pharmaceuticals

Asymmetric Total Syntheses of Both Enantiomers of Plymuthipyranone B and Its Unnatural Analogues: Evaluation of anti-MRSA Activity and Its Chiral Discrimination

Mizuki Moriyama ${ }^{1}$, Xiaoxi Liu ${ }^{2}$, Yuki Enoki ${ }^{2}$ © ${ }^{(1)}$ Kazuaki Matsumoto ${ }^{2(D)}$ and Yoo Tanabe ${ }^{1, *(\mathbb{D}}$
1 Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan; ixu18409@kwansei.ac.jp
2 Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; aganeiliu@gmail.com (X.L.); enoki-yk@pha.keio.ac.jp (Y.E.); matsumoto-kz@pha.keio.ac.jp (K.M.)
* Correspondence: tanabe@kwansei.ac.jp; Tel.: +81-795-565-8394

Citation: Moriyama, M.; Liu, X.; Enoki, Y.; Matsumoto, K.; Tanabe, Y. Asymmetric Total Syntheses of Both Enantiomers of Plymuthipyranone B and Its Unnatural Analogues: Evaluation of anti-MRSA Activity and Its Chiral Discrimination.
Pharmaceuticals 2021, 14, 938. https:// doi.org/10.3390/ph14090938

Academic Editor: Quezia
Bezerra Cass

Received: 1 August 2021
Accepted: 8 September 2021
Published: 19 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Chiral total syntheses of both enantiomers of the anti-MRSA active plymuthipyranone B and all of the both enantiomers of three unnatural and synthetic analogues were performed. These two pairs of four chiral compounds are composed of the same 3-acyl-5,6-dihydro-2H-pyran-2-one structure. The starting synthetic step utilized a privileged asymmetric Mukaiyama aldol addition using $\mathrm{Ti}(\mathrm{OiPr})_{4} /(S)-\mathrm{BINOL}$ or $\mathrm{Ti}(\mathrm{O} i \operatorname{Pr})_{4} /(R)$-BINOL catalysis to afford the corresponding (R) - and $(S)-\delta$-hydroxy- β-ketoesters, respectively, with highly enantiomeric excess ($>98 \%$). Conventional lactone formation and successive EDCI-mediated C-acylation produced the desired products, (R) and (S)-plymuthipyranones B and three (R)- and (S)- synthetic analogues, with an overall yield of $42-56 \%$ with a highly enantiomeric excess (95-99\%). A bioassay of the anti-MRSA activity against ATCC 43300 and 33591 revealed that (i) the MICs of the synthetic analogues against ATCC 43300 and ATCC 33591 were between 2 and 16 and 4 and $16 \mu \mathrm{~g} / \mathrm{mL}$, respectively, and those of vancomycin (reference) were $1 \mu \mathrm{~g} / \mathrm{mL}$. (ii) The natural (S)-plymuthipyranone B exhibited significantly higher activity than the unnatural (R)-antipode against both AACCs. (iii) The natural (R)-plymuthipyranone B and (R)-undecyl synthetic analogue at the C6 position exhibited the highest activity. The present work is the first investigation of the SAR between chiral R and S forms of this chemical class.

Keywords: anti-MRSA activity; asymmetric total syntheses; enantiomers; chiral discrimination; plymuthipyranone B

1. Introduction

The chiral discrimination of bioactivity between enantiomers has occupied a central position in modern research and the development of pharmaceuticals and agrochemicals. 3-Acyl-5,6-dihydro-2H-pyran-2-ones are unique heterocyclic molecules with a tricarbonyl moiety at the $C(3)$-position and an asymmetric center at the $C(6)$-position [1]. Several natural products contain these compounds, as depicted in Figure 1.

Alternaric acid (1) with three contiguous stereocenters and non-conjugated dienes is the most representative phytotoxic and antifungal natural product isolated from Alternaria solani [2]. The distinctive and exquisite structure of 1 renders this compound a worthy synthetic target. The total or formal chiral syntheses of $\mathbf{1}$ have been achieved by the following several groups: (i) the first total synthesis started from (S)-methylbutanol and methyl (R)-hydroxybutanoate (Ichihara's group) [3,4], (ii) formal synthesis utilizing Rucatalyzed alder ene type reactions (Trost's group) [5], (iii) formal synthesis utilizing a silyl glyoxylate three-component-coupling method (Johnson and Slade) [6] and (iv) total synthesis utilizing asymmetric Ti-Claisen condensation by our group [7,8].

