroxidase, and glutathione reductase. Non-enzymatic antioxidants include
alkaloids, phenols, ascorbic acid, flavonoids, tocopherols, carotenoids, and steroids. Enzy-
matic antioxidants are produced by the human body or non-enzymatically obtained from
natural sources [48,49].

Antioxidants that are used to treat various diseases have a broad range of natural and
synthetic origins. Natural antioxidants are present in plants that are used as food, and
there are also a few chemical-based antioxidant compounds, such as butylated hydrox-
yanisole, butylated hydroxytoluene, and tertiary butylhydroquinone, which are used as
food supplements. However, these synthetic molecules have shown toxic effects, such
as kidney and liver damage, and other side effects. Flavonoids and other phenolic com-
pounds of plant origin have been reported as free radical scavengers [50–52]. Spices and
plants have been widely used in foods since ancient times for good odor, flavor, color, and
preservative. Nowadays, it is clear that they contain antioxidants and delay the oxidation
of lipids in foodstuff [53]. Meanwhile, most of these antioxidants have been used as natural
defenses against diseases and infections. Currently, most of the antioxidant activities of
these compounds have been explored.

The investigation of plant-derived antioxidants has received much attention and af-
fords the identification of the compounds that have the potential to scavenge free radicals
generated by diseases or oxidative stress. The most important classes of phytochemicals to
pharmacologists, active flavonoids, alkaloids, and phenolic groups, have been extensively
studied as treatments for various health conditions, and the properties of interest include
anti-cancer, anti-inflammatory, analgesic, anti-microbial, ulcerogenic, anti-convulsant, anti-
hyperlipidemic, tyrosinase inhibitor, and anti-Parkinson activities. Ample data correlate
these diseases with oxidative stress and focus on the antioxidant activity of these and other
active phytochemicals in vitro and in vivo [54,55]. Recently, polyphenolic molecules have
drawn greater attention than any other class of natural compounds because of their signifi-
cant biological roles such as anti-oxidant, anti-diabetic, ant-carcinogen, and antibacterial
activities, which may lead to their recognition as potential nutraceuticals [56–59].

6. Biological Actions of Incretin Hormone and Peripheral Glucose Sensors

The substrate specificity of the DPP-IV enzyme along with its localization on the
plasma membrane leads to the hypothesis that this protease enzyme should either take part
in the final catabolism of proline-rich peptides or have a regulatory role in the inactivation
of bioactive peptides. The potency with which the DPP-IV enzyme cleaves neuropeptides,
peptide hormones, or cyto-chemokine substrates suggests, a role for DPP-IV enzyme
activity in body fluids and cellular systems in vitro or in vivo [27,29,60]. GLP-I is secreted
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from gut L cells that mostly contain an alanine amino acid at the second position of GLP-1
(9-36) or GLP-1 (9-37) amides [36,61,62]. In addition, DPP-IV inactivates GIP peptides
secreted by gut K-cells and rapidly clears them from kidney circulation [63].

The incretin/gut hormone has important roles and effects on glucose management and
increasing insulin discharge via activation of peripheral sensors connected with increased
glucose clearance. Intraportal GLP-1 leads to the dismissal of hepatic vagal afferents
into the pancreatic vagal efferent and then, the uphill nerves communicate signals to
the brain and passes them through neural relays to the pancreases [64,65]. Similarly, the
chorisondamine inhibitors and ganglionic blockers inhibit the stimulatory effects of the
portal nerve. GLP-1 helps to release insulin in rats, and evidence suggests that GLP-IR
depends on neural signals emanating from the portal exchange [66]. More recent studies
have revealed that GLP-1 promotes signaling to the brain to decrease insulin-stimulated
glucose uptake in muscles and increase liver glycogen storage. These signals communicate
through the neural pathway. Hence, synchronized discharge of digested food and GLP-1
into the portal circulation may enhance glucose approval from the autonomous mechanism
of circulating incretin [67].

