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Abstract: The unprecedented pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is threatening global health. SARS-CoV-2 has caused severe disease with significant mortality
since December 2019. The enzyme chymotrypsin-like protease (3CLpro) or main protease (Mpro) of
the virus is considered to be a promising drug target due to its crucial role in viral replication and its
genomic dissimilarity to human proteases. In this study, we implemented a structure-based virtual
screening (VS) protocol in search of compounds that could inhibit the viral Mpro. A library of >eight
hundred compounds was screened by molecular docking into multiple structures of Mpro, and the
result was analyzed by consensus strategy. Those compounds that were ranked mutually in the
‘Top-100’ position in at least 50% of the structures were selected and their analogous binding modes
predicted simultaneously in all the structures were considered as bioactive poses. Subsequently,
based on the predicted physiological and pharmacokinetic behavior and interaction analysis, eleven
compounds were identified as ‘Hits’ against SARS-CoV-2 Mpro. Those eleven compounds, along
with the apo form of Mpro and one reference inhibitor (X77), were subjected to molecular dynamic
simulation to explore the ligand-induced structural and dynamic behavior of Mpro. The MM-GBSA
calculations reflect that eight out of eleven compounds specifically possess high to good binding
affinities for Mpro. This study provides valuable insights to design more potent and selective
inhibitors of SARS-CoV-2 Mpro.

Keywords: SARS coronavirus; SARS-CoV-2 main protease; structure-based virtual screening; molec-
ular dynamic simulation; hit identification

1. Introduction

The current global pandemic, so called COVID-19 (COronaVIrus Disease 2019), has
spread rapidly since it initially emerged in Wuhan in China, in late 2019 [1–4]. The virus
called ‘severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)’ is responsible for
the outbreak of this pandemic [5]. SARS-CoV-2 belongs to the β coronavirus subgroup
of the Coronaviridae family and was found to be related to acute respiratory syndrome
coronavirus (SARS-CoV) [6], which previously emerged in China in February 2003 and
caused an outbreak in China and spread to several other countries [5,6]. SARS-CoV-2
specifically infects humans by causing an atypical pneumonia, which possesses specific
mild to severe symptoms including dry cough, fatigue, fever, shortness of breath, severe
progressive pneumonia, multiorgan failure, and eventually death [1]. The World Health
Organization (WHO) has declared a state of global health emergency since the outbreak of
SARS-CoV-2. According to the World Health Organization (WHO) Coronavirus (COVID-
19) dashboard (https://covid19.who.int/, accessed on 30 June 2021), there have been
181,344,224 confirmed cases of COVID-19 globally, including 3,934,252 deaths worldwide,
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reported to the WHO [7]. Moreover, during the summer of 2020 and spring of 2021, a huge
spike was seen in COVID-19 cases [8,9].

SARS-CoV-2 is a positive-sense single-stranded RNA (+ssRNA) virus, with a sin-
gle linear RNA sequence with ~30,000 nucleotides [10–12]. The SARS-CoV-2 virion is
50–200 nanometers in diameter [6], comprising four structural proteins, known as the S
(spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, which are encoded by
the 3′ end, whereas two viral replicase polyproteins, called pp1a and pp1b, are encoded by
the 5′ end of the genome. The N protein holds the RNA genome, while the viral envelope
is composed of S, E, and M proteins. S proteins are glycoproteins that are divided into
two functional parts (S1 and S2), which are involved in viral attachment and fusion with
the membrane of a host cell. pp1a and pp1b proteolytically cleave into 16 non-structural
proteins (nsp1 to nsp16) by the main protease and the papain-like protease. nsp5, also
called chymotrypsin-like protease (3CLpro) or main protease (Mpro) located in the pp1a, is
essential in the replication and maturation of coronavirus, while the papain-like protease is
a deubiquitinase [13–20].

At present, specific antiviral or targeted therapies against SARS-CoV-2 do not exist.
However, supportive care, which is augmented by the combination of broad-spectrum
antibiotics, antivirals, corticosteroids, and convalescent plasma, is the main treatment
approach for COVID-19 [18,19]. The scientific community is involved in extensive research
worldwide to formulate suitable therapeutics to control the effects of SARS-CoV-2. Many
efforts have been applied to screen existing drugs as potential treatments to eradicate this
infection. Since the beginning of the pandemic, several antiviral drugs have been tested
in clinical trials against COVID-19, including remdesivir (which was originally designed
for the Ebola virus [21]), anti-malarial drugs including chloroquine and hydroxychloro-
quine [22,23], anti-rheumatoid arthritis drug ‘tocilizumab’ [24,25], and anti-HIV drugs
lopinavir/ritonavir [26], among others [27,28]. Nevertheless, the efficacy of some drugs
remains controversial. This is the case with a clinical trial involving lopinavir/ritonavir,
which reported that no benefits were observed with this treatment compared to standard
care [26].

Vaccines against COVID-19 are now available to control the infection [29]; however,
there is still an urgent need to discover specific drugs that can target SARS-CoV-2 in
patients suffering from COVID-19 due to various emerging variants of the virus. The
important targets of SARS-CoV-2 have been identified [30,31] that may be exploited to
develop novel therapeutics. Since Mpro is one of the key targets of coronavirus, therefore
Mpro can be targeted to develop antiviral agents. Mpro cleaves polyproteins to produce
non-structural proteins that are part of the replicase–transcriptase complex. The advantages
of targeting Mpro are that it specifically exists in the virus and not in humans, it has high
sequence identity (i.e., >96%) with SARS-CoV, and it is highly conserved among related
viruses [32–35].

Mpro is composed of three domains. The domains I and II are composed of 8–101
and 102–184 residues, respectively. These domains acquire a β-barrel shape and resemble
chymotrypsin, while domain III (201-306 residues) mainly comprises α-helices. The cleft of
domain I and II constitutes the substrate binding region, which consists of the conserved
His41 and Cys145 catalytic dyad, where Cys and His act as a nucleophile and a proton
acceptor, respectively. Additionally, two deeply buried subsites, called S1 and S2, and
three shallow subsites (S3–S5) are also present in the structure. The S1 subsite consists of
Phe140, Gly143, Cys145, His163, Glu166, and His172, while S2 consists of Thr25, His41,
and Cys145. These residues are mainly involved in hydrophobic and electrostatic interac-
tions. The shallow subsites (S3–S5) are composed of His41, Met49, Met165, Glu166, and
Gln189. Despite the high genomic similarity of SARS-CoV-2 with the other members of the
coronavirus family, their binding sites have differences in shape and size, which gives us
an opportunity to explore more diverse chemical scaffolds by enhanced sampling [32–36].
The three-dimensional (3D-) structure of Mpro is depicted in Figure 1a. Herein, we have
applied target-specific virtual screening of our in-house compound database with the aim
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to obtain structurally diverse and potential inhibitors of SARS-CoV-2. Several compounds
were identified with high inhibitory potential for Mpro, and subsequently, could be tested
as a treatment against COVID-19.
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Figure 1. (a) The 3D structure of Mpro is shown in complex with X77 (green stick model). The active site residues are
displayed in orange stick models. The S1–S5 subsites are highlighted. The protein–ligand binding interactions of compounds
1, 3, 6, 8, 10–13, 17, 18, and 28 are shown in 2D format in (b–l), respectively. Hydrogen bonds are depicted in dotted arrows.
The green and blue colored arrows represent side chain acceptor/donor and backbone acceptor donor atoms, respectively.

2. Results and Discussion
2.1. Validation of Docking Method by Re-Docking and Cross-Docking

Prior to the virtual screening of our in-house database, re-docking and cross-docking
of co-crystallized ligands were performed in order to scrutinize the efficiency of the docking
method and to select the most appropriate protein file for virtual screening. The re-docking
results of twenty protein–ligand complexes showed that 50% of ligands were re-docked
with RMSD values of 0.29–1.94 Å, while 30% of ligands were re-docked with RMSD ≤ 3 Å.
However, only four ligands showed RMSD in the range of 4 to ≥7 Å. Therefore, 80% of lig-
ands were correctly re-docked in their X-ray-determined conformations. Thus, the docking
method was found efficient in predicting the experimentally determined orientations of
compounds. RMSD ≤ 3.0 Å is usually considered satisfactory in re-docking experiments;
therefore, the results are acceptable. The re-docking results are shown in Table S1.