Alternaric acid 1

Podoblastin 2

Lachnelluloic acid 3

natural	$\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}_{3}$: Pod-A	2a
	$\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}=\mathrm{CH}_{2}$: Pod -B	2b
	$\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CH}_{3}$: Pod-C	2c
synthetic	$\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}_{3}$: Pod-S	2d

Figure 1. Representative natural products ($\mathbf{1}, \mathbf{2 a - c}, \mathbf{3}$) and a synthetic analogue ($\mathbf{2 d}$) containing the 3-acyl-5,6-dihydro-2H-pyran-2-one structure.

Antifungal active (R)-podoblastins A-C (2a-2c) and S (2d) against rice-blast disease were isolated from Podophyllum peltatum L. [9] and synthesized as racemic forms utilizing a Fries-type acyl group rearrangement [10] and 1,3-dipolar cycloaddition [11]. A chiral pool total synthesis of (R)-podoblastins $S(2 d)$ starting from (S)-glycelaldehyde acetonide was reported [12]. A related antifungal antagonistic active (R)-lachnelluloic acid (3) against Dutch elm disease was isolated from Lachnellula fuscosanguinea (Rehm) Dennis, and its racemic form was synthesized [13]. Later, a formal synthesis of 3 was reported [14]. Recently, the chiral total syntheses of (R)-podoblastin $S(\mathbf{2 d})$ and (R)-lachnelluloic acid were performed utilizing catalytic asymmetric Mukaiyama aldol reactions [15].

Notably, despite these extensive studies, chiral discrimination studies of $C(6 R)$ and anti-podal $C(6 S)$ isomers have not yet been performed, simply due to the lack of an accessible method for synthesizing the $6(S)$ enantiomer, i.e., syntheses have been limited to $C(6 R)$ isomers. Very recently, Broberg's group disclosed that plymuthipyranones A (4a) and B (4b), having a 3-butanoyl-5,6-dihydro-2H-pyran-2-one structure, which were isolated from Serratia plymuthica strain MF371-2, exhibited highly potent activity against Grampositive Staphylococcus aureus LMG 15975 (MRSA) [16] (Figure 2). They reported that the absolute configuration of plymuthipyranones A and B is R [16], according to the analogous optical rotation minus value [9,15]. They reported that racemic plymuthipyranones B(4b) was more potent than racemic $\mathrm{A}(\mathbf{4 a})$, based on the MIC (minimal inhibition concentration) value. In addition, the racemic synthetic analogue $\mathbf{4 d}$ exhibited the highest anti-MRSA activity among $\mathbf{4 a}-\mathbf{4 d}$ with variable $C(6)$-side chains $[16,17]$.

Figure 2. Natural plymuthipyranone $A, B(4 \mathbf{a}, \mathbf{4 b})$ and synthetic analogues $(\mathbf{4 c} \mathbf{-} \mathbf{4 e})$ containing the 3-acyl-5,6-dihydro-2H-pyran-2-one structure.

Consistent with our continuing interest in chiral discrimination studies between enantiomers and diastereomers [18-23], a major topic in pharmaceutical and agrochemical research, we envisaged the chiral total syntheses of three sets of plymuthipyranones to evaluate the anti-MRSA activity of natural plymuthipyranone B (more active than A), synthetic analogues $4 \mathrm{c}, 4 \mathrm{~d}$ and novel synthetic analogue $4 \mathbf{e}$. This study is closely related to our total synthetic studies of a 3-acyl-5,6-dihydro-2H-pyran-2-one series [7,10,15] and relevant 4-methoxy derivatives (all four stereoisomers of pestalotin) [24].

