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Abstract: Over the past 20 years, 68Ga-labelled radiopharmaceuticals have become an important part
in clinical routine. However, the worldwide supply with 68Ge/68Ga generators is limited as well
as the number of patient doses per batch of 68Ga radiopharmaceutical. In the recent years, a new
technique appeared, making use of the ease of aqueous labelling via chelators as with 68Ga but using
18F instead. This technique takes advantage of the strong coordinative bond between aluminium
and fluoride, realized in the aqueous cation [Al18F]2+. Most applications to date make use of one-pot
syntheses with free Al(III) ions in the system. In contrast, we investigated the labelling approach
split into two steps: generating the Al-bearing precursor in pure form and using this Al compound
as a precursor in the labelling step with aqueous [18F]fluoride. Hence, no free Al3+ ions are present
in the labelling step. We investigated the impact of parameters: temperature, pH, addition of organic
solvent, and reaction time using the model chelator NH2-MPAA-NODA. With optimized parameters
we could stably achieve a 80% radiochemical yield exerting a 30-min reaction time at 100 ◦C. This
technique has the potential to become an important approach in radiopharmaceutical syntheses.

Keywords: [Al18F]2+ cation; chelator labelling; reaction optimization; aqueous [18F]fluoride labelling

1. Introduction

Over the recent decades, nuclear molecular imaging (especially positron emission
tomography, PET) has emerged as a game changer in oncologic management using a
broad variety of radiolabelled probes, also called radiotracers. Among these radiotrac-
ers, receptor-directed radiolabelled peptides—e.g., [68Ga]Ga-DOTATOC—became widely
used as radiopharmaceuticals in specific malignancies [1,2]. Dependent on the applica-
tion, today, there is an expanding range of radionuclides available, hence making nuclear
medicine adaptive and highly versatile [3,4]. To date, PET-CT scanners deliver optimal
image qualities based on the commonly used positron emitters 18F, 68Ga, and 11C [5,6].
Regarding the choice of the appropriate nuclide, its half-life, emission characteristics and
availability play a major role. While 11C requires a costly cyclotron facility on site, 18F can
be supplied by a satellite infrastructure, if available [7]. In contrast, radionuclide generators
allow daily access to nuclides even if the daily supply infrastructure is weak. Thus, with
the introduction of 68Ga generators about 20 years ago, PET became available on every
medical site, while the costs per GBq initially were reasonable. The primary advantage
of 68Ga from generators—besides its steady presence in the laboratory—is the ease of
its labelling procedure [8,9]. The nuclide forms a stable complex with chelators, such
as 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) or 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetracetic acid (DOTA) [10]. These chelators can easily be linked to peptides or
small molecules, which allows 68Ga labelling of almost any substrate. Since the complex
formation at the optimal pH is robust and can be achieved quantitatively within minutes,
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this labelling approach gained broad application both in research and routine produc-
tion [11,12]. Standard labelling procedures with 18F, in contrast, are more complex when
covalent C-F bonds are aimed at, as in the labelling process of [18F]fluorodeoxyglucose
([18F]FDG) [13,14]. Over the last ten years, attempts were made to combine the ease of
labelling via complexes with the favorable nuclide properties of 18F (t1/2 = 109.7 min,
∼97% β+ emission, low 0.635 MeV β+ energy) [15–17]. Moreover, nowadays, 18F can be
produced by cyclotrons in high activities in the range of 100 GBq, while 68Ga generators
usually provide 2 GBq per elution only, paired with a significantly shorter export range
of respective radiopharmaceuticals due to the limited half-life [8,18]. Nevertheless, 68Ga
radiopharmaceuticals gained practical importance with increasing demands worldwide,
resulting in shortages in the supply and much increased costs for medically approved 68Ga
generators [19].

