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Abstract: The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell
polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark
of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in
others. Despite the general agreement reached by the scientific community on the oncogenic potential
of the central components of the pathway, the role of the antagonist proteins remains less clear.
Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of
antagonist proteins. Although there is growing information related to function and regulation of
Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been
fully developed. This review provides an update on the role of DKK proteins in cancer and possible
potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or
clinical trials are also reviewed.
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1. Overview of the Wnt Pathway

The Wnt signaling pathway is a highly conserved pathway involved in many pro-
cesses of embryonic development such as proliferation, differentiation and epithelial-
mesenchymal transition in a wide range of tissues. During the early stages of embryoge-
nesis, the Wnt pathway plays a crucial role in body–axis formation. Later, this pathway
is needed for the development of many organs such as brain, kidney, reproductive tract
and mammary glands, among others [1]. The pathway can be activated in a canonical or
non-canonical manner.

The canonical pathway is β-catenin-dependent and requires the binding of Wnt
ligands to receptors [2]. The first step involves the Wnt ligands, Frizzled (Fz) receptors
and the low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Wnt ligands are
secreted and bind to Fz. LRP5/6 co-receptors are necessary for mediating Wnt signaling.
In an “ON” state (Figure 2A), the interaction Wnt-Fz-LRP5/6 activates the disheveled
protein (Dsh) (in humans encoded by DVL1 gene), which plays a role as a key switch for
Wnt signaling. Dsh constitutes an element which, depending on the context, can activate
different downstream effectors and modify the response. The main function of Dsh is
to inhibit the β-catenin destruction complex. This complex comprises the interaction of
adenomatosis polyposis coli (APC), glycogen synthase kinase 3 (GSK3), casein kinase 1
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alpha (CK1α) and axin. The inactive complex permits the accumulation of β-catenin in
cytoplasm to further translocate it to the nucleus. Nuclear β-catenin interacts with T-cell
factor/lymphoid enhancer factors (TCF/LEF, transcription factors), and the co-activators
CREB-binding protein (CBP) and P300. As a result, the transcription of Wnt target genes
is activated [2,3]. Target genes include c-Myc, cyclin D1, axin2, CD44 and c-Jun, among
others [4–6]. In an “OFF” state (Figure 2B), there is no binding of Wnt ligands and the
destruction complex is active. In this state, CK1α and GSK3 phosphorylate β-catenin,
thereby producing its ubiquitination and degradation by E3 ubiquitin ligases [2].

The non-canonical Wnt pathway is β-catenin-independent and can activate additional
pathways. Although the non-canonical pathway is under study and not yet well under-
stood, it can be classified in two groups: the planar cell polarity pathway and the Wnt/Ca2+

pathway (for a general overview of the non-canonical Wnt, see [7], for Wnt/planar cell
polarity [8] and for Wnt/Ca2+ pathway [7]). Activation of the non-canonical pathways also
involves the binding of Wnt ligands to the Fz receptor, but independently of the LRP5/6
co-receptor. The non-canonical pathway highlights the complexity and tight regulation
of Wnt signaling, providing a large number of receptor/ligand combinations and several
layers of regulation, which render this pathway highly context-specific and underline its
participation in different cellular responses and diseases [2,3].

It is clear that Wnt signaling plays a pivotal role in developmental and cellular pro-
cesses such as cell proliferation, migration and fate determination. However, its dereg-
ulation has been identified as a key mechanism in different diseases including cancer.
Several aberrant regulatory processes such as mutations, overexpression and downregula-
tion mechanisms have been described for members of the Wnt signaling [9]. Among the
proteins involved in these mechanisms, some have been described as antagonists of the
Wnt pathway. They are usually classified in different families/groups (Table 1) and are
able to modulate Wnt signaling at 3 levels: Wnt ligands, LRP proteins and/or Fz receptors.
Herein, we will focus on the Dickkopf (DKK) family with emphasis on cancer, and current
inhibitors/activators under development for this particular Wnt antagonist family will be
also reviewed.

Table 1. Antagonist proteins of the Wnt signaling pathway.

Name Human Gene(s) Protein(s) Inhibited Main Cellular Location

WIF1 WIF1 Wnt Extracellular

Cerberus CER1 Wnt Extracellular

Tiki family TIKI (1–2) Wnt Transmembrane

sFRP family sFRP (1–5) Wnt and Fz Extracellular

APCDD1 APCDD1 Wnt and LRP Transmembrane

DKK family DKK (1–4) LRP Extracellular

SOST/Sclerostin SOST LRP Extracellular

Wise SOSTDC1 LRP Extracellular

MESD MESD LRP Endoplasmic reticulum

Waif TPBG LRP Transmembrane

IGFBP-4 IGFBP4 LRP and Fz Extracellular

Shisa family SHISA (2–9) Fz Transmembrane

2. The Dickkopf (DKK) Family and Its Role in Cancer

DKK is a family of soluble (mainly extracellular) LRP5/6 antagonists that prevent the
formation of the Fz-LRP6 complex. In the absence of DKKs, the Wnt ligands form a ternary
complex with Fz and Lrp5/6, which promotes stabilization of β-catenin, thereby activating
the pathway. However, the binding of DKK to Kremen (a family of two transmembrane
proteins characterized by their kringle domain) enable the formation of a three-component
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complex with LRP5/6, which leads to rapid endocytosis and removal of this protein from
the plasma membrane. The inhibitory function of DKK proteins depends on the presence
of the appropriate Kremen proteins [10].