2. Results and Discussion

2.1. Synthesis of Three Sets of Natural Plymuthipyranone B and Two Sets of Synthetic Analogues

Our synthesis commenced with the privileged asymmetric Mukaiyama aldol addition using $\mathrm{Ti}(\mathrm{OiPr})_{4} /(S)$-BINOL catalysis originally developed by Soriente and Scettri's group [25-28], which consistently produced the (R)-aldol adducts. In addition, (S)-aldol adducts can be obtained in a similar and stereocomplementary manner by switching the chiral catalysis from (S)-BINOL to (R)-BINOL.

The reaction of 1,3-bis(trimethylsiloxy)diene (Chan's diene) 5 [29-31] with decanal afforded $(R)-\delta$-hydroxy- β-ketoester $\mathbf{6}$ with a 78% yield with an excellent 98% ee (Scheme 1). The conventional KOH -hydrolysis of $(R)-6$ and the subsequent acid-catalyzed lactone formation afforded the desired (R)-5,6-dihydro-2H-pyran-2-one $(R)-7$ with a 93% yield. For the C-acylation step, we adopted a mild and direct method utilizing an EDCI reagent [3,4] rather than an indirect O-acylation and successive Fries-type acyl group rearrangement [10,16]. Thus, the final EDCI-mediated C-acylation of (R)-7 with butanoic acid furnished (R) plymuthipyranone B $[(R)-4 b]$ with a 66% yield with 95% ee (HPLC analysis, SI). In a similar procedure, (S)-plymuthipyranone B [(S)-4b] was synthesized using $\mathrm{Ti}(\mathrm{Oi} \mathrm{Pr})_{4} /$ anti-podal (R)-BINOL catalysis. Consequently, the present total syntheses of both enantiomers of plymuthipyranone B were performed in a total of five steps, achieving an overall yield of $48-50 \%$ with excellent enantioselectivity (95-97\% ee).

Scheme 1. Asymmetric total synthesis of (R)- and (S)-plymuthipyranones B.
Eventually, (R)- and (S)-stereocomplementary syntheses were performed by only switching (S)- and (R)-BINOL catalysts, respectively, both of which are commercially available with nearly the same prices.

We next turned our attention to the syntheses of the two enantiomer sets of unnatural (synthetic) analogues of $(R)-\mathbf{4 c}$ and (S)-4c, (R)-4d and (S)-4d, respectively (Scheme 2). A racemic compound of $4 \mathbf{d}$ exhibited the highest anti-MRSA activity among a series of these compounds [16]. Novel analogues (R)-, (S)-4d containing a terminal double bond in the substituent at the $\mathrm{C}(6)$-position were selected as candidates, because (i) podoblastin B with a similar terminal double bond exhibited higher antifungal activity than podoblastins A and C with simple alkyl groups and (ii) starting 10-undecenal was commercially available.

Scheme 2. Asymmetric synthesis of (R)- and (S)-synthetic analogues of plymuthipyranones B.
The syntheses of all the six target compounds were implemented similarly to the synthesis of plymuthipyranones B mentioned above. In all the cases, asymmetric Mukaiyama aldol addition using diene 5 to undecanal, 10-undecenal and dodecanal afforded (R)-8, $(R)-9,(R)-10,(S)-8,(S)-9$ and (S)-10 with a 66-81\% yield with excellent enantioselectivity (99% ee). The subsequent $\mathrm{KOH}-h y d r o l y s i s ~ a n d ~ H C l ~ t r e a t m e n t ~ p r o d u c e d ~ t h e ~ c o r r e s p o n d-~$ ing (R)-5,6-dihydro-2H-pyran-2-ones $(R)-\mathbf{1 1},(R)-\mathbf{1 2},(R)-\mathbf{1 3},(S)-\mathbf{1 1},(S)-\mathbf{1 2}$ and $(S)-\mathbf{1 3}$. The final C-acylations of $(R)-\mathbf{1 1},(R)-\mathbf{1 2},(R)-\mathbf{1 3},(S)-\mathbf{1 1},(S)-\mathbf{1 2}$ and $(S)-\mathbf{1 3}$ using the EDCI reagent furnished the target 4 -acylated products $(R)-\mathbf{4 c},(R)-\mathbf{4 d},(R)-4 \mathbf{e},(S)-\mathbf{4 c},(S)-\mathbf{4 d}$ and $(S)-\mathbf{4 e}$, respectively, with an acceptable overall yield (42-56\%) with an excellent enantioselectivity (97-99\% ee).