The cross-docking results (Table S2) showed that 40% of the ligands (ligands in 6Y2F,
6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) were correctly ranked between first and
third position when docked in their cognate proteins, while two ligands (ligands contained
in complexes with PBD codes: 7BRR and 6WNP) were ranked at fifth and seventh position
in their X-ray structure. This indicates that MOE accurately ranked 50% of the ligands in
good position; therefore, MOE was used in structure-based virtual screening (SB-VS) of our
in-house database. The cross-docking results showed that eight proteins (PDB codes: 6Y2F,
6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) are appropriate for docking studies;
therefore, those proteins were used in the virtual screening experiment.
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Analysis of Virtual Screening Accuracy

The predictive accuracy of virtual screening was scrutinized by the ranking or the
enrichment of known inhibitors (KIs, embedded in the in-house dataset) at the top-ranking
position of docked libraries (Table S3). The result was examined by analyzing the percent
enrichment factor (%EF) and receiver operating characteristic curves (ROC curves). These
matrices are widely used to compare virtual screening results. The results showed that
MOE successfully identified KIs in 6W79, 7BQY, 6ZRT, 7JU7, and 6W63 with %EF in the
range of 33% to 73% at a top-100 position (Table S3), whereas 6W79 showed %EF of 53%
at a top-50 position. Moreover, the ROC curve shows an AUC of 0.79–0.84 for 7JU7, 6Y2F,
6WTK, 6LU7, 7BQY, 6W63, and 6ZRT, and 0.90 for 6W79. The %EF and AUC of 6W79 were
the highest among all the selected proteins. The ROC curve is displayed in Figure S1.

2.2. Selection of Hits after Consensus Approach

The virtual screening of >800 compounds was carried out on multiple structures of
Mpro (PDB codes: 6Y2F, 6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) with the aim of
finding out the most potential inhibitors. Later, the consensus approach was used to select
the compounds that are ranked among the top 100 positions in all the proteins. We observed
that thirteen (1–13) and eight compounds (14–18, 28–30) were mutually ranked at a top-100
position in 8/8 and 7/8 proteins, respectively, whereas nine compounds (19–27) were
ranked at a top-100 position in≥50% of the proteins. Therefore, a total of thirty compounds
were selected, and their pharmacokinetic behavior was studied by SwissADME [37] and
ADMETsar [38]. The docking results are tabulated in Table S4.

2.3. Pharmacokinetic Analysis

The physicochemical properties of the selected compounds showed that the molecular
weight of compounds is in the range of 290 to 635 g/mol. A total of 19/30 compounds pos-
sess≤5 rotatable bonds (RBs), while 11/30 compounds possess 6–10 RBs in their structures.
The compounds have 3–13 hydrogen bond acceptor atoms (HBA) and 0–9 hydrogen bond
donor atoms (HBD). The molar refractivity (MR) and topological polar surface area (TPSA)
of these compounds are in the range of 74.33–169.9 and 62.32–226.83 Å2, respectively. These
results were compared with the physicochemical properties of selected KIs. Those KIs
possess 1–8 HBA atoms, 0–7 HBD atoms, and 1-22 RBs, while 4/15 KIs possess a molecular
weight in the range of 549 to >681. Similarly, the TPSA of KIs was found to be in the range
of 20 to >197 Å2. The KIs including remdesivir, lopinavir and ritonavir also have molecular
weight > 600, RB = 15–23 and TPSA in the range of 120 to 203 Å2. According to Veber’s
rule of drug-likeness [39], TPSA and the number of RBs discriminate between orally active
compounds and those that are not orally active for a large dataset of compounds in rats [40].
Therefore, compounds with ≤10 RBs and TPSA ≤ 140 Å2 are predicted to have good oral
bioavailability [40], while the Ghose filter further improves the predictions of drug-likeness
by the following rules: the partition coefficient (LogP) of the compound should be in the
range of −0.4 to +5.6, MR = 40 to 130, molecular weight = 180 to 480, and number of
atoms from 20 to 70 (including HBDs and HBAs). The predicted partition coefficient (LogP
octanol/water) of the selected (30) hits was in the range of +0.25 to 4.74, suggesting their
solubility in a hydrophobic medium. The LogPo/w of selected KIs is in the range of 0.7
to >5. Similarly, most of the hits demonstrated good to moderate solubility in a water
medium.

The predicted pharmacokinetic properties of the selected hits further helped us to
choose more appropriate compounds. The admetSAR showed that all the hits passed
human intestinal absorption, while SwissADME showed that 17/30 compounds (1, 6,
12–14, 16–19, 22–28, 30) had high gastrointestinal absorption (GIA) ability. Similarly, all the
compounds (except 16 and 27) exhibited no blood–brain barrier penetration. Additionally,
all compounds (except 15, 22–27, and 30) did not have substrate-like properties for P-
glycoprotein (P-gp), while compounds 11, 15, 19–27, and 30 displayed inhibitory potential
against P-gp. Furthermore, most of the compounds were found to be non-inhibitors of
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cytochrome p450 enzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4). The skin
permeation (LogKp) of ligands was found in the range of −5.30 to −10.61 cm/s, showing
that these compounds are not permeable through the skin.

The drug-likeness properties of selected hits were calculated based on the Lipinski
rule of five [41] and Ghose [42], Veber’s [39], Egan’s [43], and Muegge’s rules [44]. The
compounds 1, 6, 12–14, 16–18, 26, 28 and 30 followed all the drug-likeness criteria given by
Lipinski, while compounds 1, 4–6, 9, 12–14, 16–18, and 28 fulfilled the Ghose rules of drug-
likeness. Similarly, compounds 1, 6, 12–14, 16–18, 26–28, and 30 followed Veber’s, Egan’s,
and Muegge’s rules of drug-likeness. Comparing these results with the drug-likeness
of KIs shows that 4/15 KIs (including O6K, telaprevir, boceprevir and N3) violate two
rules of Lipinski’s drug-likeness criteria, while the known drug, remdesivir, also showed
two violations of Lipinski’s rule (MW > 500, HBA > 10), three violations of Ghose rules
(MW > 480, MR > 130, number of atoms > 70) and Muegge’s rules (MW > 600, TPSA > 150,
HBA > 10), two violations of Veber’s rules (Rotors > 10, TPSA > 140), and one violation
of Egan’s rules (TPSA > 131.6). This shows that the selected hits possess comparable
drug-likeness with remdesivir. Usually, substrates of biological transporters or natural
products do not follow the above-mentioned rules of drug-likeness [45]. Moreover, recently
several molecules were approved by the FDA in 2020. Among those approved drugs,
several compounds fail on one or the other drug-likeness pharmacokinetic principle, and
do not obey Lipinski, Ghose, Veber, Egan, and Muegge’s filters, although this does not
question the approval of these molecules. Therefore, it is critical to first look for a potent
molecule, and once potency is validated, then to look for improved kinetics [46].

The bioavailability score of the compounds was in the range of 0.17–0.56, indicating
moderate bioavailability. Among all the selected hits, only a few compounds (1, 2, 4, 7, 9,
10, 12, 14) showed few PAINS alerts, whereas the rest of the compounds did not show any
PAINS alerts. Moreover, compounds 1, 6, 12–14, 16–18 passed the lead-likeness criteria,
while compounds 2, 3–5, 7–11, 15, and 19–30 displayed few violations (i.e., MW > 300,
rotors > 7, XlogP 3 > 3.5). The calculated synthetic accessibility of the compounds was
in the range of 2.70 to 6.30, which reflects that these compounds are synthesizable. The
bioavailability score, lead-likeness, and synthetic accessibility of compounds were com-
pared with remdesivir, which showed that the compounds possess comparable scores.
The bioavailability score of remdesivir is also 0.17 and synthetic accessibility = 6.33, and
remdesivir depicted two violations in lead-likeness (i.e., MW > 350, Rotors > 7). The
predicted physiological properties, pharmacokinetic profiles, drug-likeness, and medicinal
properties of the selected compounds are tabulated in Tables S5–S9.