Hence, replacement of 68Ga by 18F can result in a significant cost reduction paired
with a reliable supply [20]. Labelling of peptides with [18F]fluoride has so far required
protection group chemistry or labelling via prosthetic groups [21]. A decade ago, McBride
et al., followed by Laverman et al. [15,16,22], initially reported a technique that exploits the
fluorophilic nature of aluminum to afford direct aqueous 18F-labelling by the formation
of stable aluminum fluoride chelatic bonds. Their method of radiolabelling was carried
out by predominantly applying a one-pot fluorination process, which yielded sufficiently
stable [Al18F] complexes. This method of basically forming the complex cation [Al18F]2+

first, followed by coordinating this positively charged complex-ion [Al18F]2+ by the NODA
moiety, in the recent years gained application due to its simplicity [23,24]. This work
explores parameters and benefits of splitting this process in two steps by coordinating the
aluminum cation first, followed by labelling of this Al bearing precursor with aqueous
[18F]fluoride in a second step, thus avoiding free aluminum ions in the labelling system
while aiming at likewise high labelling yields (Figure 1).
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Figure 1. Two possible ways of forming [18F][AlF(NODA)] complexes. Outlined below is the
established one-pot reaction [15,16,22], above our approach including the formation of the purified
[Al(OH)(NODA)] complex first, followed by ligand exchange of OH- against [18F]fluoride.

2. Results
2.1. Aluminum Coordination

The reaction of 1,4,7-triazacyclononane-1,4-diacetic acid (NODA) or 1,4,7-triazacy-
clononane-1,4,7-triacetic acid (NOTA) with Al3+ was studied over time using simple deriva-
tives NH2-MPAA-NODA (further termed NODA*) and p-NH2-Bn-NOTA (further termed
NOTA*) to characterize their ability to form complexes with the metal ion. The primary
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difference between NODA and NOTA is their denticity, cf. their molecular structures in
Figure 2. While both systems contribute three tertiary amine groups to the formation of the
complex, NODA* is lacking one carboxylic acid, resulting in the need for an additional lig-
and to form stable octahedral complexes with Al3+. This leads to a saturated coordination
of aluminum by NOTA* compared to NODA* where an additional ligand, such as a hydrox-
ide group, is needed. According to Figure 3a, the coordination of aluminum with NOTA*
was completed quantitatively after 15 min at 100 ◦C, applying a 1.23-fold molar excess of
Al3+ ions, with no metal free chelator detectable. In this process, an intermediate appeared,
which was absent when the reaction was completed. The intermediate compound may be
a complex of Al3+ with only three carboxylic functions of the NOTA* chelator and further
monodentate ligands, such as water, OH−, or Cl−. A comparison of the kinetics of both
complexes with Al(III) shows a significantly slower reaction of aluminum with NODA*
(Figure 3b). An equilibrium obviously limits yields at 60%, thus making longer reaction
times needless. Furthermore, the formation of an intermediate was observed which also
disappears during the formation process of the product.
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Figure 2. Molecular structures of chelators investigated in this study: (a) p-NH2-Bn-NOTA (termed
NOTA*), and (b) NH2-MPAA-NODA (termed NODA*).
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Figure 3. (a) Formation of the [Al(NOTA*)] complex over a time span of 15 min determined by HPLC measurements.
Reaction conditions: 1.23-fold Al3+ ion excess compared to chelator, NOTA* concentration of 1.84 mM, 55 mM of NH4OAc-
buffer pH 4.1, reaction temperature of 100 ◦C. Aqueous reaction medium. UV detection at 254 nm. Retention times
were 2.2, 2.9, and 5.7 for the species: [Al(NOTA*)], intermediate and NOTA* (precursor), respectively (b) Formation of
[Al(OH)(NODA*)] complex over a time span of 60 min determined by HPLC measurements. Reaction parameters and
detection were analogous to the reaction with the NOTA* chelator. Only buffer concentration was higher: 91 mM. Retention
times were 5.4, 6.0, and 6.9 for the species: intermediate, [Al(OH)(NODA*)], and NODA* (precursor), respectively. For
better legibility in both plots, error bars (±5%) are only shown for the product data.
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2.2. [18F] Fluoride Labelling

While NOTA* showed a higher ability of binding aluminum, we could achieve almost
no subsequent labelling with [18F]fluoride. This is most likely due to the chelate effect
through intramolecular complexation and thereby full (octahedral) coordination of the
Al-center by the three adjacent carboxylate groups. Hence, although one might assume
that, according to Pearson’s hard and soft acids and bases (HSAB) concept, F−—i.e., a hard
base—has a significantly higher binding affinity to Al3+—i.e., a hard acid—, the chelate
effect overcompensates the expected more stable pair formation between Al3+ and F−.

Hence, we further focused our investigations on NODA* and all following results
were received with this chelator.

2.2.1. Solvent Dependency

As it was reported for one-pot reactions, the addition of organic solvents can in-
crease [16] the radiochemical yield (RCY), so we investigated the influence of mixtures of
water with some mixable polar organic solvents without losing solubility of the complexes.