2.2. Antibacterial Evaluation against MRSA

The stereostructure-activity relationships between all the enantiomers of plymuthipyranone B (4b) and synthetic analogues $\mathbf{4 c}, 4 \mathbf{d}, 4 \mathbf{e}$ were assayed using two American Type Culture Collection (ATCC) cell lines (43300 and 33591) on the basis of their minimal inhibitory concentration (MIC) values against MRSA (Table 1). Broberg's group reported that the anti-MRSA activity order was $\mathbf{4 d}>\mathbf{4 c}>$ plymuthipyranone $B(4 b)>4 e$ as "the racemic forms" [16].

The salient features are as follows: (i) The MICs of the synthetic analogues against ATCC 43300 and ATCC 33591 were between 2 and 16 and 4 and $16 \mu \mathrm{~g} / \mathrm{mL}$, respectively, and those of vancomycin (reference) were $1 \mu \mathrm{~g} / \mathrm{mL}$. (ii) As expected, natural plymuthipyranone $B(S)-\mathbf{4 b}$ exhibited significantly higher activity than the unnatural antipode $(R)-\mathbf{4 b}$ against both ATCCs. (iii) In clear contrast, reverse antipodal (S)-4c exhibited higher activity than (R)-4c against both ATCCs. (iv) Regarding the most active analogue 4d (the racemic form), however, the activity was $(S)-\mathbf{4 d}=(R)-\mathbf{4 d}$ against ATCC 3300 and $(S)-\mathbf{4 d}>(R) \mathbf{- 4 d}$ against ATCC 33591. (v) These results are in reasonable accordance with the reported data of racemates $\mathbf{4 b}, 4 \mathbf{c}$ and 4 d . (vi) (R)-4e and (S)-4e possessing a terminal double bond were quite less reactive in contrast to the SAR of podoblastins [15]. (vii) The MICs of the most active (R)-4c and (S)-4d were approximately half that of vancomycin.

Table 1. Susceptibility testing all four pairs against ATCC 43300 and ATCC 33591.
(

Among various biologically active 3-acyl-5,6-dihydro-2 H -pyran-2-one compounds, this is the first investigation of the stereostructure-activity relationship (SAR) between chiral R and S forms. Eventually, the subtle changes of the chain length at the C6-position significantly influenced the inherent activity and chiral discrimination. On the other hand, the following SAR studies remain: (i) variation of 3 -acyl substituent and (ii) isosterism for other related heterocycles such as 2 H -pyrones, piperidine, etc.

3. Materials and Methods

3.1. Synthesis

All reactions were carried out in oven-dried glassware under an argon atmosphere. Flash column chromatography was performed with silica gel 60 ($230-400$ mesh ASTM, Merck, Darmstadt, Germany). TLC analysis was performed on Merck 0.25 -millimeter Silicagel $60 \mathrm{~F}_{254}$ plates. Melting points were determined on a hot stage microscope apparatus (ATM-01, AS ONE, Osaka, Japan) and were uncorrected. NMR spectra were recorded on a JEOLRESONANCE EXC-400 or ECX-500 spectrometer (JEOL, Akishima, Japan) operating at 400 or 500 MHz for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and 100 and 125 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts ($\delta \mathrm{ppm}$) in CDCl_{3} were reported downfield from TMS $(=0)$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$. For ${ }^{13} \mathrm{C}-\mathrm{NMR}$, chemical shifts were reported in the scale relative to $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ as an internal reference. Mass spectra were measured on a JMS-T100LC spectrometer (JEOL, Akishima, Japan). HPLC data were obtained on a SHIMADZU (Kyoto, Japan) HPLC system (consisting of the following: LC-20AT, CMB20A, CTO-20AC and detector SPD-20A measured at 254 nm) using Chiracel AD-H or Ad-3 column (Daicel, Himeji, Japan, 25 cm) at $25^{\circ} \mathrm{C}$. Optical rotations were measured on a JASCO DIP-370 (Na lamp, 589 nm). All NMR spectra figures could be found in Supplementary Materials.

Methyl (R)-5-hydroxy-3-oxotetradecanoate [(R)-6] [25].