2.4. Interaction Analysis

After sequence and structural alignment of eight Mpro structures (used in VS), the main
pharmacophoric features required for optimal binding were deduced. We observed that
His41, Phe140, Gly143, Cys145, His163, His164, Glu166, Gln189, and Thr190 play important
roles in the stabilization of protein–ligand binding by providing hydrogen bonds or hy-
drophobic interactions. Thus, the interactions of the selected ligands with those important
residues were scrutinized. The docked view of compound 1 (2-(3,4-dihydroxyphenyl)-
3,5,7-trihydroxy-4H-chromen-4-one) showed that the compound binds at S1, S2 and S3
subsites, and its hydroxyl groups and the carbonyl moiety formed H-bonds with multiple
important residues including Phe140 of S1, Cys145 of S1 and S2, His163 of S1, and His164
of S3. Similarly, the substituted -OH moieties of compound 2 (1R,2R,3S,4S,6S)-6-((E)-3-
(3,4-dihydroxyphenyl) acryloyloxy)-2,3,4-trihydroxycyclohexyl 3,4,5-trihydroxybenzoate)
formed multiple H-bonds with the side chains of Cys145 (S1 and S2 subsites) and Met165
of S3, and with the main chain carbonyl oxygen of Glu166. Moreover, Glu166 formed
bidentate interactions with the -OH group and dihydropyranone oxygen of compound
3 (2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2R,3S,4S,5R,6R)-4,5,6-trihydroxy-2-(hydroxy
methyl)-tetrahydro-2H-pyran-3-yloxy)-4H-chromen-4-one), whereas one of the -OH groups
of compound 3 mediated H-bonds with Leu141, while the substituted pyran -OH groups of
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compound 4 (1,3,8-trihydroxy-6-(((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-methyl-tetrahydro-
2H-pyran-2-yloxy) methyl) anthracene-9,10-dione) interacted with Glu166 and Gln192.
Similarly, the -OH and the carbonyl oxygen of compound 5 (2-(2,4-dihydroxyphenyl)-5,7-
dihydroxy-3-methyl-4H-chromen-4-one) mediated H-bonding with Leu141 and Cys145,
respectively. However, the substituted -OH groups of compound 6 ((S)-3-(3-acetyl-2,5-
dihydroxybenzyl)-6,8-dihydroxy-3,4-dihydroisochromen-1-one) formed H-bonds with
Asn142, Thr190, and Gln192. Similarly, Thr190 and Glu166 mediated H-bonds with the
-OH groups of compound 7 (1,6-dihydroxy-3-methyl-8-((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-
6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy) anthracene-9,10-dione). Interestingly,
compound 8 ((S)-4,5-dihydroxy-9-((2R,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-
tetrahydro-2H-pyran-2-yl)-2-(((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydro-2H-
pyran-2-yloxy) methyl) anthracen-10(9H)-one) mediated the highest number of H-bonds
with the side chains and backbone atoms of Gly143, Leu141, Ser144, His163, Cys145,
Thr190, and Gln192. Therefore, this molecule was considered to be the most promising
inhibitor. Moreover, compound 9 (1,3,8-trihydroxy-6-(((1R,2R,3R,4S,5S)-2,3,4-trihydroxy-5-
methylcyclohexyloxy) methyl) anthracene-9,10-dione) formed multiple interactions with
Ser144, Thr190, and Gln192. Like compound 8, compound 10 (1,6-dihydroxy-3-
(hydroxymethyl)-8-(2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-
pyran-2-yloxy) methyl) anthracene-9,10-dione) also mediated several interactions with key
residues including His163, Thr190, and Gln192, whereas His41 provided H–π interaction
to the compound. Similarly, compound 11 ((E)-((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-(7-
hydroxy-5-methyl-4-oxo-2-(2-oxopropyl)-4H-chromen-6-yl)-tetrahydro-2H-pyran-2-yl)
methyl 3-(4-hydroxyphenyl) acrylate) displayed H-bonding with Asn142, Glu166, and
Arg188. The compounds 12 ((E)-N′-(3,4-dihydroxybenzylidene)-2-phenylacetohydrazide)
and 13 ((E)-3-(2,4-dihydroxyphenyl)-2-(1,3-dioxoisoindolin-2-yl) acrylic acid) formed H-
bonds with Glu166 and Arg188, while compounds 14 ((2R,3S)-2-(3,4-dihydroxyphenyl)-
3,4-dihydro-2H-chromene-3,5,7-triol) and 16 (4,11-dibutyl 5,10-bis(2-hydroxyphenyl)-3,12-
dithiatricyclo[7 .3.0.02,6]dodeca-1,4,6,8,10-pentaene-4,11-dicarboxylate) interacted with
Glu166 and Ser144, and Gly143 and Ser144, respectively. The binding mode of compound
15 ((E)-((2R,3R,5R,6R)-3,4,5-trihydroxy-6-(7-methoxy-5-methyl-4-oxo-2-(2-oxopropyl)-4H-
chromen-6-yl)-tetrahydro-2H-pyran-2-yl) methyl 3-(4-hydroxyphenyl) acrylate) demon-
strated that Gln192, Thr190, and His163 stabilized the compound in the active site of Mpro

through multiple H-bonds, while Thr190 and Gln192, and residues Glu166 and Gln192,
provided H-bonds to the compounds 17 (3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-
methoxy-4H-chromen-4-one) and 18 ((E)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-hydroxyphenyl)
acrylic acid), respectively. Compound 19 ((R)-3-((R)-6-(2,2-bis(4-fluorophenyl)ethyl)-4-
methoxy-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)-6,7-dimethoxyisobenzofuran-
1(3H)-one) formed a H-bond with the main chain nitrogen of Glu166, while the amino
nitrogen and -OH group of Ser144 and main chain nitrogen of Cys145 stabilized compound
20 (3-{4-[2-carboxy-2-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)eth-1-en-1-yl]phenyl}-2-(1,3-
dioxo-2,3-dihydro-1H-isoindol-2-yl)prop-2-enoic acid) through H-bonding, whereas com-
pounds 21 ((E)-((2R,3R,5R,6R)-3,4,5-trihydroxy-6-(7-hydroxy-5-methyl-4-oxo-2-(2-oxopropyl)-
4H-chromen-8-yl)-tetrahydro-2H-pyran-2-yl)methyl 3-(4-hydroxyphenyl)acrylate), 22 ((R)-
2-((R)-5-((R)-4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-7,8-dihydro-[1,3]
dioxolo[4,5-g]isoquinolin-6(5H)-yl)-2-(9H-fluoren-3-yl)ethanamine), 23 ((R)-{6-[2,2-bis(4-
fluorophenyl)ethyl]-4-methoxy-2H,5H,6H,7H,8H-[1,3]dioxolo[4,5-g]isoquinolin-5-yl}[2-
(hydroxymethyl)-3,4-dimethoxyphenyl]methanol) and 24 ((S)-6-((1-(4-bromobenzyl)-1H-
1,2,3-triazol-4-yl)methyl)-4-methoxy-5-((R)-5-methoxy-4-methyl-1,3-dihydroisobenzofuran-
1-yl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline) formed a single H-bond with Cys145,
His164, and Glu166, respectively. Moreover, compounds 25 (8-benzyl-N-cyclohexyl-14-
methyl-7-oxo-5-phenyl-2,3,4,8,18-pentaazatetracyclo [8.8.0.02,6.012,17] octadeca-1(10),3,5,11,
13,15,17-heptaene-9-carboxamide) and 26 ((9R,13R)-4-bromo-N9-{[(2R)-oxolan-2-yl]methyl}-
14-phenyl-8-oxa-14,15,17-triazatetracyclo [8.7.0.02,7.012,16] heptadeca-1(17),2,4,6,10,15-
hexaene-9,13-diamine) were stabilized by Glu166 and His163, and Gly143, respectively,
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while compounds 27 ((9R,13R)-N9-benzyl-4-fluoro-14-phenyl-8-oxa-14,15,17-triazatetracyclo
heptadeca-1(17),2(7),3,5,10,15-hexaene-9,13-diamine), 28 (4-((3-(3-bromophenyl)-[1,2,4]
triazolo[3,4-b][1,3,4]thiadiazol-6-yl)methoxy)phenol) and 30 (4-[(9R,13R)-13-amino-9-
(benzylamino)-8-oxa-14,15,17-triazatetracyclo [8.7.0.02,7.012,16] heptadeca-1(17),2(7),3,5,10,
15-hexaen-14-yl]benzoic acid) mediated H-bonds with Glu166, Ser144, and Gly143, re-
spectively. The docked view of compound 29 ((S)-4,5,9-trihydroxy-2-(hydroxymethyl)-9-
((2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)-tetrahydro-2H-pyran-3-yloxy) anthracen-
10(9H)-one) depicts that Glu166 and Phe140 mediated multiple H-bonds with the -OH moi-
eties of 29, and His41 mediated π–π interaction with this compound. The protein–ligand
interactions of 1–30 hits are tabulated in Table S10. The binding modes of compounds
depict that these compounds mainly bind at S1 and S2 subsites of the active site of Mpro;
however, His164 and Met165 of the S3 subsite, a few residues at the entrance of the active
site loop (near S1 subsite including Leu141 and Asn142), and some residues of domain
3 (including Arg188, Thr190, and Gln192) also play important roles in the binding of
compounds. Based on the pharmacokinetic profile, drug-likeness, and interaction analysis,
eleven compounds (1, 3, 6, 8, 10, 11, 12, 13, 17, 18, and 28) were considered to be good
inhibitors; thus, their dynamic behavior was studied by molecular dynamic simulation.
The docked orientations and 2D-structures of 11 hits are shown in Figure 1b–l. The chemical
structures of compounds 1–30 are shown in Figure S2.