Continuous administration of GLP-1 lowers blood glucose levels in both fasting and
postprandial diabetic conditions via inhibition of glucagon secretion, gastric emptying,
and improvement of insulin release [68,69]. The consequence of a basal level of GLP-1
for control of glycaemia, which is independent of meals, and the continuous infusion of
GLP-1, from midnight to early morning, causes a drastic decrease in glucose concentration
during an overnight phase in diabetic conditions [70]. The role of GLP-1 on gastric empty
in the human body is effectively significant and can cause noticeable meal-related glucose
digression. GLP-1 decreases insulin secretion from pancreatic β-cell which also depends
upon the concentration of glucose after GLP-1 administration. Some studies have revealed
that GLP-1 significantly decreases blood sugar levels in patients with T2DM [71–73].

7. Mechanism of DPP-IV Inhibitors with Antioxidant Potential

Numerous studies have revealed that DPP-IV inhibition helps increase β-cell function,
physiology and mass through incretin discharge. Thus, incretin causes a continuous release
of insulin after meal ingestion to lower glucose levels, which is an indication of improved
β-cell function [16,26,74,75]. Recently, antioxidants have played an important role in min-
imizing diabetes effects by scavenging the free radicals generated by oxidative stress or
through dual functions that involve targeting the causes of metabolic syndromes/diseases
and minimizing free radical generation. Antioxidants protect cells from harmful oxidants
(ROS and RNS) by removing the oxidants and repairing the damage that antioxidants
cause in the body. DPP-IV inhibitors suppressed the toll-like receptor-4 (TLR) in mononu-
clear cells by modulating IL-1, IL-6, and other proinflammatory cytokines [76]. DPP-IV
inhibitors also suppressed the gene expression of acyl-coenzyme A (CoA): cholesterol acyl-
transferase/CD36 by modulating the effect of glycation end product (AGE) and inhibiting
the TLR4/IRAK-4 signaling pathway by suppressing LPS-induced IRAK-4 phosphoryla-
tion and regulating Cav-1 interaction with CD26 [77,78].

Nowadays, plants/natural products have provided a new source of therapeutic treat-
ment for T2DM and play a significant role in the primary health care of more than 80% of
the world’s population. In the last few years, much work has been done in the field of plant
derived bioactive compounds [79–81]. Figure 3 represents the role of DPP-IV inhibitors
along with antioxidant properties, which protect β-cells from oxidative stress-induced
damage. Natural occurring DPP-IV inhibitors from plants and animals sources that may
be alkaloids, phenolic acid, steroids, flavonoids, peptides, amino acid polysaccharides,
peptidoglycan, and glycopeptides etc.; all these compounds contain antioxidant properties
reported in various research articles. As a result, it is possible to conclude that these
molecules have dual nature DPP-IV inhibition activities as well as antioxidant properties.
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Figure 3. Role of DPP-IV inhibitors on GLP-1 dependent and independent manner during oxidative
stress. Abbreviations: dipeptidyl peptidase-IV (DPP-IV), glucagon-like peptide-1 (GLP-1), Reactive
Oxygen Species (ROS), Reactive Nitrogen Species (RNS).

Furthermore, DPP-IV inhibitors help enhance insulin secretion from β-cells by in-
hibiting the DPP-IV enzyme and increasing GLP-1 circulation in the body. Recent studies
have reported the presence of protease inhibitors, such as alkaloids, flavonoids, glycosides,
phenolic acids, polysaccharides, peptidoglycan, glycopeptides, and steroids, that act as
DPP-IV inhibitors, along with their antioxidant properties [17,82–85]. Table 2 presents
efficacious DPP-IV inhibitors with its inhibition activity (percentage/IC50) from natural
sources, their active parts, and medicinal uses.

Table 2. DPP-IV inhibitors from various natural sources, bioactive molecules or parts and their inhibition activities.