In humans, four DKK genes have been reported: DKK-1, DKK-2, DKK-3 and DKK-4,
with DKK-1 being the most studied and characterized [11,12]. DKK proteins show little
sequence similarity (Figure 1).
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Figure 1. Domain structure of human DKK protein family. Cysteine-rich domain 1 (Cys1) and Cys2
domains are shared by the four members of DKK family. Signal peptide, coiled-coil region and
glycosylation sites are also shown.

Only two cysteine-rich domains are highly preserved among all the family members:
(1) the N-terminal cysteine-rich domain (formerly called Cys1) that is unique for the
members of DKK family; and (2) the C-terminal cysteine-rich domain (or Cys2) which
has a 10-cysteine pattern. The Cys2 domain is responsible for LRP6 binding and further
Wnt inhibition, whereas the Cys1 domain modulates this interaction. Nevertheless, this
described function for Cys1 appears to be functional only in DKK-1 [12]. The antagonistic
effect of DKK family on LRP5/6 is specific to the Wnt canonical pathway. However, it has
been described that DKK-1 could activate the non-canonical Wnt/planar cell polarity [13].

It is not easy to attribute a pro-oncogenic or tumor suppressor function to each
antagonist in the context of cancer given that the majority may play a dual role and act
either by promoting or repressing cancer in a context-dependent manner. The ability of
DKK proteins to inhibit the Wnt pathway suggests a function for them as possible tumor
suppressor genes owing to the most preponderant pro-oncogenic role of overactivation
of the pathway. However, in some tumors where the Wnt pathway has anti-oncogenic
functions (i.e., induction of differentiation), DKK proteins may also act as oncogenes. A low
expression of DKK genes, due to either methylation of the promoters or other mechanisms,
has been described in colorectal cancer, kidney cancer, hepatocellular carcinoma and gastric
cancer, among many others [14–17]. In contrast, the overexpression of DKK constitutes
a valuable indicator of prognosis and chemoresistance and can even improve diagnostic
accuracy in some tumors [18–21]. Thus, the function of tumor suppressors or oncogenes
is context-dependent and, in some cases, both functions have been described for the
same tumor type, thereby increasing the complexity of reaching an easily understandable
description. Although the precise role of each DKK is not fully elucidated, the implications
in cancer are evident and their dual role in tumors is related to the complexity of the Wnt
pathway. In the following sections, more details are provided for each particular type of
DKK together with information related to clinical application, current DKK inhibitors and
ongoing clinical trials.

2.1. Dickkopf-1 (DKK-1)

DKK-1 is by far the most studied member of the family. It was first identified in
Xenopus laevis as a secreted protein able to inhibit the Wnt pathway and with an essential
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role in head formation during development [22]. Its expression has also been described
in paraxial mesoderm and vertebra formation and, along with Sonic Hedgehog, in the
formation and maintenance of the apical ectodermal crest, a critical component of limb
formation [23].

DKK-1 is a potent antagonist of the Wnt pathway able to bind the LRP6 receptor
with high affinity. Two models have been described for the DKK-1 molecular mechanism
of action. In one, DKK-1 performs its function by competing with Wnt ligands to bind
the LRP6 receptor. In the second, owing to the ability of DKK-1 to bind to Kremen
proteins, a ternary complex (Kremen-LRP6-DKK) is formed and rapidly internalized and
degraded, thereby reducing the presence of LRP receptors in the cell membrane and, in
turn, promoting inactivation of the pathway. In addition to these two β-catenin-dependent
mechanisms, DKK-1 can also act in a β-catenin-independent manner, but this mechanism
is not well understood and remains under study [24–26].

In terms of cancer, the strong duality of the role of DKK-1 is noteworthy. In many
tumors, DKK-1 clearly acts only as an oncogene (Supplementary Table S1). For instance,
several studies showed a relationship between DKK-1 overexpression and worse prognosis
in common tumors such as lung cancer (including non-small cell lung cancer) [27,28]
and rare malignancies such as chondrosarcoma [29,30]. However, the setting is highly
complex and a clear oncogenic or anti-oncogenic role of DKK-1 in a given tumor type is
not always clear, with a plethora of examples in which references to both sides may be
found. Interestingly, DKK-1 expression would play a dual role in childhood cancers. For
example, its expression has been found reduced in neuroblastoma, suggesting a tumor-
suppressor role [31]; however, its expression in this tumor may help the cells to resist
chemotherapy [32]. By contrast, in osteosarcoma, DKK-1 is overexpressed in patient serum
and its downregulation inhibited metastasis in a preclinical model [33,34]. Finally, it has
also been reported that, in Ewing Sarcoma, DKK-1 constitutes a target of the oncogenic
EWSR1-FLI1 chimeric protein, and that DKK-1 inhibition could contribute to progression
of tumors of the Ewing family [35].