2.5. Molecular Dynamic Simulation
2.5.1. Convergence of Mpro Free and Inhibited States

The X-ray structure of Mpro (PDB code: 6W79, reported by Mesecar et al. [47]) in
complex with the broad-spectrum non-covalent inhibitor (X77) was selected for MD simu-
lation as a positive control. The dynamic behavior and structural stability of Mpro in the
apo form and inhibited states were analyzed through molecular dynamic simulation. The
stability of all the complexes was analyzed by calculating the RMSD (alpha carbon, Cα)
of all the complexes from the output generated trajectories after 100 ns. The apo–Mpro

(Figure 2) was stable during the simulation except for the fraction between 96 and 100 ns.
The apo–Mpro showed an acceptable range of fluctuation and gained stability till 100 ns
(showed a smooth and straight graph). This behavior indicates that the free state of the
protein was stable. However, the reference complex, Mpro–X77, showed that the RMSD
gains equilibrium after 80 ns and is increased up to 100 ns. On the other hand, compound
1 formed several key interactions with the protein, and therefore showed a considerable
increase in the RMSD after 25 ns, which affected the overall stability of the complex. A
drastic deviation in the RMSD was observed from 20–80 ns during the simulation, whereas
the RMSD for the Mpro–compound 3 complex was found stable till 20 ns, excluding the
substantial convergence at the 25–45 ns period where the RMSD of the complex increased
significantly. Shortly after the increase in the RMSD, no convergence was seen. Similarly,
the Mpro–compound 6 complex depicted a major stability drift between 20 and 60 ns, while
the RMSD remained increased till 100ns. Interestingly, the Mpro–8 complex revealed a sub-
stantial convergence in the stability until the simulation time. At different levels, significant
convergence was observed in the RMSD of the Mpro–8 complex. The Mpro–10 complex
showed a small drift in the convergence at 80 ns; however, the system remained stable.
The Mpro–11 complex showed drastic shifts in the stability at several intervals of 15–25,
30–60, and 65–85 ns, which significantly affected the stability of the complex. Moreover,
the stability of the Mpro–12 complex was also affected due to a continuous increase in the
RMSD after 40 ns. In contrast, the Mpro–13 complex mediated friction between 30 and 40 ns;
however, it showed minimal effect on the system’s stability. Similarly, the RMSD of the
Mpro–17 complex was stable up to 50 ns; however, it increased at 50–60 and 75–90 ns. We
observed that the Mpro–8 complex depicted a rapid increase in the RMSD between 20 and
90 ns (and therefore destabilized the system); however, after a drastic increase, the RMSD
was stabilized after 90 ns. The Mpro–28 complex remained relaxed until 55 ns; however, the
RMSD was increased after 55 ns and remained elevated throughout the simulation. The
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sudden increase indicates the fluctuation in the stability of the complex. Altogether, the
results indicate that Mpro–3, Mpro–8, Mpro–11, Mpro–18, and Mpro–28 complexes attained
more variation as compared to the apo–Mpro, while Mpro–8, Mpro–11, and Mpro–28 com-
plexes were found unstable till the end of simulation and reached a maximum RMSD of
7 Å, 4 Å, and 3.9 Å, respectively, as compared to apo–Mpro and Mpro–X77 complex. During
the simulation, no destruction in the simulated complexes (both apo and ligand-bound
forms) was observed, which confirms the significance of the simulation. The RMSD graphs
of all the complexes are shown in Figure 2.
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2.5.2. Root Mean Square Fluctuation (RMSF)

RMSF was calculated to observe the fluctuation in different regions of Mpro upon
ligand binding during the simulation. The main purpose was to see the effects of ligand
binding on the flexibility of each residue of protein. The RMSF graphs of all complexes
and apo–Mpro are shown in Figure 3. The results show that compound 8 increased the
flexibility of all regions of the Mpro–8 complex as compared to the apo–Mpro, Mpro–X77
complex, and complexes of the rest of the selected hits from the in-house database. The
apo–Mpro showed the lowest RMSF as compared to the ligand-bound states, reflecting that
the protein is not very flexible in the un-ligated state. The average RMSF of all the systems
was found in the range of 1.5 Å. The Mpro–3, Mpro–8, Mpro–11, and Mpro–28 complexes
exhibited high flexibility, while the flexibility of Mpro–10 and Mpro–13 complexes was
low. The loops in the protein structure fluctuated the RMSF at different regions. The
Mpro–1, Mpro–6, Mpro–12, Mpro–17, and Mpro–18 complexes depicted lower flexibility due
to the differential dynamics upon ligand binding. The secondary structures with loops
are responsible for the fluctuation in the RMSF at different levels, justifying the residual
flexibility. The flexibility of complexes with the selected eleven hits varies as compared to
the apo–Mpro and X77-inhibited states (Figure 3).
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The total energy of the apo–Mpro was stable (energy = −5600 kcal/mol), while the
Mpro–X77 exhibited slightly lower energy (−5400 kcal/mol) as compared to apo–Mpro. The
Mpro–8, Mpro–11, Mpro–18, and Mpro–28 complexes revealed a similar energy pattern (in the
range of−5400 kcal/mol to−5200 Kcal/mol), whereas the Mpro–10 and Mpro–13 complexes
possess slightly higher total energy (between −5500 kcal/mol and −5700 kcal/mol) than
the apo–Mpro. The Mpro–1, Mpro–3, Mpro–6, Mpro–12, and Mpro–17 complexes showed
increased total energy ranging from −5600 kcal/mol to −5800 kcal/mol (Figure 4). The
inhibited states of Mpro shared similar patterns and variations as compared to the apo
form, therefore showing the effects of deviation on the structure of the protein created by
each inhibitor.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 11 of 24 
 

 

12, Mpro–17, and Mpro–18 complexes depicted lower flexibility due to the differential dy-
namics upon ligand binding. The secondary structures with loops are responsible for the 
fluctuation in the RMSF at different levels, justifying the residual flexibility. The flexibility 
of complexes with the selected eleven hits varies as compared to the apo–Mpro and X77-
inhibited states (Figure 3). 

The total energy of the apo–Mpro was stable (energy = −5600 kcal/mol), while the Mpro–
X77 exhibited slightly lower energy (−5400 kcal/mol) as compared to apo–Mpro. The Mpro–
8, Mpro–11, Mpro–18, and Mpro–28 complexes revealed a similar energy pattern (in the range 
of -5400 kcal/mol to −5200 Kcal/mol), whereas the Mpro–10 and Mpro–13 complexes possess 
slightly higher total energy (between −5500 kcal/mol and −5700 kcal/mol) than the apo–
Mpro. The Mpro–1, Mpro–3, Mpro–6, Mpro–12, and Mpro–17 complexes showed increased total 
energy ranging from −5600 kcal/mol to −5800 kcal/mol (Figure 4). The inhibited states of 
Mpro shared similar patterns and variations as compared to the apo form, therefore show-
ing the effects of deviation on the structure of the protein created by each inhibitor. 

 
Figure 3. RMSF graphs of apo–Mpro, Mpro–X77, and Mpro in complex with selected hits. The RMSF of free state was in range 
of 0.5 Å to 1.3 Å. Compound 8 attained highest RMSF (between 1.5 Å and 3.5 Å), while the complex with X77 showed 
RMSF between 1.0 Å and 1.8 Å. 

 
Figure 4. The difference of total energy of Mpro is shown in the apo–Mpro and inhibited states. The x-axis and y-axis depict
time (nanoseconds) and the total energy of the protein during the simulation (Kcal/mol), respectively.



Pharmaceuticals 2021, 14, 896 12 of 24

2.5.3. Protein Motions and Trajectories Clustering

The dynamic impact of eleven hits on the structure of Mpro is shown in Figure 5.
The structural changes in each complex due to the protein–ligand binding was observed
through principal component analysis (PCA). The significant dominant motions (Figure 5)
are shown in the first three eigenvectors, while the others indicated localized fluctuation.
In the apo–Mpro, a total of 48% of variances were contributed by the first three eigenvectors
to the total observed motion. Unlike the apo–Mpro, the inhibited states showed different
behavior of motion. In inhibited states, compounds 8 and 12 showed 60%, compounds
18, 1 and X77 reflected 57% and 55%, respectively, whereas compounds 6, 28, and 11
showed 52–50% of total motion. The total motion of compounds 3 and 17 was 40%, while
compounds 10 and 13 demonstrated least motion of 38% and 26%, respectively. These
structural behavior clearly demonstrated the structural rearrangement of the protein upon
ligand binding.
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The reliability of attributed motions was achieved by plotting the two initial eigen-
vectors of each trajectory against each other. During the simulation production run, the
flipping over conformation was shown by color blue to red. The dots represented each
frame from blue to red. To understand the conformational transformation of the complexes,
a 2D subspace was mapped from the trajectories using PC1 and PC2. Figure 6 clearly
shows that each complex acquired two conformational states on the subspace differentiated
by the colors (blue and red). The unstable conformational state (shown in blue) can be
easily separated in neared convergence to obtain a stable conformational state (shown in
red). Subsequently, the apo–Mpro showed more energetic conformation, while the inhibited
states showed stable energy conformation with different periodic jumps. The Mpro–X77
complex reflected very stable lower energy conformation as compared to apo–Mpro, while
the rest of the inhibitors followed the same pattern and acquired stability with lower
energy states.
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2.5.4. Metastable to Native State Transition Pathway

The transition states of the apo–Mpro and inhibited Mpro complexes were studied
using the free energy landscape (FEL). The FEL plot was constructed from the first two
eigenvectors of the trajectory time to explore the transition mechanism from the metastable
state to the native state. The lowest energy states of each complex were examined to
investigate the structural changes. The apo–Mpro showed a significant change in the energy
states as compared to the inhibited states (represented by red, yellow, green, and blue in
Figure 7). The highest energy levels and the metastable stage in the plots are shown by
red and blue colors, respectively. The apo–Mpro was stable as compared to the inhibited
states because the red color (high energy state) is more prominent in the inhibited states
(X77, 1, 3, 6, 8, 10–13, 17–18, and 28). The compounds 3, 8, 6, 11, 18, and 28 showed the
highest transition states due to the interaction with the active site domain of Mpro. The
apo–Mpro acquired only one state with no energy barriers, and similarly, compound 13
showed a pattern like apo–Mpro due to the sliding of compound 13 from the active pocket
because of weak interactions. Moreover, compound 10 acquired two states with a stable
energy level for the maximum time (shown in yellow). The reference ligand, X77, remained
mostly in the high energy state, which confirmed the effect on the stability of the protein
structure due to the rearrangement of the bonds upon binding with X77. Figure 7 depicts
that the apo–Mpro remains in the green and yellow energy states, while ligand-inhibited
complexes are found in the high energy state (red) for most of the simulation time. The
inhibition of Mpro by the selected hits is evident by FEL, which clearly shows the structural
rearrangement of the protein upon binding with small drug-like molecules. The ligand-
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bound complexes (inhibited states) displayed more conformational transitions as compared
to the free state. Various metastable states showed conformational changes in the Mpro

structure in the ligand-inhibited complexes. The protein structure was ensembled at a
distinct nanosecond time scale. In Figure 7, the crucial areas in the structures are shown in
shaded form. The X and Y coordinates were obtained from the metastable states from all
the trajectories with their respective frame number and time (ns), which are tabulated in
Table 1.
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Table 1. The X and Y coordinates of metastable states with frame number and time (ns).