Plant Name/Natural
Sources

Part of Plant/Bioactive
Components Used Medicinal/as Food Use * DPP-IV Inhibition

Activity %/IC50
References

Azadirachta indica Leaves Arthritis, anxiety, trouble
sleeping, anti-diabetes 17.78% [86]

Physalis angulata L. Leaves Peroxidation, cardiotonic,
hypotensive, anti-diabetes 13.94% [87]

Aspergillus oryzae tetrahydroxyisoquinoline
derivative(WYK-1) Used as food IC50-6.98 µM [88]

Berberis aristata Bark Arthritis, anxiety, trouble
sleeping, anti-diabetes 65% [89]

Helichrysum rubicundum Flower
Anti-lipid, peroxidation,
cardiotonic, hypotensive,

antidegenerative, anti-diabetes
50.2%

[79]Hippophaёrhamnoides Leaves Excessive menstruation
and diarrhea 80.5%

Origanum vulgare Leaves/ Flower
Regulate blood sugar &

lipid, diarrhea,
cold

44.9%
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Table 2. Cont.

Plant Name/Natural
Sources

Part of Plant/Bioactive
Components Used Medicinal/as Food Use * DPP-IV Inhibition

Activity %/IC50
References

Rubuscaesius Leaves Antidiabetes, Blood Disorder,
Respiratory Disorder, Piles 72.7%

Zea mays Kernels Anti-diabetes, Arthritis, anxiety,
sleeping trouble, anti-diabetes 22.2%

Melilotus officinalis Leaves Hypertension, antioxidants
prevent aging, arteriosclerosis 40.5%

Chamomillaerecutita Leaves Diarrhea and excessive
menstruation 36.6%

Hypericumperforatum Seed Hypertension, antioxidants
prevent aging 47.7%

Castanospermum australe Seed Anti-diabetes, Arthritis, anxiety,
trouble sleeping, antidiabetic 68.0 [20]

Citrus sinensis Fruit Peel Hyperglycimia,
anti-inflammation& antioxidant Not mention [90]

Amaranthus
hypochondriacus Seed protein Excessive menstruation

and diarrhea 50% [60]

Phalariscanariensis Seed
Hypertension, antioxidants

preventing
aging and arteriosclerosis

43.5% [91]

Trigonella foenum Seed Reproductive or sin problems,
antidiabetic and ulcers. 72.6 ± 0.8

[92]
Withania somnifera Root powder Anxiety, sleeping problem,

antioxidant, anti-diabetic 88.35 ± 0.8

Ocimum sanctum Leaves
Anti-cancer, heptoprotective

Anti-diabetic, anti-microbial, and
cardio-protective

66.81 ± 0.05

[83]

Momardica charantia Fruits Respiratory and blood disorder,
Anti-diabetic, piles, antioxidant. 53.25 ± 0.04

LPVPQ Peptide & IPM Milk Antioxidant, Anti-microbial,
ACE inhibitor

IC50 43.8 µM
& 69.3 µM [30]

Aloe barbadensis Leaves
Anti-microbial, anti-diabetic,
anti-ulcer, hepatoprotactive,

Anti-cancer.

IC50
2.71 mg/mL [55]

Terminalia arjuna Bark Cardiotonic, anti-diabetic,
Anti-dysenteric, anti-pyretic 83.39%

[93]

Commiphora mukul Gum-resin Anti-inflammation, antidiabetic 92.97%

Gymnema sylvestre Leaves Anti-diabetic, lower blood
pressure and cholesterol 16.98%

Morinda citrifolia Fruits
Reduce blood pressure,

anti-diabetic, anti-depression,
anxiety

24.64%

Emblica officinalis Fruits Antioxidant, anti-inflammation, 85.95%

Arachishypogaea Seed
Anti-lipid, peroxidation,
cardiotonic, hypotensive,

antidegenerative, anti-diabetes
51%

[94]

Senna nigricans Leaves Skin irritations,
anti-diabetes, ulcers, 57%
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Table 2. Cont.