2.2. Dickkopf-2 (DKK-2)

DKK-2 has been reported to be coordinately expressed with other DKK family mem-
bers during organogenesis in a multitude of organs in several organisms, including humans.
Its expression, together with DKK-1 and DKK-3, in different primordial structures such as
heart, tooth, kidney, palate and limb buds has been reported [36].

DKK-2 has been described, like the rest of DKK, as a canonical Wnt signaling inhibitor
in numerous in vitro and in vivo studies. It shares its main mechanism of action with
DKK-1, i.e., binding to LRP6 receptors [37]. Interestingly, DKK-1 and DKK-2 share a 50%
identity in their N-terminal domains and 70% in their C-terminal cysteine-rich domains
(Figure 1). The similarity with DKK-1 evidences a coordinated antagonistic role during
Xenopus embryogenesis, where DKK-2 is able to synergize with the Fz receptor family.
Therefore, DKK-2 could act as an activator or inhibitor of the Wnt pathway, depending on
the cellular context [38].

Regarding a role in cancer and in accordance with its dual performance in Wnt path-
way regulation, both functions, as oncogene and tumor suppressor, have been attributed to
DKK-2 (Supplementary Table S2). Interestingly, its relationship with tumor immunity eva-
sion in some subsets of melanoma and colorectal tumors, where DKK-2 depletion activates
natural killer (NK) cells and CD8+ T lymphocytes and impedes tumor progression, has
also been described. The molecular mechanism for immunity evasion involves LRP5 but is
independent of LRP6 and Wnt canonical pathway [39]. A recent study that reported a role
of DKK-2 in chemoresistance in breast cancer it is also noteworthy, with a description of the
long non-coding RNA GAS5 as an endogenous “sponge” competing with miRNA-221-3p
to regulate its target DKK-2, which in turn, inhibits the activation of Wnt pathway [40].
Interestingly, DKK-2 has also been involved in the enhancement of stemness in colorectal
cancer, via the activation of the tyrosine-kinase Src and degradation of HNF4α1 protein [41].
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Despite the abundance of previous preclinical studies in cancer, none have reached clinical
phases to date. However, there are also examples of anti-oncogenic function. Thus, it has
been recently described that DKK-2 expression, together with G protein-coupled estrogen
receptor (GPER) correlate with overall survival, thereby indicating a possible prognostic
impact as well as a potential for treatment strategies addressing interactions between estro-
gen and Wnt signaling in ovarian cancer [42]. The lack of effective inhibitors or activators
for DKK-2 can be explained by the difficulties in maintaining the native structure and to
obtain the recombinant protein in vitro. To solve these issues, a strategy to stabilize the
DKK-2 structure [43], offering the possibility of designing and identifying specific DKK-2
inhibitors, was recently described. In addition, other strategies have been explored: the gen-
eration of a long-acting variant of DKK-2 with an increased serum half-life, which permits
systemic administration for the modulation of Wnt signaling [44], and the development of a
DKK-2 neutralizing monoclonal antibody (called 5F8). The administration of 5F8 has been
shown to impair tumor growth and to increase the survival in orthotopic models for Lewis
lung carcinoma [45] and colon adenocarcinoma [39]. These recent advances increase the
value of DKK-2 as a therapeutic target, opening up the possibility of developing effective
inhibitors against this DKK member.

2.3. Dickkopf-3 (DKK-3)

Like other DKK, DKK-3 is also involved in embryo development and morphogene-
sis [46]. However, in contrast to the other DKK proteins, DKK-3 does not belong to the
same paralogous chromosome group, suggesting an early evolutionary divergence of this
member [47].

The role of DKK-3 in Wnt signaling inhibition remains unclear since it is not able to in-
teract with Kremen or LRP5/6 receptors [47,48]. Nevertheless, DKK-3 downregulation has
been correlated with β-catenin accumulation in several cancers; however, the underlying
molecular mechanisms remain to be fully understood [49–51].