All tests were executed with a water to solvent ratio of 1:1. As shown in Figure 4a, the
RCY dependence on the solvent ranged from 40 to 73%. Replacing 50% of the water content
during the reaction by acetonitrile resulted in an about 30% increase in RCY. The highest
yields, however, were achieved with ethanol (69.1%) and DMAC (73.6%), respectively.
While DMAC showed the best results regarding RCY, it seemed to interfere with the
product. HPLC analyses showed the formation of multiple peaks close to the retention
time of the labelled chelate. Possibly DMAC took part in the coordination process via the
free electron pair of the nitrogen.
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Figure 4. (a) Influence of different solvents substitutes on the yield of 18F labelling. Fifty per cent of the reaction solvent water
were replaced by the following solvents: ethanol, acetonitrile, dimethylsulfoxide (DMSO), and N,N-dimethylacetamide
(DMAC). Reaction parameters: 0.2 mM [Al(OH)(NODA*)], 0.15 M of NH4OAc-buffer pH 4.5, 105 ◦C, total volume of 100
µL with water/solvent = 50:50, 20-min reaction time. Error bars are only shown in the up direction. (b) Influence of the
concentration of the chosen solvent ethanol (in % of total volume) in water on the RCY. Reaction parameters: 0.2 mM
[Al(OH)(NODA*)], 1.5 M of NH4OAc-buffer pH 4.5, 105 ◦C, 20-min reaction time, total volume of 100 µL, 80 µL thereof
with different EtOH/water ratios (v/v). The Pearson correlation coefficient is R = 0.9481.

Regarding a decision for an optimal solvent addition, besides solvability of all compo-
nents, the solvent shall not act as a complex ligand and ideally exhibits minimum toxicity.

2.2.2. Ethanol Concentration Dependency

We further investigated the impact of the concentration or fraction of organic solvent
ethanol within the aqueous reaction medium. In comparison with a purely water-based
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reaction, an 80% ethanol content nearly doubles the RCY from 40.8% to 76.6%, as shown
in Figure 4b. The variance between the repeated reactions was quite high. Yields of the
same reaction differed up to 25%. This may be explained by the applied experimental small
reaction volumes and the not 100 % tight sealing of the reactor. The organic component, in
particular, might be lost to some extent, thus changing the composition during the reaction.
Nevertheless, a clear trend of increasing RCY with increasing EtOH content in the reaction
mixture is observable (Figure 4b).

2.2.3. Temperature Dependency

Temperature has a big impact on the formation of the aluminum chelate; this also
applies to the 18F-labelling. No labelling can be observed at room temperature. Formation
of [18F][AlF(NODA*)] starts at around 60 ◦C. As clearly seen in Figure 5a, the highest
RCY was observed at 120 ◦C yielding 59.9 % product, but was almost already plateaued at
110 ◦C with 54.8% RCY under these conditions. This reactions series was carried out with a
20-min reaction time.
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[Al(OH)(NODA*)], 0.15 M NH4OAc buffer pH of 4.5, total volume of 100 µL with water/ethanol = 50:50, 20-min re-
action time. (b) Influence of the pH on [18F]fluoride coordination to [Al(OH)(NODA*)]. Reaction parameters: 0.2 mM
[Al(OH)(NODA*)], 0.15 M of NH4OAc-buffer, pH of <3 by addition of HCl, 105 ◦C, total volume of 100 µL, solvent: water/
ethanol = 50:50, 20-min reaction time. Shown also in the graph is the corresponding fraction of ionic fluoride among the two
species HF and fluoride. This function is calculated based on pKa = 3.2 [25].

2.2.4. pH Dependency

Investigating the impact of pH on the RCY was executed by preparing NH4OAc-
buffers with pH values between 0 and 8. pH 2 and 0 were achieved by the addition of
HCl to HOAc. Coordination reactions are known for being very pH sensitive. This can be
observed here as well, as shown in Figure 5b. In an alkaline medium (pH 7.5), [18F]fluoride
coordination can be observed with maximum 5% RCY due to increasing concentrations of
competing OH- ions. At low pH values under 2, equally small RCY were observed with no
observable labelling at pH zero, mainly due to [18F]HF being the dominant species, cf. the
additional fluoride species fraction curve in Figure 5b. The highest RCYs were observed
between 4.5 and 5.5 with a maximal yield of 61.1% at pH 4.8. The window of an optimal
pH environment, thus, is narrow, making buffer systems mandatory. Other buffer systems
such as HOAc/NaOAc or HCl/HEPES showed similar results, while citrate buffer systems
do not seem to allow [18F]fluoride coordination at all.
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2.2.5. Time Dependency: Reaction Kinetics