Complex Name X Coordinates Y Coordinates Frame No Time ns

Apo–Mpro 1.859 −0.699 3750 37.5
Mpro–X77 29.197 −20.599 9032 90.32

Mpro–1
−73.840 3.321 2052 20.52
−71.395 1.503 2151 21.51

Mpro–3
1.713 −50.468 5524 55.24
6.430 −46.903 5726 57.26

Mpro–6 34.503 34.145 8389 83.89

Mpro–8
7.810 45.191 5881 58.81

136.017 −19.440 9146 91.46
Mpro–10 28.891 3.061 7158 71.58

Mpro–11
−89.371 −31.716 1634 16.34
−86.385 −25.418 1737 17.37

Mpro–12 −54.007 −18.018 1135 11.35
Mpro–13 −29.833 3.606 3052 30.52

Mpro–17
27.298 −4.897 6648 66.48
33.972 −6.394 7047 70.47

Mpro–18 −91.981 0.876 1558 15.58
Mpro–28 37.636 −1.614 7546 75.46

2.5.5. Dynamic Cross-Correlated Map Analysis

The dynamic cross-correlation matrix (DCCM) was constructed to elaborate the func-
tional displacements of the protein’s interactive atoms as a function of time. The apo–Mpro

reflected more positive correlation motion during 100 ns of simulation, while the dominant-
negative correlation motion of the loop was observed. The inhibited Mpro demonstrated
variation in correlated motion, where maximum residues of the inhibited Mpro showed
positive correlation motion compared to the apo–Mpro. The correlation motion of all the
systems is graphically presented in Figure 8. The overall motions in each system are
dominated by the correlated motions. In the X77-inhibited Mpro, the β1 and β2 displayed
negative correlation motion and
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2.5.6. Binding Free Energy Calculations

The binding free energy of each ligand was estimated to quantitatively compare the
energy differences of the selected hits (from the in-house database) with X77. The binding
free energy was computed from the last 1000 frames of the 100 ns of MD trajectory. MM-
GBSA analysis was performed for each system by calculating each contributing energy,
such as van der Waals (∆VDW), total electrostatic energy (∆EET), polar and non-polar
contributions (∆EGB), and non-polar solvation energy (SASA) (Table 2). The MM-GBSA
results showed variation in energies among X77 and the eleven molecules. The effect is
high in terms of total and electrostatic energies. The reference inhibitor, X77, exhibited
∆VDW (−46.7396 Kcal/mol), ∆EEL (−7.2011 Kcal/mol), ∆EGB (22.3537 Kcal/mol), and
∆SASA (−5.6612), with the total energy (∆GTOTAL) of −37.2483 Kcal/mol, while com-
pounds 11 and 28 reflected total energies of −33.6485 and −33.6723 Kcal/mol, respectively,
which varies slightly from X77, with a decrease in the ∆VDW (compound 11 = −39.9829,
comp. 28 = −41.1238 Kcal/mol) and an increase in the ∆EEL (compound 11 = −15.1839,
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compound 28 = −7.7362 Kcal/mol). Both 11 and 28 exhibited the highest binding free
energy among the eleven hits. Furthermore, compounds 3, 8, and 18 showed ∆GTOTAL
of −26.9034 Kcal/mol, −26.5848 and −24.7101 Kcal/mol, respectively, which reflects
the good affinity of these compounds for Mpro. Compounds 1, 3, and 17 also showed
appropriate binding potential with Mpro by making stable complexes with ∆GTOTAL of
−22.7848 Kcal/mol, −22.9067 Kcal/mol, and −22.0295 Kcal/mol, respectively. How-
ever, compounds 10 and 13 reflected the lowest total binding free energies (compound
10 = −6.4968 Kcal/mol and 13 = −9.4012 Kcal/mol) due to poor binding interactions
within the active site of Mpro.

Table 2. The MMGBSA analysis of X77 and eleven hits for Mpro.

Complex
Name

Kcal/mol

∆VDW ∆EEL ∆EGB ∆SASA ∆G TOTAL

Mpro–X77 −46.7396 −7.2011 22.3537 −5.6612 −37.2483
Mpro–1 −27.9473 −11.8236 20.6925 −3.7064 −22.7848
Mpro–3 −36.3657 −28.7266 43.2732 −5.0843 −26.9034
Mpro–6 −34.5680 −15.4295 31.3375 −4.2467 −22.9067
Mpro–8 −41.0277 −15.6216 36.141 −6.0766 −26.5848

Mpro–10 −10.8292 −5.7753 11.5464 −1.4387 −6.4968
Mpro–11 −39.9829 −15.1839 25.9731 −4.4549 −33.6485
Mpro–12 −25.5687 −13.1445 22.4730 −3.8878 −20.1279
Mpro–13 −15.3599 −5.7322 13.8263 −2.135 −9.4012
Mpro–17 −25.1406 −18.6810 25.3125 −3.5204 −22.0295
Mpro–18 −33.2958 −9.3268 22.2269 −4.3144 −24.7101
Mpro–28 −41.1238 −7.7362 19.6643 −4.4767 −33.6723

The ∆SASA energy of compound 8 was significantly higher than the Mpro–X77 com-
plex, indicating that 8 has greater impact on the structure of the protein. The total energies
of compounds 1, 3, 6, 8, 11–12, 17–18, and 28 indicate that these compounds exhibit in-
hibitory potential by specifically binding with the active site of the SARS-CoV-2 Mpro.

3. Materials and Methods
3.1. Preparation of Protein’s Structures for Docking

The re-docking and cross-docking experiments were carried out in order to examine
the efficiency of the docking method. For re-docking, twenty protein–ligand complexes
were taken from Research Collaboratory for Structural Bioinformatics Protein databank
(RCSB-PDB). The complexes were chosen based on good resolution (<2.5 Å, Table S11).
Only water molecules within the 3 Å of co-crystallized ligand molecule were retained
in the protein files, while the rest were removed. Moreover, other heteroatoms (other
than ligands) were also deleted from each file. The protein files were imported in MOE
interface [48], where proteins were prepared for docking by adding hydrogen atoms and
molecular charges using MOE Protonate 3D tool. Each protein was parameterized by MOE
Potential setup using Amber12:EHT force field.

Preparation of Compound Database for Docking

For re-docking and cross-docking, the ligands were extracted from the selected pro-
teins (Table S11), their atom types were corrected, hydrogen atoms were added and partial
charges were applied using MOE Potential setup (Amber12:EHT force field) [48,49]. Subse-
quently, each ligand was minimized with Amber12:EHT force field (eps = r, and Cutoff (8,
10)) with RMS gradient of 0.1kcal/mol/Å. Each ligand was imported into MOE database
for re-docking, cross-docking, and virtual screening experiments. For virtual screening, the
chemical entities were collected from our institute (Natural and Medical Sciences Research
Center, University of Nizwa, Oman) [50], which has a diverse set of compounds, originat-
ing from natural and synthetic sources. Virtual screening was conducted on our in-house
molecular database, comprising >800 chemical compounds. The structures of compounds
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in the library are given in SMILE format in the Supplementary Materials. Moreover, fifteen
known inhibitors (KIs) were also added in our in-house database as positive controls
(Table S11). The 3D-structure of each ligand (in mol2 format) was imported into MOE
compound database, where Wash module of MOE was used to add hydrogen atoms and
partial charges (based on Amber12:EHT force field) on each structure, and the structures
were minimized with the same parameters as discussed above.

3.2. Structure-Based Screening by Molecular Docking

After the preparation of protein and ligand files, molecular docking was performed by
Triangle Matcher docking algorithm and London dG scoring function [48,51,52]. The active
site/ligand binding site was defined on the co-crystallized ligand in each protein. For re-
docking, the ligands were extracted from each protein and re-docked in its cognate binding
protein (with the above-mentioned settings), and the results were quantified by calculating
root mean square deviation (RMSD) between the docked and X-ray conformation of
each ligand. Similarly, cross-docking was performed by docking all the twenty (extracted)
ligands in each of twenty proteins and results were examined by ranking (at top position) of
compounds in their native X-ray crystal structure. By default, thirty docked conformations
of each ligand were obtained. The virtual screening of in-house database was performed
on those PDB files that displayed good results in cross-docking experiment.