$\mathrm{Ti}(\mathrm{OiPr})_{4}(0.11 \mathrm{~mL}, 0.36 \mathrm{mmol})$ was added to the solution of (S)-BINOL (103 mg , $0.36 \mathrm{mmol})$ and $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol})$ in THF (18 mL) at $20-25^{\circ} \mathrm{C}$ under an Ar atmosphere. After 5 min , decanal ($938 \mathrm{mg}, 6.00 \mathrm{mmol}$) was added to the solution, at same
temperature. After 10 min, 1,3-bis(TMS)diene $5(2.97 \mathrm{~g}, 63 \%$ purity, 7.20 mmol$)$ was added to the solution, at same temperature, followed by being stirred for 4 h . The mixture was quenched with 1 M HCl aq. $(6 \mathrm{~mL})$, and stirred for 10 min . The mixture was extracted three times with AcOEt, combined organic phase was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The obtained crude oil was purified using SiO_{2}-column chromatography (hexane-AcOEt $=10 / 1$) to give the desired product $(\boldsymbol{R})-6(1.28 \mathrm{~g}, 78 \%)$.

Pale yellow crystal; mp 34-36 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}-25.5$ (c 1.05, CHCl_{3}) [lit. [25] [$\left.\alpha\right]_{\mathrm{D}}$ unknown -22 (c 1, CHCl_{3})]; 98% ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{PrOH}=15: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=6.79,7.45,10.44$, and $11.10 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=7.44$ and $11.07 \mathrm{~min} .{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.54(\mathrm{~m}, 16 \mathrm{H}), 2.64$ (dd, $J=9.2 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=2.9 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 4.05-4.10 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.1,22.6,25.4,29.3,29.5,29.5,29.5$, $31.8,36.5,49.6$ (2C), 52.4, 67.5, 167.3, 203.6.; IR (neat): $v_{\max }=3468,2926,2855,1748,1715$, 1439, 1321, 1238, 1159, 1012, 760.; HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 295.1885; found: 295.1912.

Methyl (S)-5-hydroxy-3-oxotetradecanoate [(S)-6] [26].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 6}$, the reaction using $\mathrm{Ti}(\mathrm{OiPr})_{4}$ $(0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}),(R)-$ BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol})$, decanal ($938 \mathrm{mg}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene $5(2.97 \mathrm{~g}, 63 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product (S)-6 (1.16 g, 71\%).

Pale yellow crystal; mp $35-36{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+25.7\left(c\right.$ 1.07, $\left.\mathrm{CHCl}_{3}\right)\left[\right.$ lit. $[26][\alpha]_{\mathrm{D}}{ }^{25}+26.2$ (c 1.0, CHCl_{3})]; 99% ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ i \operatorname{PrOH}=15: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=6.79,7.45,10.44$ and $11.10 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=6.62$ and 10.06 min .

Methyl (R)-5-hydroxy-3-oxopentadecanoate [(R)-8].

Following a similar procedure for the synthesis of $(\boldsymbol{R})-6$, the reaction using $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}$ ($0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}$), (S)-BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol})$, undecanal ($1.02 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene 5 ($2.57 \mathrm{~g}, 73 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product $(\boldsymbol{R})-8(1.19 \mathrm{~g}, 69 \%)$.

Pale yellow crystal; mp $45-46{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{22}-26.3\left(c 1.04, \mathrm{CHCl}_{3}\right) ; 99 \%$ ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPOH}=15: 1$) $\mathrm{t}_{\mathrm{R}}($ racemic $)=6.82,7.53$, 10.35 and 10.95 min . $\mathrm{t}_{\mathrm{R}}[(R)$-form $]=7.55$ and $10.98 \mathrm{~min} . ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.54(\mathrm{~m}, 18 \mathrm{H}), 2.65(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}$, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.9 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,22.6,25.4,29.3,29.5,29.6(3 \mathrm{C}), 31.9,36.4,49.6(2 \mathrm{C})$, 52.4, 67.5, 167.4, 203.7.; IR (neat): $v_{\max }=3374,2953,2849,1734,1715,1470,1331,1150,1059$, 1034, 910.; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$309.2042; found: 309.2062 .