Of note, the most prominently reported function of DKK-3 in cancer is as a tumor sup-
pressor since it is known to have reduced expression in immortalized cells [52]. In addition,
downregulation of DKK-3 has been correlated to tumor cell proliferation in several solid
cancers and hematologic malignancies (Supplementary Table S3). Consistent with its role as
a tumor suppressor, DKK-3 overexpression (by adenovirus-mediated transduction of an eu-
karyotic expression vector) represses tumor cell growth by inducing endoplasmic reticulum
stress which in turn triggers JNK-dependent apoptosis and overexpression of IL-7 in cancer
cells [52–55]. Moreover, exogenous overexpression of DKK-3 has been shown to induce
G0/G1 arrest together with an increase in p21 [56]. In this respect, Ad-REIC/DKK-3 (aden-
oviral vector encoding the full-length DKK-3 gene) has been proposed as a non-genotoxic
gene-based therapy, alone or in combination with conventional antineoplastic treatments,
for several cancers such as prostate, testicular, glioma or breast cancer [53,54,57,58] (see
Section 4). The oncogene function of DKK-3, albeit less frequent, has also been identified.
Its pro-oncogenic activities have been described particularly in head and neck squamous
cell carcinoma. In comparison to normal tissue, the aberrant accumulation of DKK-3 found
in squamous cell carcinoma cytoplasm seems to exert oncogenic effects and has been
associated with the accumulation of β-catenin [59]. Moreover, like other DKK members,
secreted DKK-3 is able to modulate T-cell immune responses, thereby supporting its role as
a tumor microenvironment modulator [60]. In this regard, DKK-3 stromal expression has
been associated with induction of tumor-promoting cancer-associated fibroblasts (CAF) in
breast, colorectal and ovarian cancers [61]. Under physiologic and pathologic conditions,
DKK-3 is able to regulate angiogenesis and several studies have reported an increase in
the number of blood vessels expressing higher amounts of DKK-3 compared to its normal
counterparts in different types of cancer [62–64]. Owing to the function in angiogenesis,
the combination of future DKK-3 inhibitors together with other angiogenesis inhibitors
available could produce a synergistic effect and constitute an effective approach for future
therapies.
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2.4. Dickkopf-4 (DKK-4)

DKK-4 is the least studied member of the family and its role during development or
disease has barely been described. However, it has been related to ectodermal appendage
morphogenesis, including hair follicles, teeth and mammary gland formation during mouse
embryonic development [65]. DKK-4 acts exclusively as an inhibitor of Wnt signaling
and is able to interact with the LRP5/6 receptor [66,67]. DKK-4 can also bind to Kremen,
although how this interaction may inhibit Wnt activity has not yet been described [68].
Although the underlying molecular mechanism for DKK-4 has not been elucidated to date,
evidence indicates its role through non-canonical Wnt signaling [69].

Like the other three family members, the role of DKK-4 has been described as both a
tumor suppressor and oncogene in various cancers (Supplementary Table S4). Although
DKK-4 is the least studied member, its implication in cancer is sustained by small but
growing evidence. Besides the studies that identify its possible role as a tumor suppressor
or oncogene, DKK-4 expression has been strongly related to cancer cell migration (Sup-
plementary Table S4). Interestingly, a possible function in mediating drug resistance in
colorectal cancer cells has been described [70], and DKK-4 inhibition has been proposed to
enhance chemosensitivity to current treatments in colorectal [71] and non-small cell lung
cancer [72]. Owing to its role in chemosensitivity, DKK-4 inhibition would improve current
therapies in cases where chemoresistance is observed.

3. DKK Proteins as Diagnostic and/or Prognostic Factor in Cancer

Detecting DKK levels may improve the diagnosis and prediction of patient outcome.
In fact, this approach has been explored in the last decade for several tumors. However,
results are often contradictory, even for one given tumor type. In addition, the dual role of
DKK proteins in cancer makes their utility as diagnostic/prognosis factor less attractive.
For example, in hepatocellular carcinoma, only one study found decreased DKK-1 levels at
mRNA and protein levels together with high levels of the methylation promoter for this
gene in human samples [16]. Since more evidence in hepatocellular carcinoma supports an
oncogenic function, could opposing evidence be considered? After reviewing the current
knowledge on the DKK family, our answer is yes, albeit with considerations.

The study of DKK in clinical practice will need to define the ‘what, when, where
and how’ for information-gathering. The levels of mRNA, protein, methylation and even
single nucleotide polymorphism (SNP) have been analyzed for almost all DKK (what).
However, discrepancies were found. For example, after mRNA and protein levels of DKK-3
were analyzed in endometrial adenocarcinoma and control samples, significant differences
were found only at protein level. Interestingly, only mRNA expression correlated with
tumor grade [73]. This latter finding highlights the complexity of the different molecular
mechanisms regulating DKK expression and the diverse functions it may exert in different
parts of the body and even in the same disease. The selection of ‘what’ probably depends
on ‘when’ detection occurs. Most studies included samples usually obtained at the time of
biopsy or diagnosis. However, some studies focused on the potential of DKK analysis over
time in the same patient. As an example, a DKK-1 expression increase could be an early
phenomenon during multiple myeloma relapse [74], indicating that levels of this protein
and their clinical significance can vary according to tumor progression (when) [75,76].