Plant Name/Natural
Sources

Part of Plant/Bioactive
Components Used Medicinal/as Food Use * DPP-IV Inhibition

Activity %/IC50
References

Solanum incanum Fruit Arthritis, anxiety, trouble
sleeping, anti-diabetes 68.1%

Ziziphusmauritiana Root
Anti-cancer, anti-diabetic,

anti-microbial, hepatoprotective,
cardioprotective, antiemetic

56.6%

FSD & WSG Barbel muscle protein Used as food and ornamental IC 50
1.96 mg/mL [95]

Abelmoschus esculentus Fruits Anti-spasmodic, diuretic,
anti-diabetic, —— [96]

Mangifera indica Leaves Antioxidant, cardiotonic,
hypotension, anti-diabetic 68.24% [80,97]

Origanum vulgare Leaves Hypotension, anti-degenerative,
anti-diabetic. 44.9%

[80]Menthapiperita Leaves
Anti-diabetic, anti-cancer,

hepatoprotective, anti-microbial,
antiemetic

38.2%

Lagerstroemia loudonii Leaves Hypertension, antioxidants 60.22%

LPVP & MPVQA Camel milk Used as food IC50- 87.0 µM
& 93.3 µM [98]

Camellia sinensis Leaves
Hypertension, antioxidants

prevent aging,
arteriosclerosis

50.47% [99]

Caesapinia sappan Heartwood
Antioxidant, anti-inflammatory,

hepatoprotective, cytotoxic &
hypoglycemia inhibition activity

84.25%

[100]

Cinchona officinalis Stem bark
Used as blood vessel disorder,

Increase juice, increase
production of digest

62.95%

Elephantopusscaber Roots
Treatment for pain, edema,

fever and
cold cough.

48.17%

Muntingiacalabura Leaves Antispasmodic, headache,
cold cough 74.12%

Foeniculum vulgare Seeds
Treatment for respiratory, blood

pressure, digestive
problem diuretic.

46.15%

Morus nigra Stem bark Anti-bacterial, anti-diabetic,
hypertension 51%

Phyllanthns niuri Aerial parts
Treatment for liver disease,
anti-cancer, anti-diabetic,

anti-hypertensive
70.48%

Psidium guajava Leaves
Treatment for diarrhea,
dysentery, pain relief,

Anti-diabetic, hypertension.
66.11%

Rheum palmatum Roots Fever and edema,
anti-inflammatory 72.67%
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Table 2. Cont.

Plant Name/Natural
Sources

Part of Plant/Bioactive
Components Used Medicinal/as Food Use * DPP-IV Inhibition

Activity %/IC50
References

Vernania amygdalina Leaves
Anti-malaria,

anti-diabetic kidney
disease, anti-hypertensive

50.2%

Prosopis cineraria Pod
used for treatment of asthma,

bronchitis
skin problem

64.8% [101]

Garlic bulb Bulb Antioxidant, anti-hypertensive,
anti-inflammatory, anti-diabetic. IC50- 70.88 µg/ml [102]

subtilisin-flavourzyme enebriomolitor
hydrolysates Antioxidant, anti-hypertensive. IC50- 2.89mg/mL [103]

Castanea mollissima
Blume Chestnut Inner skin Nuts used as food and

antioxidant. IC50 1.14 µg/ml [104]

Caprosaper Protein hydrolysate
IPVDM & IPV Ornamental used only IC50- 21.72 µM

& 5.61 µM [105]

Arthrospira platensis
(spirulina)

C-phycocyanin (C-PC)
and allophycocyanin

(APC)

Anti-apoptotic, hypolipidemic,
anti-inflammatory 95.8% [106]

α-lactalbumin-rich
whey protein LDQWLCEKL Used as source of food 131 µM [107]

Hibiscus rosa-sinensis Leaves
Detoxifier, anti-fertility,

anti-cancer, anti-hypertension,
and cardio-protective effect

60% [108]

Aloe vera dipyrrole derivative Used as anti-diabetic,
skin problem,

IC50 –
8.59 nM [109]

Quercetin & Coumarin Flavonoids (bioactive
compounds)

Anti-hyperglycemic
and antioxidant

IC50-4.02 &54.8
nMol/ml [84]

Moringa oleiferaLam. Leaves Anti-inflammatory, anti-diabetic,
hepatoprotective IC50- 798 nM [110]

* The higher percentage represents higher the inhibition activity of molecules. The percentage of inhibition was calculated. Data are
expressed as Mean ± Standard deviation, n = 3 replicate. % inhibition = absorbance of control − absorbance of inhibitor/absorption of
control × 100.