Previous parameters of the labelling reaction were carried out with a 20 min reaction
time. To determine the kinetics of this reaction, probes were taken over a time span
of 60 min, stored on ice, and subsequently analyzed by HPLC. As observed in most
reactions with n.c.a. radionuclides, the product kinetics follow a pseudo-first order law
with exponential saturation, while the corresponding species fraction of free [18F]fluoride
follows an exponential decrease. As shown in Figure 6a, the maximum RCY was reached
almost after 60 min with 76.2% RCY, whereas 63.6% RCY were achieved already after a
30 min reaction time. Figure 6b shows the radioactive decay of 18F (dotted line) together
with the course of RCY (dashed line). The combination (product) of both (straight line)
results in a mathematical maximum effective yield of 55.3% after a 39 min reaction time at
105 ◦C.
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Figure 6. (a) Time dependency (kinetics) of [18F]fluoride exchange coordination with the [Al(OH)(NODA*)] complex
according to a pseudo first order reaction, resulting in [18F][AlF(NODA*)] (b) Course of the radiochemical yield (RCY,
dashed), 18F decay curve (dotted) and combined calculated effective activity yield (straight) over time. Reaction parameters:
0.33 mM [Al(OH)(NODA*)], 0.25 M of NH4OAc-buffer, pH 4.5, 105 ◦C, total volume of 300 µL, solvent: water/ethanol 83:17.

3. Materials and Methods

If not specified differently, reported radiochemical yields (RCY) mean the HPLC based
decay-corrected product fraction in percent of all species seen in the chromatogram of
the crude reaction volume, cf. [26]. In contrast to silica-based RP phases, the polystyrene-
divinylbenzene-based HPLC phase avoided losses (retention) of [18F]fluoride on the resin.
NOTA* (p-NH2-Bn-NOTA, CAS no. 142131-37-1) was purchased from Macrocyclics (Plano,
TX, USA), NODA* (NH2-MPAA-NODA) from CheMatech (Dijon, France). [18F]fluoride
was generated by (p,n) reaction on [18O]water and purchased from the Research Centre
Jülich, INM-5 (Jülich, Germany). The crude delivered solution was purified by passing
through an anion exchange column (Sep-Pak Accell Plus QMA Plus Light cartridge, with
130 mg resin) from Waters (Milford, MA, USA), and eluted with 1 mL of saline. These
[18F]fluoride solutions were used in all labelling experiments. An aqueous 3 M NH4OAc
stem solution was used in all experiments. General HPLC conditions were as follows.
Detection modes: Gamma (NaI) and UV (254 nm). Gradient: 1–19 min: 100% 0.1 M
TFA aq→ 100% MeCN. Column: PRP-1-10# (250 × 4 mm, CS-Chromatographie Service,
Langerwehe, Germany), flow: 2 mL/min. #) Resin was from HAMILTON (Reno, NV, USA).
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3.1. Snythesis of Aluminum Chelates
3.1.1. Synthesis with the NOTA Chelator

Reaction conditions: 600 nmol of p-NH2-Bn-NOTA (in 300 µL water) reacted with
740 nmol of AlCl3 in a 0.05 M HCl solution (20 µL) plus 6 µL of NH4OAc-buffer 3 M.
Reaction pH was 4.1 and the reaction was maintained at 100 ◦C for 20 min. The product
was purified via HPLC. Experiments were performed in duplicate (n = 2).

3.1.2. Synthesis with the NODA Chelator
Time Dependency (Kinetics)

Reaction conditions: 600 nmol of NODA* (in 300 µL water) reacted with 740 nmol of
AlCl3 in a 0.05 M HCl solution (20 µL) plus 10 µL of NH4OAc-buffer 3 M. Reaction pH was
4.1 and the reaction was maintained at 100 ◦C for 20 min. The product was purified via
HPLC. The structure of [Al(OH)(NODA*)] was verified via mass spectrometry (LC-QTOF
MS) using a maXis II device (Bruker). Experiments were performed in duplicate (n = 2).