Furthermore, the wide variety of samples used could explain the controversy regard-
ing the function reported in a given tumor. Samples range from tumor tissues (fresh or
fixed) to serum and other liquid biopsies such as urine, seminal plasma or bone marrow
according to tumor location. One example of how DKK levels can vary according to the
type of sample analyzed (where) is the case of DKK-3 in prostate cancer (Supplementary
Table S3). Generally, prostate tumors display low DKK-3 expression possibly due to high
promoter methylation [77,78]. However, one study revealed high DKK-3 protein levels in
seminal plasma of prostate cancer patients [79]. The authors attributed this inconsistency
to the expression of DKK-3 in tumor neo-vasculature, which highlighted the difficulties in
defining the ideal sample to be analyzed.
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In recent decades, advances in molecular techniques have led to significant improve-
ments in methods and analyses (how). Recent meta-analyses validated the role of DKK-1
and its use as diagnostic and prognostic factors in hepatocellular carcinoma and gastric can-
cer [80–84]. A similar analysis was recently reported for DKK-3 through Oncomine, TCGA
and Kaplan-Meier plotter databases in different tumors [85]. One interesting approach is to
consider DKK genes as an expression signature (DKK genes alone or in combination with
other genes) to enhance accuracy of their use as predictors of clinical outcome and develop
new therapeutic strategies [86–88]. This methodology has been particularly successful in
ovarian cancer, where the use of a signature expression of 7 genes (including DKK-3) was
able to segregate patients according to their longer or shorter survival [86].

4. DKK Family as Emerging Molecular Targets for Anti-Cancer Drugs

The rationale for the identification of possible molecular targets involves either activa-
tion or inhibition of the pathway in a context and tumor type dependent manner. In the
case of DKK, three different approaches have been proposed: (1) inhibiting DKK proteins,
(2) blocking binding with the corresponding receptor to activate Wnt signaling, and (3)
increasing DKK gene expression through activators (Table 2 and Figure 2). Given the
important role of Wnt antagonists in cancer and other diseases, DKK inhibitors stand out
among the strategies under development.

Table 2. Compounds targeting DKK proteins.

Function Chemical
Structure Compound Name Target Mechanism of Action Disease (Pre-Clinical)

inhibitor

small molecules

WAY-262611 DKK-1

Inhibits DKK-1
impeding

DKK1-LRP5/6
interaction [89]

Rheumatoid arthritis
Leishmaniosis

AML
MM

NCI8642 DKK-1 and
DKK-2

Binds to LRP6
disrupting DKK1-LRP6

interaction [90]
Alzheimer

L-securinine DKK-1

Promotes DKK-1
promoter methylation

inhibiting DKK-1
expression [91]

Lung cancer

monoclonal
antibodies

RH2-18 DKK-1 Binds to DKK-1 Cys-2
domain [92] Osteoporosis

BHQ880 DKK-1 Binds to DKK-1 Cys-2
domain [93] Osteosarcoma MM

DKN-01 DKK-1 Binds to DKK-1 Cys-2
domain [94] Solid tumors

5F8 DKK-2 Blocks the binding of
DKK2 to LRP5 [39] colorectal cancer

activator
vitamin D3 Calcitriol DKK-1 Induce the transcription

of DKK-1 gene [95]
Osteoporosis Solid

tumors

vitamin D3
analogue Seocalcitol DKK-1 Induce the transcription

of DKK-1 gene [95]
Hepatocellular

carcinoma

AML: Acute myeloid leukemia, MM: Multiple myeloma.
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the LRP5/6 co-receptor, thereby producing the inhibition of the degradation complex (APC-Axin-CK1α-GKS3β) and
consequent β-catenin accumulation and stabilization. (B) If Wnt ligands do not bind, the destruction complex is active and
the degradation of β-catenin is produced. (C) DKK-1 blocks Wnt and LPR5/6 interaction by activating the degradation
complex and further inhibition of the signaling by β-catenin degradation. NCI8642, RH2-18, BHQ880 and DKN-01 are able
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formation. (E) Activators of DKK-1 such as vitamin D analogs induce the transcription of DKK-1 gene thereby increasing
DKK-1 protein levels and the subsequent Wnt signaling inhibition.

4.1. Small Molecules

The first reported small molecule with the ability to inhibit DKK-1 was (1-(4-(Naphthal
en-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine, also known as WAY-262611. This com-
pound facilitates Wnt3a-LRP5 interaction by inhibiting DKK-1, and blocks the formation
of the DKK-1-LRP5-Kremen complex (Figure 2D), thereby preventing the internalization
of LRP5 receptors and activating the Wnt pathway. Pelletier et al. described, for the first
time, the effects of the compound on inhibiting DKK-1 and the promotion of Wnt pathway
activation, with additional effects on bone formation [89]. Later, other studies corrobo-
rated the effects of the compound on DKK-1 and further activation of Wnt signaling [96].
WAY-262611 has been tested in vitro as a possible therapeutic tool for the treatment of
osteolytic bone disease, the most common symptom in multiple myeloma [97], and for
rheumatoid arthritis [98]. In vivo, this compound has shown effectiveness in protection
against Leishmania infection in mice [99]. Although the therapeutic potential of this small
molecule in cancer remains unclear, some findings support its application. For instance, in
the work of Choe et al. [98], treatment with WAY-262611 was able to inhibit cell migration
and the expression of FAK (focal adhesion kinase), a protein involved in the regulation of
invasion and metastasis in many tumors [100].