8. Conclusions

Incretin/gut hormones have increased rapidly worldwide over the past few decades.
Both GLP-1 and GIP are secreted from gut cells to enhance pancreatic β-cell mass and func-
tion. The roles of these peptides are very proficient in reducing glycosylated hemoglobin
(HbA1c) and maintaining glucose homeostasis. DPP-IV inhibitors are also acceptable ther-
apeutics and include vildagliptin, sitagliptin, and many others. Mechanistically, DPP-IV
inhibitors block the activity of enzyme, to increase the half-life of GLP-1 to normal levels in
the blood plasma, and this helps recover β-cell function, improve insulin secretion, and
curb glucagon secretion by α-cells. Prior investigations have revealed that the primary
clinical approach for DPP-IV inhibitors with antioxidant capacities involves front-line
treatment, because of their capability, safety, and acceptability. DPP-IV inhibitors also
improve the metabolic system (as measured by the lowering of blood glucose) without
causing hypoglycemia.

The antidiabetic effects of bioactive compounds from plants and animal sources
can be associated with a mixture of phytochemicals or single compounds. This review
focuses on the findings of researchers and health professionals who are engaged in the
field of anti-diabetic drugs. Certain synthetic inhibitors, such as gliptin family sitagliptin,
vildagliptin, and natural inhibitors, include bioactive isolated compounds, and synthetic
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inhibitors can also include fractions such as alkaloids, phenolic acids, flavonoids, steroids,
saponins, and glycosides of DPP-IV. These compounds play a major role in suppressing
oxidative stress by their antioxidant potential. During diabetes condition oxidative stress
generated as to overcome this situation DPP-IV inhibiters along with antioxidants play the
important role to increase the insulin secretion by increasing the half-life of GLP-1 as well as
antioxidant molecules help to scavenging free radicals so that oxidative effect on β cell will
be minimized. Nowadays, naturally occurring inhibitors have been increasingly focused
on medicinal purposes because of their non-toxic nature, fewer side effects, and easy access
to the public. Furthermore, the discovery of new natural DPP-IV based antidiabetic drugs
has shown great promise. There are experimental differences between DPP-IV inhibitors
concerning dosing frequency, dose quantity, and their capability. Long-term acquired
clinical trials will reveal whether these compound-related structural characteristics lead to
clinically relevant differences. DPP-IV inhibitors, along with their antioxidant nature, may
influence the immune system and its function; therefore, a longer duration is required for
their safety and effectiveness evaluations. DPP-IV inhibitors will provide a better solution
for the treatment of T2DM in our society.
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56. Mojzer, E.B.; Hrnčič, M.K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability
and anticarcinogenic effects. Molecules 2016, 21, 901. [CrossRef]

57. Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients
2014, 6, 6020–6047. [CrossRef] [PubMed]

58. Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2,
270–278. [CrossRef] [PubMed]

59. Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019,
24, e00370. [CrossRef] [PubMed]

60. Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-Gonzalez, S.; Montero-Morán, G.M.; Díaz-Gois, A.; DE Mejia, E.; de la Rosa, A.P.B.
In vitro inhibition of dipeptidyl peptidase iv by peptides derived from the hydrolysis of amaranth (amaranthus hypochondriacus L.)
proteins. Food Chem. 2013, 136, 758–764. [CrossRef]

61. Green, A.D.; Vasu, S.; Moffett, R.C.; Flatt, P.R. Biochimie co-culture of clonal beta cells with glp-1 and glucagon-secreting cell line
impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins. Biochimie 2016, 125, 119–125. [CrossRef]

62. Janssen, P.; Rotondo, A.; Mulé, F.; Tack, J. Review article: A comparison of glucagon-like peptides 1 and 2. Aliment. Pharmacol.
Ther. 2013, 37, 18–36. [CrossRef]