Methyl (S)-5-hydroxy-3-oxopentadecanoate [(S)-8].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 6}$, the reaction using $\mathrm{Ti}(\mathrm{OiPr})_{4}$ $(0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}),(R)-$ BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol})$, undecanal ($1.02 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene $5(2.57 \mathrm{~g}, 73 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product (S)-8 (1.16 g, 67\%).

Pale yellow crystal; $\mathrm{mp} 44-45{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{22}+25.2\left(c 1.08, \mathrm{CHCl}_{3}\right) ; 99 \%$ ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{PrOH}=15: 1$) $\mathrm{t}_{\mathrm{R}}($ racemic $)=6.82,7.53$, 10.35 and 10.95 min . $\mathrm{t}_{\mathrm{R}}[(S)$-form $]=6.31$ and 9.56 min .

Methyl (R)-5-hydroxy-3-oxohexadecanoate [(R)-9].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 6}$, the reaction using $\mathrm{Ti}(\mathrm{OiPr})_{4}$ ($0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}$), (S)-BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol}$), dodecanal ($1.11 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis (TMS)diene $5(2.57 \mathrm{~g}, 73 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product $(R)-9(1.19 \mathrm{~g}, 66 \%)$.

Pale yellow crystal mp $45-46^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{22}-24.1\left(c 1.04, \mathrm{CHCl}_{3}\right) ; 99 \%$ ee; HPLC analysis $(A D-H$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=15: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=5.90,6.56,8.86$ and 9.45 min . $\mathrm{t}_{\mathrm{R}}[(R)$-form $]=6.58$ and $9.47 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.54(\mathrm{~m}, 20 \mathrm{H}), 2.65(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.9 \mathrm{~Hz}$, $17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,22.7,25.4,29.3,29.5,29.6(2 \mathrm{C}), 29.6,29.6,31.9,36.4,49.6(2 \mathrm{C}), 52.4,67.5,167.3,203.7 . ;$ IR (neat): $v_{\max }=3347,2914,2849,1736,1717,1470,1437,1335,1209,1138,854 . ;$ HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4}[M+\mathrm{Na}]^{+}$323.2198; found: 323.2211.

Methyl (S)-5-hydroxy-3-oxohexadecanoate [(S)-9] [14].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 6}$, the reaction using $\mathrm{Ti}(\mathrm{OiPr})_{4}$ $(0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}),(R)-$ BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol})$, dodecanal ($1.11 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene $5(2.57 \mathrm{~g}, 73 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product (S)-9 (1.27 g, 70\%).

Pale yellow crystal; mp $46-47{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}+24.7\left(c 1.02, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $[14][\alpha]_{\mathrm{D}}$ unknown -26.2 (c 1.9, CHCl_{3})]; 99\% ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ i \mathrm{PrOH}=15: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=5.90,6.56,8.86$ and $9.45 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=5.93$ and 8.88 min.

Methyl (R)-5-hydroxy-3-oxopentadec-14-enoate [(R)-10].

Following a similar procedure for the synthesis of $(\boldsymbol{R})-6$, the reaction using $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}$ ($0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}$), (S)-BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), LiCl ($31 \mathrm{mg}, 0.72 \mathrm{mmol}$), $10-$ undecenal ($1.01 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene $5(2.97 \mathrm{~g}, 63 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product $(\boldsymbol{R})-\mathbf{1 0}(1.39 \mathrm{~g}, 81 \%)$.

Pale yellow crystal; mp 29-30 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}-24.5$ (c 1.02, CHCl_{3}); $>99 \%$ ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=15: 1$) $\mathrm{t}_{\mathrm{R}}($ racemic $)=7.33$, $8.10,11.39$ and $12.18 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=8.01$ and $12.00 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=1.22-1.54(\mathrm{~m}, 14 \mathrm{H}), 2.04(\mathrm{q}, ~ J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (brs, $1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.9 \mathrm{~Hz}, 17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.56-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.93$ (dd, $J=1.2 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=1.7 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.4,28.8,29.0,29.3,29.4,29.4,33.7,36.4,49.6$ (2C), 52.4, 67.5, 114.1, 139.2, 167.3, 203.6.; IR (neat): $v_{\max }=3503,2926,2855,1748,1715,1639,1437,1406,1325,1269,910$. HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4}[M+\mathrm{Na}]^{+}$307.1885; found: 307.1872.