Another DKK inhibitor is the small molecule NCI8642 (also named IIIC3 or Gallo-
cyanin) which is able to block the interaction between DKK-1 [90,101] and DKK-2 [102] with
LRP6 (Figure 2C). Despite the confirmed ability of this compound to inhibit DKK-1-LRP6
interaction and the reported therapeutic potential of the drug in Alzheimer’s disease [103],
studies in human cancer are lacking. Therefore, the therapeutic potential of NCI8642 in
cancer, albeit strongly plausible, remains to be established.

In recent years, a compound extracted from Securinega suffruticosa leaves (used in tra-
ditional Chinese medicine) has been shown to inhibit DKK-1 expression through increased
methylation of its promoter. This compound, the L-securinine, reduced the proliferation of
lung cancer cells through DKK-1 inhibition [91]. These examples show the potential of Wnt
antagonist proteins as molecular targets for cancer treatment and the efforts to identify
new pharmacologic inhibitors of these proteins.
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4.2. Monoclonal Antibodies

The use of monoclonal antibodies to block DKK proteins constitutes a strategy that
has shown promising effects in vitro and in vivo in several tumors [104,105] and other
diseases [106]. The rationale for the use of monoclonal antibodies is the putative highly-
specific inhibition of the target (Figure 2C). This is the case of the monoclonal antibody
RH2-18 that recognizes DKK-1 with the further activation of the Wnt pathway. RH2-18 has
been evaluated as a possible treatment for osteoporosis [106]. Other monoclonal antibodies
against DKK-1 have been evaluated for the treatment of different tumors. One example is
BHQ880 which has been reported to inhibit both growth and metastasis of osteosarcoma
in patient derived xenografts mouse models [34]. The application of DKK-1 inhibition by
monoclonal antibodies has been analyzed in the treatment of the characteristic osteolytic
lesion produced by multiple myeloma progression [107]. Furthermore, BHQ880 has yielded
promising results as a therapeutic, by reducing the osteolytic process in multiple myeloma
models [105,108].

The promising results observed with RH2-18 and BHQ880 have led to the development
and pre-clinical evaluation of other monoclonal antibodies. For instance, the humanized
monoclonal therapeutic antibody called DKN-01 inhibits DKK-1 with high affinity and
selectivity [109] and has been evaluated for the treatment of ovarian cancer [110]. In
addition, the 5F8 antibody was able to specifically inhibit DKK-2 in an in vivo model of
colorectal cancer [39]. Furthermore, this inhibition revealed a pivotal role for DKK-2 in
modulating the immune response in vivo through activation of NK and CD8+ cells. This
last finding opens up the application of DKK as molecular targets in immunotherapy.

4.3. Gene and Immunotherapy

The reduced expression in immortalized cell (REIC) gene was originally identified in
2000 and further analysis confirmed that REIC sequence was consistent with the human
DKK-3 gene [111]. In recent years, the possible use of the adenoviral vector with the human
REIC/DKK-3 (Ad-REIC) as a gene therapy for cancer patients has been described [112].
The method takes advantage of the adenovirus as a vector for the tumor suppressor
gene DKK-3 and induces its expression to increase apoptosis and further tumor growth
reduction. However, since this therapy should be locally administered in the tumor and
needs imaging guidance, only solid tumors can be treated. Despite this limitation, Ad-
REIC treatment constitutes a possible strategy for some tumors such as hepatocellular
carcinoma or pancreatic cancer [112,113]. In addition, other studies have tested the potential
of Ad-REIC at pre-clinical level in other malignancies using animal models. In these
studies, the administration of Ad-REIC produced an impairment of tumor growth in
prostate carcinoma, testicular cancer, breast carcinoma, mesothelioma and gastric carcinoma
models [114].

Owing to the possible role of DKK in the immune system modulation, different ap-
proaches with DKK have also shown promising results and are still under study, especially
in multiple myeloma. The potential use of DKK-1 as an antigenic target for immunotherapy
is not new. For instance, a work identified DKK-1 as a potent tumor-associated antigen. The
authors described the use of DKK-1 peptides to generate specific cytotoxic T lymphocytes
that can act specifically and effectively lyse myeloma cells in vitro [115]. However, it is only
in recent years that this approach has been analyzed. Active DKK-1 vaccination has been
characterized in vitro [116] and in vivo [117], and the improvement through the addition
of antigens [118] or peptide sequences [119] has been evaluated for multiple myeloma,
thereby increasing the potential therapeutic value of DKK-1 for this tumor.