63. Seino, Y.; Fukushima, M.; Yabe, D. Gip and glp-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig.
2010, 1, 8–23. [CrossRef]

64. Brubaker, P.L.; Drucker, D.J. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut,
and central nervous system. Endocrinology 2004, 145, 2653–2659. [CrossRef]

65. Cabou, C.; Burcelin, R. GLP-1, the gut-brain, and brain-periphery axes. Rev Diabet Stud. 2011, 8, 418–431. [CrossRef]
66. Qiao, Q.; Grandy, S.; Hiller, J.; Kostev, K. Clinical and patient-related variables associated with initiating glp-1 receptor agonist

therapy in type 2 diabetes patients in primary care in Germany. PLoS ONE 2016, 11, 1–8. [CrossRef]
67. Kulve, J.S.T.; Veltman, D.J.; Van Bloemendaal, L.; Barkhof, F.; Deacon, C.F.; Holst, J.J.; Konrad, R.J.; Sloan, J.H.; Drent, M.L.;

Diamant, M.; et al. Endogenous glp-1 mediates postprandial reductions in activation in central reward and satiety areas in
patients with type 2 diabetes. Diabetologia 2015, 58, 2688–2698. [CrossRef]

http://doi.org/10.1155/2017/8416763
http://doi.org/10.1007/s12291-014-0446-0
http://doi.org/10.3390/ijms130810478
http://doi.org/10.1016/j.orcp.2014.03.004
http://doi.org/10.1152/physrev.00029.2006
http://doi.org/10.1155/2016/1245049
http://doi.org/10.5152/eurasianjmed.2018.17397
http://doi.org/10.3969/j.issn.1673-5374.2013.21.009
http://doi.org/10.1186/s12937-016-0186-5
http://doi.org/10.1111/j.1750-3841.2009.01401.x
http://doi.org/10.1177/2156587214524229
http://www.ncbi.nlm.nih.gov/pubmed/24647091
http://doi.org/10.3390/molecules21070901
http://doi.org/10.3390/nu6126020
http://www.ncbi.nlm.nih.gov/pubmed/25533011
http://doi.org/10.4161/oxim.2.5.9498
http://www.ncbi.nlm.nih.gov/pubmed/20716914
http://doi.org/10.1016/j.btre.2019.e00370
http://www.ncbi.nlm.nih.gov/pubmed/31516850
http://doi.org/10.1016/j.foodchem.2012.08.032
http://doi.org/10.1016/j.biochi.2016.03.007
http://doi.org/10.1111/apt.12092
http://doi.org/10.1111/j.2040-1124.2010.00022.x
http://doi.org/10.1210/en.2004-0015
http://doi.org/10.1900/RDS.2011.8.418
http://doi.org/10.1371/journal.pone.0152281
http://doi.org/10.1007/s00125-015-3754-x


Pharmaceuticals 2021, 14, 586 15 of 16

68. Fujita, Y.; Wideman, R.D.; Asadi, A.; Yang, G.; Baker, R.; Webber, T.; Zhang, T.; Wang, R.; Ao, Z.; Warnock, G.L.; et al. Glucose-
dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology
2010, 138, 1966–1975.e1. [CrossRef]

69. Young, A.A.; Gedulin, B.R.; Bhavsar, S.; Bodkin, N.; Jodka, C.; Hansen, B.; Denaro, M. Glucose-lowering and insulin-sensitizing
actions of exendin-4: Studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty zucker rats, and diabetic rhesus monkeys
(macaca mulatta). Diabetes 1999, 48, 1026–1034. [CrossRef]

70. Gallwitz, B. Glp-1 agonists and dipeptidyl-peptidase iv inhibitors. Handb. Exp. Pharmacol. 2011, 203, 53–74. [CrossRef]
71. Łabuzek, K.; Kozłowski, M.; Szkudłapski, D.; Sikorska, P.; Kozłowska, M.; Okopień, B. Incretin-based therapies in the treatment
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