Analysis Measures and Conformational Sampling after Virtual Screening

The inhibitor with the most potential against SARS-CoV-2 Mpro was chosen after
virtual screening by consensus approach. The in-house library was docked in eight protein
structures individually. Later, each docked library was sorted based on the docking
score, and those compounds that were ranked mutually in ‘Top-100’ position in at least
50% of the structures were declared as potential ‘Hits’. The optimal binding modes of
the selected compounds were chosen through conformational sampling. The docked
orientation of each compound found analogous in all the proteins was considered as the
possible binding mode. The interactions of ligand were visualized by Protein–Ligand
Interaction Fingerprints (PLIF) [48] of MOE, which calculates several types of interactions
between protein and ligands including H-bonds, water-mediated protein–ligand bridging,
ionic interactions, surface contacts, metal ligation, and arene attraction in 2D format.

3.3. Prediction of Pharmacokinetic Properties

After virtual screening, the pharmacokinetic (ADMET: absorption, distribution, metabolism,
excretion, and toxicity) behavior of the selected compounds was studied through Swis-
sADME [37] and admetSAR [38], which predicts ADMET properties and drug-likeness of
small molecules by using physicochemical descriptors.

3.4. Molecular Dynamic Simulation

The atomic coordinates of PDB ID: 6W79 [47] were chosen for the molecular dynamic
simulation studies. Thirteen systems were generated for MD simulation, including apo
form of 6W79 (apo–Mpro), 6W79 in complex with co-crystallized ligand (Mpro–X77), and
6W79 in complex with docked conformations of eleven hits. The apo–Mpro and Mpro–
X77 complex were used as positive controls. The possible overlaps/clashes in the initial
structure were eliminated by minimizing the structure with 10,000 cycles of steepest
descent [53] (macromolecule was frozen), followed by 20,000 cycles of conjugate gradient
method [54]. LEaP module of AMBER20 [55] was used to add the missing hydrogen atoms.
To keep the systems neutral, counter-ions from OPC model [56] were added. A truncated
octahedral box of the OPC water model [57] was added to all the systems with a 10 Å buffer
(8 Å cut-off was used to compute the pairwise interactions, the van der Waals, and direct
Coulomb forces). Long-range electrostatic forces were treated with the particle mesh Ewald
(PME) algorithm [58]. The intermolecular interactions were calculated by ff19SB [59]. In
preparation runs, Langevin thermostat [60] was used with 1 ps−1 friction constant, while
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Berendsen thermostat [61] was used in the production runs. MD simulation was accelerated
using the PMEMD CUDA version in GPU cores. Before running MD production, all the
systems were heated for 400 ps, followed by equilibration of up to 2000 ps in the NVT
ensemble at 300 K. The conditions applied in the simulation of all systems are given in
Table 3.

Table 3. The conditions used in the molecular dynamics of apo– and inhibited states of Mpro.

S. No. System Composition
(Complexes) Temperature (K) Force Fields Water Model Time (ns)

1 Full length apo–Mpro 300 FF19SB Octahedral OPC 100
2 Mpro–X77 (6W79) 300 FF19SB+Gaff2 Octahedral OPC 100
3 Mpro–1 300 FF19SB+Gaff2 Octahedral OPC 100
4 Mpro–3 300 FF19SB+Gaff2 Octahedral OPC 100
5 Mpro–6 300 FF19SB+Gaff2 Octahedral OPC 100
6 Mpro–8 300 FF19SB+Gaff2 Octahedral OPC 100
7 Mpro–10 300 FF19SB+Gaff2 Octahedral OPC 100
8 Mpro–11 300 FF19SB+Gaff2 Octahedral OPC 100
9 Mpro–12 300 FF19SB+Gaff2 Octahedral OPC 100

10 Mpro–13 300 FF19SB+Gaff2 Octahedral OPC 100
11 Mpro–17 300 FF19SB+Gaff2 Octahedral OPC 100
12 Mpro–18 300 FF19SB+Gaff2 Octahedral OPC 100
13 Mpro–28 300 FF19SB+Gaff2 Octahedral OPC 100

3.4.1. Post-Dynamic Evaluation

The coordinates of all the simulated systems were extracted from the generated
trajectories after every 1 ps and analyzed by PTRAJ [62] module of the AMBER20. The
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and radius
of gyration (Rg) of all the systems were calculated by CPPTRAJ module of AMBER20 on
Cα atoms via Equations (1)–(3).

RMSD =

√
∑N

i=0[mi ∗ (Xi − Yi)2]

M
(1)

In RMSD calculation, N = the number of atoms, mi = the mass of atoms, Xi = the target
atom i vector coordinate, Yi = the reference atom i vector coordinate, and M = the total
mass.

RMSF(i) =
√
〈(xi − 〈xi〉)2〉 (2)

The RMSF of selected atom i was calculated as: the atomic positions averages over the
total input frames (denoted by x).

Rg =

√√√√ 1
N

i=0

∑
N

(ri − rm)2 (3)

The Rg of N number of atoms was calculated: the atomic position was denoted by ri,
and the mean position was denoted by rm of all the atoms. The Altona and Sundaralingam
method [63] was used to calculate the five-membered ring pucker. Standard deviation
and averages were reported in the analysis utilities, with proper cyclic averages being
computed for periodic values (torsions). Furthermore, the total energy of all the systems
(apo– and inhibited states) was calculated.

3.4.2. MD Trajectories Unsupervised Clustering and Free Energy Landscape

Principal component analysis (PCA, focuses on matrix covariance) was used to demon-
strate atom movement and protein loop dynamics. The internal motions of the systems
were analyzed by PCA approach of CPPTRAJ. The atomic coordinates of eigenvectors
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and the positional covariance matrix were calculated. The orthogonal coordinate trans-
formation was used to obtain the eigenvalue diagonal matrix by the diagonalizing of the
matrix. The principal components were obtained based on eigenvalues and eigenvectors
to emphasize the motion of the atoms in MD simulation trajectories. The isolated first
principal components, PC1 and PC2, showing the largest variation in the data, were utilized
for the free energy landscape (FEL) using Equation (4) from 100 bins of the data population.
The energies were calculated in kcal/mol at 300 ◦K.

Gi = −KBT
(

Ni

NMax

)
(4)

where KB = Boltzmann’s constant, T = specified temperature, Ni = bini population, and
NMax = most populated bins. The artificial barrier population size of 0.5 was applied to the
bins with no population.

3.4.3. Dynamic Cross-Correlation Analysis (DCC)

The dynamic cross-correlation map (DCCM) method was used to obtain the Cα atom’s
time subordinate movements caused by the attachment of a small molecule (inhibitor) with
the protein. The correlation matrix was derived by observing the Cα atoms’ correlated and
anti-correlated motions of each system. DCCM was calculated by Equation (5).

Cij = 〈∆ri × ∆rj〉/(〈∆r2
i 〉〈∆r2

j 〉)
2

(5)

where Cij = time correlated data between the atoms i and j in a protein. We used 0.002 ns
interval to construct the matrix of Cα from the 10,000 snapshots. The positive and nega-
tive values indicate the correlated and anti-correlated motion during the MD simulation,
respectively, in the matrix plot.

3.4.4. MM/GBSA Free Energy Calculation

In MD simulation, free energy calculations give quantitative production of protein–
ligand binding energies. The binding energy (Gbind) was calculated by Equation (6).

Gbind = GR+L − (GR + GL) (6)

where GR+L represents the Mpro in complex with inhibitors, while GR and GL represent the
apo–Mpro and inhibited Mpro, respectively.

In the generalized born surface area (MM/GBSA) approach, each free energy term in
Equation (6) was calculated using Equation (7).

G = Ebond + EVDW + Eelec + GGB + GSA − TSS (7)

where Ebond represents bond angles and dihedral energy, Evdw and Eelec indicate the
contribution of van der Waals and electrostatic energy, respectively, while the related polar
and non-polar contribution of solvation energy are reported as GGB and GSA. T and Ss
show the absolute temperature of the system and the solute entropy, respectively.

The performance of the MMGBSA algorithm is based on the specificity of the forcefield
and inhibitor’s partial charges, the specificity of protein–inhibitor complex, MD simulation,
inner dielectric constant, and the docking pose number based on top scoring. Here,
the binding free energies of each system were calculated by MM/PB(GB)SA model of
GBSA. The solvent probe of 2 Å radius was used, and the radii were used to optimize the
topology files.