4.4. Activators of Wnt Antagonist Proteins

Antagonist-mediated Wnt inhibition constitutes a hallmark in some tumors, indicating
that the function of these genes is to act as tumor suppressors in these diseases. In this
context, restoring expression of the Wnt antagonist genes may constitute a further thera-
peutic approach (Figure 2E). According to this rationale, some molecules can induce their
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expression. Aguilera et al. affirmed that the induction of DKK-1 by calcitriol (1alpha,25-
dihydroxyvitamin D3), the active form of vitamin D, is able to promote the differentiation
of colon cancer cells [95]. Similarly, seocalcitol (EB1089), a vitamin D analog, has been
shown to induce the expression of DKK-1 in colon cancer and pancreatic cancer [95,120],
thereby demonstrating its therapeutic potential for cancer treatment.

5. Clinical Trials for Wnt Antagonist Proteins in Cancer

A significant number of clinical trials aimed at evaluating the Wnt antagonists’ in-
hibitors as therapeutic targets are ongoing and involve several of the molecules previously
described. However, most of them are still in early phases and only a few have reached
phase III (Table 3). As previously mentioned, neutralizing antibodies have shown the
most promising results, and lead in the number of clinical trials. One of the most studied
antibodies, DKN-01, is currently in phase I for use as a monotherapy or in combination
with other chemotherapeutic agents for the treatment of esophagogastric malignancies.
Although the detection of some adverse events (cough, leukopenia, neutropenia, anemia
and nausea among others), the preliminary results of the study showed good tolerability
of DKN-01 and the combination did not alter the patient safety profile [109]. Similarly, the
BHQ880 antibody displayed good tolerability alone and in combination with zoledronic
acid (a drug used for the treatment of the typical osteolytic lesions produced by multiple
myeloma). In addition, the combination evidence a potential clinical activity for the treat-
ment of bone disease in multiple myeloma [121]. Although the tolerance of DKN-01 and
BHQ880 is good, the possible benefits need to be confirmed with further studies.

Table 3. Status of clinical trials targeting DKK proteins in cancer 1.

Compound/Strategy Target Phase Tumor ID

DKN-01 DKK-1

I

Esophagogastric Malignancies NCT02013154

MM, solid tumors, NSCLC NCT01457417

Relapsed MM NCT01711671

Intra- or extra-Hepatic biliary system NCT02375880

Ib/IIa Prostate NCT03837353

I/II Hepatocellular Carcinoma NCT03645980

II

Endometrial, uterine and ovarian NCT03395080

Endometrial and Ovarian NCT03395080

BTC and EGC NCT03818997

BHQ880 DKK-1

I/II Relapsed MM NCT00741377

II
MM NCT01337752

Smouldering MM NCT01302886

Calcitriol (DN-101) DKK-1

I

Solid tumors NCT01588522

CNS NCT00008086

Prostate NCT00004928

Prostate NCT00010231

I/II

Carcinoma, NSCLS NCT00066885

NSCLC NCT00794547

Metastatic Melanoma NCT00301067
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Table 3. Cont.

Compound/Strategy Target Phase Tumor ID

II

CCA NCT01039181

CRPC NCT03261336

AIPC and NSCLC NCT00285675

Prostate NCT00004043

Prostate NCT00524589

Prostate (stage IV) NCT00017576

Prostate (metastatic) NCT00182741

Pancreas NCT00238199

Pancreas NCT00536770

Adenocarcinoma NCT00084864

BCC NCT01358045

II/III Prostate cancer NCT00043576

Seocalcitol DKK-1 III Hepatocellular Carcinoma NCT00051532

Dendritic cell vaccine DKK-1 Early I Stable and Smouldering MM NCT03591614

Ad-REIC DKK-3

I Prostate NCT01197209

I/IIa Prostate NCT01931046

I/IIa Glioma [122]

I/Ib Liver [123]

II Mesothelioma NCT04013334

MM: multiple myeloma, NSCLC: Non-Small Cell Lung Cancer, BTC: Biliary tract cancer, EGC: Esophagogastric cancer, CRPC: Castration-
resistant prostate cancer, CCA: Cholangiocarcinoma, AIPC: Androgen Independent Prostate Cancer, CNS: Central Nervous System, BCC:
Basal cell carcinoma. 1 Information from www.clinicaltrials.gov (last access: 26 February 2021).