Methyl (S)-5-hydroxy-3-oxopentadec-14-enoate [(S)-10].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 6}$, the reaction using $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{4}$ ($0.11 \mathrm{~mL}, 0.36 \mathrm{mmol}$), (R)-BINOL ($103 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{LiCl}(31 \mathrm{mg}, 0.72 \mathrm{mmol}$), $10-$ undecenal ($1.01 \mathrm{~g}, 6.00 \mathrm{mmol}$), 1,3-bis(TMS)diene $5(2.97 \mathrm{~g}, 63 \%$ purity, 7.20 mmol) and THF (18 mL) gave the desired product (S)-9 $(1.38 \mathrm{~g}, 81 \%)$.

Pale yellow crystal; mp $30-31^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}+24.9\left(c 1.13, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee; HPLC analysis (AD-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{PrOH}=15: 1$) $\mathrm{t}_{\mathrm{R}}($ racemic $)=7.33,8.10$, 11.39 and $12.18 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=7.32$ and 11.37 min .
(R)-6-Nonyldihydro-2H-pyran-2,4(3H)-dione [(R)-7] [32].

(R)-Aldol adduct $(\mathbb{R})-6(640 \mathrm{mg}, 2.35 \mathrm{mmol})$ was added to a stirred 1 M KOH aq. solution (2.4 mL) at $20-25^{\circ} \mathrm{C}$ under an Ar atmosphere and the mixture was stirred at same temperature for 3 h . The resulting mixture was quenched with 1 M HCl aq. solution, which was extracted twice with AcOEt. The combined organic phase was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The obtained crude crystal $(\boldsymbol{R})-7(526 \mathrm{mg}, 93 \%)$ was used for the next step without purification.

Pale yellow crystal; mp $82-83{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H), 1.16-1.57 (m, 14H), 1.64-1.71 (m, 1H), 1.78-1.85 (m, 1H), 2.46 (dd, J = $11.5 \mathrm{~Hz}, 18.3 \mathrm{~Hz}$, 1H)), 2.69 (dd, $J=2.3 \mathrm{~Hz}, 18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.58-4.64 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,22.6,24.7,29.2,29.2,29.4,29.4$, 31.8, 34.6, 43.5, 47.0, 75.6, 167.3, 200.1.; IR (neat): $v_{\max }=2922,2855,2666,1697,1585,1389$, 1285, 1248, 1043, 833. HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}[M+\mathrm{Na}]^{+} 263.1623$; found: 263.1604 .
(S)-6-Nonyldihydro-2H-pyran-2,4(3H)-dione [(S)-7] [32].

Following a similar procedure for the synthesis of $(\boldsymbol{R})-7$, the reaction using (S)-aldol adduct (S)-8 (817 mg, 3.00 mmol$)$ gave the desired product $(S)-7(710 \mathrm{mg}, 98 \%)$.

Pale yellow crystal; mp 82-83 ${ }^{\circ} \mathrm{C}$.
(R)-6-Decyldihydro-2H-pyran-2,4(3H)-dione [(R)-11].

Following a similar procedure for the synthesis of (R)-7, the reaction using aldol adduct $(\boldsymbol{R}) \mathbf{- 1 0}$ ($859 \mathrm{mg}, 3.00 \mathrm{mmol}$) gave the desired product $(\boldsymbol{R}) \mathbf{- 1 1}(733 \mathrm{mg}, 96 \%)$.

Pale yellow crystal; mp $72-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27-1.57(\mathrm{~m}, 16 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=11.5 \mathrm{~Hz}, 18.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=2.3 \mathrm{~Hz}, 18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60-4.66 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta=14.1,22.7,24.7,29.2,29.3,29.4,29.5$, $29.5,31.9,34.5,43.5,47.0,75.5,167.3,200.2$. ; IR (neat): $v_{\max }=2922,2853,1697,1587,1315$, 1285, 1244, 910, 831, 735.; HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}$277.1780; found: 277.1770.
(S)-6-Decyldihydro-2H-pyran-2,4(3H)-dione [(S)-11].