Production

Next, 12.5 mL of AlCl3 standard (462.5 µmol) were reduced to 3 mL by evaporation to
increase the concentration. Then, 0.6 mL of NH4OAc-buffer 3 M and 92.9 µmol of NODA*
were added and stirred at 80 ◦C for 24 h. The product was isolated using a modified HPLC
method (cf. Figure 7) and dried using a lyophilizer. The isolated [Al(OH)(NODA*)] was
redissolved in 1.1 mL of pure H2O, resulting in a 0.2 mM solution stored at +4 ◦C under
air. This solution served as a stem solution for subsequent labelling experiments with
[18F]fluoride.
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Figure 7. HPLC chromatogram of a crude reaction solution yielding [Al(OH)(NODA*)] (D). Other
species: (C) = NODA* and (E) = impurity of the delivered NODA*. (A) = free aluminum and
(B) gradient peak. Detection modes: Gamma (NaI) and UV (220 nm). Gradient: 1–25 min: 100% 0.1 M
TFA aq→100% MeCN. Column: PRP-1-10# (250 × 4 mm, CS-Chromatographie Service, D-52379
Langerwehe), flow: 2 mL/min. # Resin was from HAMILTON (Reno, NV, USA).

3.2. Synthesis of [Al 18F]2+ Chelates
3.2.1. Solvent Dependency

Reaction conditions: 20 nmol of [Al(OH)(NODA*)] (10 µL) reacted with no-carrier-
added (n.c.a.) [18F]fluoride in a 0.9% NaCl solution (35 µL) plus 5 µL of NH4OAc buffer
3 M pH 4.5, plus variable solvent (50 µL). Reactions with 20–40 MBq 18F per reaction were
maintained at 105 ◦C for 20 min. Experiments were performed in duplicate (n = 2).
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3.2.2. Ethanol Concentration Dependency

Reaction conditions: 20 nmol of [Al(OH)(NODA*)] (10µL) reacted with n.c.a. [18F]fluoride
in a 0.9% NaCl solution (5 µL) plus 5 µL of NH4OAc-buffer 3 M pH 4.5, plus 80 µL
of ethanol/water in variable ratios. Reactions with 20–40 MBq 18F per reaction were
maintained at 105 ◦C for 20 min. Experiments were performed five-fold (n = 5).

3.2.3. Temperature Dependency

Reaction conditions: 20 nmol of [Al(OH)(NODA*)] (10µL) reacted with n.c.a. [18F]fluoride
(35 µL) in a 0.9% NaCl solution plus 5 µL NH4OAc buffer 3 M, pH 4.5, plus ethanol (50 µL).
Reactions with 20–40 MBq 18F per reaction were maintained at different temperatures for
20 min. Experiments were performed in duplicate (n = 2).

3.2.4. pH Dependency

Reaction conditions: 20 nmol of [Al(OH)(NODA*)] (10 µL) reacted with n.c.a.
[18F]fluoride in a 0.9% NaCl solution (35 µL) plus 5 µL of NH4OAc-buffer 3 M of dif-
ferent pH (pH < 3 was achieved by addition of HCl), plus ethanol (50 µL). Reactions with
20–40 MBq 18F per reaction were maintained at 105 ◦C for 20 min. Experiments were
performed four-fold (n = 4).

3.2.5. Time Dependency (Kinetics)

Reaction conditions: 100 nmol of [Al(OH)(NODA*)] (50 µL) reacted with n.c.a.
[18F]fluoride (175 µL, in 0.9% NaCl solution), plus 25 µL of NH4OAc-buffer 3 M pH 4.5,
plus ethanol (50 µL). Reactions with 20–40 MBq 18F per reaction were maintained at 105 ◦C
for reaction times 0–60 min. Experiments were performed in duplicate (n = 2).