The induction of DKK-3 expression using the adenoviral vector (Ad-REIC) is currently
being tested in clinical trials (Table 3). This strategy has been evaluated for the treatment
of prostate cancer also with positive results. As example, in a phase I/IIa clinical study
with 18 patients with adenocarcinoma of the prostate, the intra-tumoral administration of
Ad-REIC prolonged recurrence-free survival, with tumor degeneration and a significant
number of TIL (tumor-infiltrating lymphocytes) being observed in the targeted areas of the
tumor [124]. In addition, Ad-REIC was evaluated for the treatment of gliomas [55] where
further modifications of the system proved to enhance its treatment effectiveness [125],
which led to its evaluation in an ongoing phase I/IIa clinical trial [122]. In liver cancer
there is also an ongoing phase I/Ib clinical trial [123].

The evaluation of vitamin D and its analogous molecules in cancer treatment merits
a special mention in this section. Vitamin D administration for the treatment of cancer
patients is a clear example of drug repurposing. Compared to “de novo” drug development,
repurposing a drug previously described for other diseases reduces costs and time in the
application of a new treatment in clinical practice [126]. The use of vitamin D has been
tested for different types of tumor and is the compound related to the DKK family with
the highest number of clinical trials (Table 3). Interestingly, all ongoing clinical trials are
evaluating the administration of vitamin D together with other chemotherapeutics as a
co-treatment or adjuvant therapy. Despite the fact that undesired side effects of using
vitamin D supplementation are fewer, it is a point to be considered [127] owing to the
characteristics of target patients. In this respect, three clinical trials assessed the possible
toxicity of vitamin D and/or side effects in metastatic or recurrent cancer (NCT01588522), in
non-small cell lung cancer (NCT00794547) and in hepatocellular carcinoma (NCT00794547)
patients. The use of vitamin D to improve cancer treatment has been evaluated, even when

www.clinicaltrials.gov
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its effect on DKK-1 was not identified [128], based on epidemiologic studies that correlate
the incidence of cancer and sun exposure [129,130]. Based on this evidence, results vary
widely and the benefit of vitamin D remains unclear [131]. However, elucidation of the
molecular mechanism involved (for a more detailed description of the vitamin D molecular
mechanism and of DKK we recommended the review by Pendás-Franco et al. [132]) would
help to improve current therapies with the addition of vitamin D, especially for tumors in
which DKK-1 plays a tumor suppressor role.

The number of clinical trials conducted to evaluate DKK inhibitors as therapeutic
agents together with other chemotherapeutics has increased. The majority of studies
validated DKK inhibition as monotherapy in vitro and in vivo. Although it seems that
the DKK inhibition could be effective only for some tumors (e.g., prostate and multiple
myeloma), its evaluation together with current therapies would shine the spotlight on DKK
as real emerging molecular targets in a wider range of cancers.

6. Final Remarks

Wnt antagonist proteins have been related to increased metastatic potential and it
has also been demonstrated that they could be used as biomarkers for diagnosis and/or
prognosis. Thus, the role of these proteins requires further study to better understand
its implication in cancer and also to develop therapies and/or new biomarkers for use
in the treatment or diagnosis of cancer. The growing body of information on the role
of Wnt antagonist proteins in cancer highlighted their potential as therapeutic targets,
but also call attention to the high complexity of a system with an often ambiguous role,
and therefore, the difficulty in implementing possible therapies based on these proteins if
their role in each particular disease has not been previously characterized. However, their
therapeutic potential is confirmed by the development of inhibitors and activators of these
Wnt regulators that are currently evaluated in clinical trials. Evidence to date supports a
potential use of inhibitor/activator molecules and therapies for cancer treatment, especially
in combination with current chemotherapeutic agents, the cornerstone of cancer therapy
in the last decade. However, the knowledge gathered to date on Wnt antagonist proteins
revealed a marked dual oncogenic/suppressor role which is strongly context-dependent.
Therefore, multiple layers of information should be unraveled prior to the establishment of
a role for each Wnt antagonist on each particular cancer. Thus, future Wnt antagonist-based
cancer therapies must take into account all the information—often not yet available—of
what markers should be considered on each case (e.g., RNA, protein or others), in which
stages the therapy can be effective, the tumor or metastasis localization (and tissue of
origin) and how should be studied (some recent advances in molecular techniques have
led to significant improvements in methods such as genomic meta-analyses, expression
signatures, among others). This kind of approach may enhance accuracy of DKK as
predictors of clinical outcome or even permit the development of new therapeutic strategies.

To our knowledge, this is the first review to focus on the preclinical evidence of the four
members of the DKK family. We hope the present review provides better understanding of
current knowledge on Wnt antagonist proteins and their therapeutic potential in cancer
and highlights the need for additional studies to shed light on the roles played by each
antagonist in each particular cancer, which are not yet well defined.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14080810/s1, Supplementary Table S1: DKK1 deregulation reported in different tumors and
its therapeutic potential, Supplementary Table S2: DKK2 deregulation reported in different tumors
and its therapeutic potential, Supplementary Table S3: DKK3 deregulation reported in different
tumors and its therapeutic potential, Supplementary Table S4: DKK4 deregulation reported in
different tumors and its therapeutic potential.
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