3.4.5. Data Analysis

The results were analyzed by MOE [48], UCSF Chimera [64], and Pymol [65]. The
average structures were extracted from structure ensembles of the lowest energy. All the
analysis graphs were plotted using Origin pro [66] and GnuPlot [67].
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4. Conclusions

The main protease or chymotrypsin-like protease of SARS-CoV-2 is considered to
be a potential anti-viral drug target. We have employed an efficient structure-based
virtual screening protocol to search for novel inhibitors of SARS-CoV-2. The binding
potential of several compounds was tested on multiple structures of Mpro, and consensus
strategy was applied to select the most promising binders. Based on the physiological and
pharmacokinetic behavior and protein–ligand binding pattern, eleven compounds were
identified as good inhibitors of Mpro. Therefore, the structural and dynamic behavior of
Mpro upon binding with those eleven compounds was further explored through molecular
dynamic simulation. Based on the MM-GBSA calculations, two compounds (11 and 28)
were retrieved with the highest binding affinities for Mpro, whereas six compounds (3, 8,
18, 6, 1, and 17) showed good binding affinities for Mpro. Based on our in silico findings,
we suggest that these compounds can inhibit the replication of SARS-CoV-2 by specifically
inhibiting its Mpro enzyme. Therefore, these compounds can act as potential anti-viral
candidates against SARS-CoV-2. However, further in vitro testing is required to confirm
these in silico results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14090896/s1, Table S1: Re-docking results of MOE, Table S2: The cross-docking analysis
of MOE, Calculation of Enrichment Factor (EF) and %EF, Table S3: % Enrichment Factor and AUC of
VS, Figure S1: The receiver operating characteristic (ROC) curve of MOE on eight proteins, Table S4:
Docking scores and rank of selected hits, Figure S2: The chemical structures of compounds 1–30, Table
S5: Physicochemical properties of selected hits (1–30), Table S6: Solubility of selected hits (1–30), Table
S7: Pharmacokinetic properties of selected hits, Table S8: Drug-likeness and medicinal properties of
selected hits (1–30), Table S9: The ADMET results of admetSAR server, Table S10: Interaction analysis
of selected hits (1–30), Table S11. Protein–ligand complexes used in re-docking and cross-docking.
The structures of compounds in the in-house library are given in SMILE format in the Supplementary
Materials.

Author Contributions: Conceptualization, S.A.H., A.K. and A.A.-H.; methodology, S.A.H. and
M.W.; software, S.A.H. and M.W.; validation, S.A.H. and M.W.; formal analysis, S.A.H. and M.W.;
investigation, A.K. and A.A.-H.; resources, A.K. and A.A.-H.; data curation, S.A.H. and M.W.;
writing—original draft preparation, S.A.H. and M.W.; writing—review and editing, A.K. and A.A.-
H.; visualization, S.A.H. and M.W.; supervision, A.K. and A.A.-H.; project administration, A.K. and
A.A.-H.; funding acquisition, A.K. and A.A.-H. All authors have read and agreed to the published
version of the manuscript.

Funding: The project was supported by a grant from The Oman Research Council (TRC) through the
funded project (BFP/RGP/CBS/19/220).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are included in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission

Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [CrossRef]
2. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from

patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]
3. Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20,

533–534. [CrossRef]
4. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473.

[CrossRef]
5. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus

associated with human respiratory disease in China. Nature 2020, 579, 265–269. [CrossRef]

https://www.mdpi.com/article/10.3390/ph14090896/s1
https://www.mdpi.com/article/10.3390/ph14090896/s1
http://doi.org/10.1056/NEJMoa2001316
http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
http://doi.org/10.1016/S1473-3099(20)30120-1
http://doi.org/10.1016/S0140-6736(20)30185-9
http://doi.org/10.1038/s41586-020-2008-3


Pharmaceuticals 2021, 14, 896 22 of 24

6. Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92,
418–423. [CrossRef] [PubMed]

7. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 30 June 2021).
8. Monitoring Knowledge, Risk Perceptions, Preventive Behaviours, and Public Trust in the Current Coronavirus Outbreak in

Georgia Analytical Report of the First, Second and Third Wave Studies, WHO Report. May 2020, pp. 1–61. Available online:
www.unicef.org/georgia/media/4736/file/COVID-19-Study-Analytical-Report-1-st-2nd-and-3rd-waves-Eng.pdf (accessed on
15 May 2021).

9. Taboada, M.; González, M.; Alvarez, A.; Eiras, M.; Costa, J.; Álvarez, J.; Seoane-Pillado, T. First, second and third wave of
COVID-19. What have we changed in the ICU management of these patients? J. Infect. 2021, 82, e14–e15. [CrossRef] [PubMed]

10. V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat.
Rev. Microbiol. 2021, 19, 155–170. [CrossRef] [PubMed]

11. Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery:
RNA Synthesis, Proofreading and Final Capping. Cells 2020, 9, 1267. [CrossRef]

12. Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Update.
Cureus 2020, 12, e7423. [CrossRef]

13. Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Inf.
2021, 54, 159–163. [CrossRef] [PubMed]

14. Asghari, A.; Naseri, M.; Safari, H.; Saboory, E.; Parsamanesh, N. The novel insight of SARS-CoV-2 molecular biology and
pathogenesis and therapeutic options. DNA Cell Biol. 2020, 39, 1741–1753. [CrossRef] [PubMed]

15. Li, F. Structure, function, and evolution of Coronavirus spike proteins. Annu. Rev. Virol. 2016, 3, 237–261. [CrossRef]
16. Artika, I.M.; Dewantari, A.K.; Wiyatno, A. Molecular biology of coronaviruses: Current knowledge. Heliyon 2020, 6, e04743.

[CrossRef]
17. Alsobaie, S. Understanding the molecular biology of SARS-CoV2 and the COVID-19 pandemic: A Review. Infect. Drug Res. 2021,

14, 2259–2268. [CrossRef]
18. Ali, M.J.; Hanif, M.; Haider, M.A.; Ahmed, M.U.; Sundas, F.N.U.; Hirani, A.; Khan, I.A.; Anis, K.; Karim, A.H. Treatment options

for COVID-19: A review. Front. Med. 2020, 7, 480. [CrossRef]
19. Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 2020, 30, 127377. [CrossRef]
20. Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [PubMed]
21. Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.;

Kline, S.; et al. Remdesivir for the treatment of Covid-19—Final report. N. Engl. J. Med. 2020, 383, 1813–1826. [CrossRef]
22. Ferner, R.E.; Aronson, J.K. Chloroquine and hydroxychloroquine in covid-19: Use of these drugs is premature and potentially

harmful. BMJ 2020, 369, m1432. [CrossRef] [PubMed]
23. Shah, R.R. Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing. J. Clin. Pharm. Ther.

2021, 46, 17–27. [CrossRef]
24. Samaee, H.; Mohsenzadegan, M.; Ala, S.; Maroufi, S.S.; Moradimaj, P. Tocilizumab for treatment patients with COVID-19:

Recommended medication for novel disease. Int. Immunopharmacol. 2020, 89, 107018. [CrossRef]
25. Rosas, I.O.; Bräu, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; et al.

Tocilizumab inh patients with severe Covid-19 pneumonia. N. Engl. J. Med. 2021, 384, 1503–1516. [CrossRef]
26. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of Lopinavir–Ritonavir in

adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [CrossRef] [PubMed]
27. Shaffer, L. 15 Drugs Being Tested to Treat COVID-19 and How They Would Work. Nat. Med. 2020. Available online: www.nature.

com/articles/d41591-020-00019-9 (accessed on 20 May 2021).
28. Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for Coronavirus disease 2019 (COVID-19),

A review. JAMA 2020, 323, 1824–1836. [PubMed]
29. Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-

CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against
SARSCoV-2 Infection. Curr. Med. Chem. 2021, 28. [CrossRef] [PubMed]

30. Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of Protein Binding by a Nucleopeptide Based on a Thyminedeco-
rated L-Diaminopropanoic Acid through CD and In Silico Studies. Curr. Med. Chem. 2021, 28. [CrossRef]

31. Vicidomini, C.; Roviello, V.; Roviello, G.N. In Silico Investigation on the Interaction of Chiral Phytochemicals from Opuntia
ficus-indica with SARS-CoV-2 Mpro. Symmetry 2021, 13, 1041. [CrossRef]

32. Rut, W.; Groborz, K.; Zhang, L.; Sun, X.; Zmudzinski, M.; Pawlik, B.; Wang, X.; Jochmans, D.; Neyts, J.; Młynarski, W.; et al.
SARS-CoV-2 M pro inhibitors and activity based probes for patient-sample imaging. Nat. Chem. Biol. 2021, 17, 222–228. [CrossRef]

33. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-
CoV-2 main protease provides a basis for design of improved α-Ketoamide inhibitors. Science 2020, 368, 409–412. [CrossRef]

34. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M pro from SARS-CoV-2
and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef]