All HPLC measurements of the labelling reaction of NODA* with [18F]fluoride were
carried out with the same procedure. Figure 8 shows an example of these measurements.
Labelled [18F][AlF(NODA)]* and unlabelled [Al(OH)(NODA*)] almost have the same
retention time.
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Figure 8. HPLC chromatogram of the labelling reaction of [Al(OH)(NODA*)] with [18F]fluoride.
Species: (A) free [18F]fluoride, (B) labelled [18F][AlF(NODA*)] and (C) [Al(OH)(NODA*)]. Detection
modes: Gamma (NaI) and UV (254 nm). Gradient: 1–19 min: 100% 0.1 M of TFA aq → 100%
MeCN. Column: PRP-1-10# (250 × 4 mm, CS-Chromatographie Service, Langerwehe, Germany),
flow: 2 mL/min. # Resin was from HAMILTON (Reno, NV, USA).
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4. Conclusions

Our experimental findings confirmed that Al-NOTA* does not undergo significant
ligand exchange with [18F]fluoride due to the high stability of the octahedral coordination
of the Al3+ ions, and are thus in line with expectations. While Shetty at al. [27] reported
low RCY in the one-pot approach, we observed negligible exchange (RCY below 0.1 %) in
our two-step approach. Hence, we further focused investigations on *NODA. Difficult to
explain is our finding that the complex [Al(OH)(NODA*)] was not formed quantitatively
even with large excess of Al3+ ions. While investigating the major reaction parameters
of the [18F]fluoride ligand exchange reaction with [Al(OH)(NODA*)], we could verify a
significant increase in RCY almost by factor 2, just by substituting 50% of reaction water by
a polar organic solvent, as e.g. reported by Kumar and Ghosh for a one-pot system [16].
One of the best candidates—ethanol—thereby is nicely compatible with drug formulations
for human application, as already used by McBride et al. [22]. With the [Al(OH)(NODA*)]
concentrations chosen in the range of 200–300 µM, the [18F][AlF(NODA*)] product is
formed only at elevated temperatures. Furthermore, 100 ◦C and above were found to
be optimal. Nevertheless, even with the right pH and ethanol in the aqueous reaction
medium, we could not reach RCY above 80%. This outcome is already satisfying in terms
of a broad application, and is basically in agreement with optimizations in a one-pot
approach reported by McBride et al. [22]. However, the question remains as to why
100% RCY could not yet be achieved. One reason may be the limited thermal stability
of the [Al(OH)(NODA*)] complex in the presence of sodium ions introduced with the
[18F]fluoride. Once the Al3+ is released, it combines readily with present [18F]fluoride
to form the [Al18F]2+ cation, which, in return, “sees” just a low concentration of Al-free
NODA* complexes for a reaction. If this assumption was valid, the addition of metal-free
NODA* right from the beginning of the second reaction step would provide a surplus
of reaction partners for [Al18F]2+ and thus may help to increase the yield beyond 80%.
Kinetics at 105 ◦C showed only moderate speed, thus making reaction times of 30 min
mandatory for optimal effective yields.

In summary, the question which prompted our work, i.e., whether the one- or two-step
labelling with [Al18F]2+ is advantageous, cannot be answered simply with yes or no in terms
of RCY, since the RCY depends on several reaction parameters. With the chosen model
chelator and the Al precomplexed NODA moiety as a labelling precursor, achievable RCY
in our two-step approach are comparable with one-pot settings, as already demonstrated by
D’Souza et al. [16]. The pharmaceutical advantage of using [Al(OH)(NODA*)] (+ NODA*)
as a precursor is that it might make an analysis of free Al3+ within QC procedures needless.
In terms of toxicity of macroscopic amounts of [Al(OH)(NODA*)] and NODA* in later
product formulations, we do not expect problems since, e.g., in the case of common
productions of carrier-added [177Lu]Lu-DOTATATE both, DOTATATE and Lu-DOTATATE
are ingredients of the approved formulation. Further labelling investigations with aqueous
[18F]fluoride using [Al(OH)(NODA*)] conjugated to model peptides will reveal whether
this two-step approach is broadly applicable in practice. In the case of one peptide, this
approach has already been demonstrated to succeed [16].

Labelling via the [Al18F]2+ cation is already now a welcome alternative to labelling
with 68Ga3+, especially due to two reasons: 18F has the longer half-life and can be produced
in very high activities by modern medical cyclotrons with moderate costs. This is of great
interest for both, clinics to allow for higher patient throughputs and commercial producer of
radiopharmaceuticals, leading to economically reasonable diagnostics. Moreover, approved
68Ge/68Ga generators have become very expensive, thus diminishing the rationale for 68Ga
radiopharmaceuticals further. On top, labelling with [Al18F]2+ in aqueous media is almost
as simple and robust as labelling with 68Ga3+. We believe that this Al18F technique will
take over a significant fraction of the current 68Ga business.
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