35. Paasche, A.; Zipper, A.; Schäfer, S.; Ziebuhr, J.; Schirmeister, T.; Engels, B. Evidence for substrate binding-induced zwitterion
formation in the catalytic Cys-His dyad of the SARS-CoV main protease. Biochemistry 2014, 53, 5930–5946. [CrossRef]

http://doi.org/10.1002/jmv.25681
http://www.ncbi.nlm.nih.gov/pubmed/31967327
https://covid19.who.int/
www.unicef.org/georgia/media/4736/file/COVID-19-Study-Analytical-Report-1-st-2nd-and-3rd-waves-Eng.pdf
http://doi.org/10.1016/j.jinf.2021.03.027
http://www.ncbi.nlm.nih.gov/pubmed/33826927
http://doi.org/10.1038/s41579-020-00468-6
http://www.ncbi.nlm.nih.gov/pubmed/33116300
http://doi.org/10.3390/cells9051267
http://doi.org/10.7759/cureus.7423
http://doi.org/10.1016/j.jmii.2020.03.022
http://www.ncbi.nlm.nih.gov/pubmed/32265180
http://doi.org/10.1089/dna.2020.5703
http://www.ncbi.nlm.nih.gov/pubmed/32716648
http://doi.org/10.1146/annurev-virology-110615-042301
http://doi.org/10.1016/j.heliyon.2020.e04743
http://doi.org/10.2147/IDR.S306441
http://doi.org/10.3389/fmed.2020.00480
http://doi.org/10.1016/j.bmcl.2020.127377
http://www.ncbi.nlm.nih.gov/pubmed/16877062
http://doi.org/10.1056/NEJMoa2007764
http://doi.org/10.1136/bmj.m1432
http://www.ncbi.nlm.nih.gov/pubmed/32269046
http://doi.org/10.1111/jcpt.13267
http://doi.org/10.1016/j.intimp.2020.107018
http://doi.org/10.1056/NEJMoa2028700
http://doi.org/10.1056/NEJMoa2001282
http://www.ncbi.nlm.nih.gov/pubmed/32187464
www.nature.com/articles/d41591-020-00019-9
www.nature.com/articles/d41591-020-00019-9
http://www.ncbi.nlm.nih.gov/pubmed/32282022
http://doi.org/10.2174/0929867328666210521164809
http://www.ncbi.nlm.nih.gov/pubmed/34355678
http://doi.org/10.2174/0929867328666210201152326
http://doi.org/10.3390/sym13061041
http://doi.org/10.1038/s41589-020-00689-z
http://doi.org/10.1126/science.abb3405
http://doi.org/10.1038/s41586-020-2223-y
http://doi.org/10.1021/bi400604t


Pharmaceuticals 2021, 14, 896 23 of 24

36. Dai, W.; Zhang, B.; Jiang, X.-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; et al. Structure-Based design of antiviral
drug candidates targeting the SARS-CoV-2 main protease. Science 2020, 368, 1331–1335. [CrossRef]

37. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]

38. Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A Comprehensive Source and Free Tool for
Assessment of Chemical ADMET Properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [CrossRef] [PubMed]

39. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef]

40. Maple, H.J.; Clayden, N.; Baron, A.; Stacey, C.; Felix, R. Developing degraders: Principles and perspectives on design and
chemical space. MedChemComm 2019, 10, 1755–1764. [CrossRef]

41. Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341.
[CrossRef] [PubMed]

42. Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal
chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem.
1999, 1, 55–68. [CrossRef]

43. Egan, W.J.; Walters, W.P.; Murcko, M.A. Guiding molecules towards drug-likeness. Curr. Opin. Drug Disc. Dev. 2002, 5, 540–549.
44. Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846.

[CrossRef] [PubMed]
45. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012,

4, 90–98. [CrossRef]
46. Pathania, S.; Singh, P.K. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical

screening parameter in drug designing protocols? Exp. Opin. Drug Metab. Toxicol. 2021, 17, 351–354. [CrossRef]
47. Mesecar, A. A taxonomically driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease

including SARS-CoV-2 (COVID-19). Unpublished work. 2020.
48. Molecular Operating Environment Version 2014.09; Chemical Computing Group: Montreal, QC, Canada, 2014.
49. Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.L., III; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.;

et al. AMBER 12; University of California: San Francisco, CA, USA, 2012.
50. Available online: https://www.unizwa.edu.om/index.php?contentid=1038 (accessed on 5 January 2021).
51. Edelsbrunner, H. Weighted Alpha Shapes; Report UIUCDCS-R-92-1760; Department of Computer Science, University of Illinois,

Urbana Champagne: Champaign, IL, USA, 1992.
52. Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al.

Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf.
Model. 2007, 47, 122–133. [CrossRef] [PubMed]

53. Fletcher, R.; Powell, M.J. A rapidly convergent descent method for minimization. Comput. J. 1963, 6, 163–168. [CrossRef]
54. Shewchuk, J.R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain; Department of Computer Science,

Carnegie-Mellon University: Pittsburgh, PA, USA, 1994.
55. Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E.; Cruzeiro, V.W.D., III; Darden,

T.A.; Duke, R.E. Amber 2021; University of California: San Francisco, CA, USA, 2021.
56. Sengupta, A.; Li, Z.; Song, L.F.; Li, P.; Merz, K.M., Jr. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and

TIP4P-FB Water Models. J. Chem. Inf. Model. 2021, 61, 869–880. [CrossRef] [PubMed]
57. Izadi, S.; Anandakrishnan, R.; Onufriev, A.V. Building water models: A different approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871.

[CrossRef]
58. Allaire, G.; Dapogny, C.; Frey, P. A mesh evolution algorithm based on the level set method for geometry and topology

optimization. Struct. Multidiscip. Optim. 2013, 48, 711–715. [CrossRef]
59. Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al.

ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J.
Chem. Theory Comput. 2020, 16, 528–552. [CrossRef]

60. Davidchack, R.L.; Handel, R.; Tretyakov, M. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 2009, 130, 234101.
[CrossRef]

61. Hunenberger, P.H. Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 2005, 173, 105–149.
62. Roe, D.R.; Cheatham, T.E., III. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.

J. Chem. Theory Comput. 2013, 9, 3084–3095. [CrossRef] [PubMed]
63. Altona, C.T.; Sundaralingam, M. Conformational analysis of the sugar ring in nucleosides and nucleotides. New description

using the concept of pseudo rotation. J. Am. Chem. Soc. 1972, 94, 8205–8212.
64. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E.J. UCSF Chimera- A

visualization system for exploratory research and analysis. Comput. Chem. 2004, 13, 1605–1612. [CrossRef] [PubMed]
65. The PyMOL Molecular Graphics System, Version 2.0; Schrödinger, LLC.: New York, NY, USA. Available online: https://pymol.org/

(accessed on 15 March 2021).

http://doi.org/10.1126/science.abb4489
http://doi.org/10.1038/srep42717
http://www.ncbi.nlm.nih.gov/pubmed/28256516
http://doi.org/10.1021/ci300367a
http://www.ncbi.nlm.nih.gov/pubmed/23092397
http://doi.org/10.1021/jm020017n
http://doi.org/10.1039/C9MD00272C
http://doi.org/10.1016/j.ddtec.2004.11.007
http://www.ncbi.nlm.nih.gov/pubmed/24981612
http://doi.org/10.1021/cc9800071
http://doi.org/10.1021/jm015507e
http://www.ncbi.nlm.nih.gov/pubmed/11384230
http://doi.org/10.1038/nchem.1243
http://doi.org/10.1080/17425255.2021.1865309
https://www.unizwa.edu.om/index.php?contentid=1038
http://doi.org/10.1021/ci600406v
http://www.ncbi.nlm.nih.gov/pubmed/17238257
http://doi.org/10.1093/comjnl/6.2.163
http://doi.org/10.1021/acs.jcim.0c01390
http://www.ncbi.nlm.nih.gov/pubmed/33538599
http://doi.org/10.1021/jz501780a
http://doi.org/10.1007/s00158-013-0929-2
http://doi.org/10.1021/acs.jctc.9b00591
http://doi.org/10.1063/1.3149788
http://doi.org/10.1021/ct400341p
http://www.ncbi.nlm.nih.gov/pubmed/26583988
http://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://pymol.org/


Pharmaceuticals 2021, 14, 896 24 of 24

66. Origin (Pro), OriginLab Corporation, Northampton, Massachusetts, United States of America. 2021. Available online: www.
originlab.com (accessed on 15 March 2021).

67. Williams, T.; Kelley, C. Gnuplot 5.4, An Interactive Plotting Program, User Manual. 2020. Available online: www.gnuplot.info
(accessed on 15 March 2021).

www.originlab.com
www.originlab.com
www.gnuplot.info

	Introduction 
	Results and Discussion 
	Validation of Docking Method by Re-Docking and Cross-Docking 
	Selection of Hits after Consensus Approach 
	Pharmacokinetic Analysis 
	Interaction Analysis 
	Molecular Dynamic Simulation 
	Convergence of Mpro Free and Inhibited States 
	Root Mean Square Fluctuation (RMSF) 
	Protein Motions and Trajectories Clustering 
	Metastable to Native State Transition Pathway 
	Dynamic Cross-Correlated Map Analysis 
	Binding Free Energy Calculations 


	Materials and Methods 
	Preparation of Protein’s Structures for Docking 
	Structure-Based Screening by Molecular Docking 
	Prediction of Pharmacokinetic Properties 
	Molecular Dynamic Simulation 
	Post-Dynamic Evaluation 
	MD Trajectories Unsupervised Clustering and Free Energy Landscape 
	Dynamic Cross-Correlation Analysis (DCC) 
	MM/GBSA Free Energy Calculation 
	Data Analysis 


	Conclusions 
	References