Following a similar procedure for the synthesis of (\boldsymbol{R})-7, the reaction using (S)-aldol adduct (S) $\mathbf{- 8}(859 \mathrm{mg}, 3.00 \mathrm{mmol})$ gave the desired product $(S) \mathbf{- 1 1}(745 \mathrm{mg}, 98 \%)$.

Pale yellow crystal; mp 73-74 ${ }^{\circ} \mathrm{C}$.
(R)-6-Undecyldihydro-2H-pyran-2,4(3H)-dione [(R)-12].

Following a similar procedure for the synthesis of $(\boldsymbol{R})-7$, the reaction using aldol adduct $(R)-9(901 \mathrm{mg}, 3.00 \mathrm{mmol})$ and 1 M KOH aq. solution $(3.0 \mathrm{~mL})$ gave the desired product (S)-12 (748 mg, 93\%).

Pale yellow crystal; mp $80-81{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H), 1.21-1.54 (m, 18H), 1.66-1.73 (m, 1H), 1.80-1.87 (m, 1H), 2.47 (dd, $J=11.5 \mathrm{~Hz}, 18.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=2.9 \mathrm{~Hz}, 18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60-4.65 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,22.7,24.7,29.2,29.3,29.4,29.5$, $29.6(2 C), 31.9,34.5,43.5,47.0,75.5,167.3,200.2$.; IR (neat): $v_{\max }=2920,2853,1697,1585$, 1470, 1389, 1285, 1043, 907, 831, 737.; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$ 291.1936; found: 291.1949.
(S)-6-Undecyldihydro-2H-pyran-2,4(3H)-dione [(S)-12].

Following a similar procedure for the synthesis of $(\mathbb{R})-7$, the reaction using aldol adduct (S)-9 (901 mg, 3.00 mmol) and 1 M KOH aq. solution $(3.0 \mathrm{~mL})$ gave the desired product (S)-12 ($733 \mathrm{mg}, 91 \%$).

Pale yellow crystal; mp 77-79 ${ }^{\circ} \mathrm{C}$.
(R)-6-(Dec-9-en-1-yl)dihydro-2H-pyran-2,4(3H)-dione [(R)-13].

Following a similar procedure for the synthesis of (R)-7, the reaction using (R)-aldol adduct (\boldsymbol{R})-10 ($853 \mathrm{mg}, \mathbf{3 . 0 0 ~ m m o l}$) gave the desired product $(\boldsymbol{R}) \mathbf{- 1 3}(709 \mathrm{mg}, 94 \%)$.

Pale yellow crystal; mp $69-71^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22-1.59(\mathrm{~m}, 12 \mathrm{H})$, $1.66-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{dd}, J=11.5 \mathrm{~Hz}, 18.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{dd}, J=2.9 \mathrm{~Hz}, 18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.65$ $(\mathrm{m}, 1 \mathrm{H}), 4.94$ (dquin $J=1.2 \mathrm{~Hz}, 10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddd} J=1.7 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77-5.85 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.7,28.8,29.0,29.2,29.3$ (2C), 33.7, 34.5, 43.5, 47.0, 75.5, 114.2, 139.1, 167.3, 200.2.; IR (neat): $v_{\max }=2924,2855,1697,1585,1389$, 1285, 1244, 908, 833, 737. HRMS (ESI): m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}$275.1623; found: 275.1638 .
(S)-6-(Dec-9-en-1-yl)dihydro-2H-pyran-2,4(3H)-dione [(S)-13].

Following a similar procedure for the synthesis of (\boldsymbol{R})-7, the reaction using (S)-aldol adduct $(S)-10(853 \mathrm{mg}, 3.00 \mathrm{mmol})$ and 1 M KOH aq. solution $(3.0 \mathrm{~mL})$ gave the desired product (S)-13 ($732 \mathrm{mg}, 97 \%$).

Pale yellow crystal; mp $68-70^{\circ} \mathrm{C}$.
(R)-3-Butyryl-4-hydroxy-6-nonyl-5,6-dihydro-2H-pyran-2-one [(R)-Plymuthipyranone B: $(R)-4 b][16]$.

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI•HCl) (115 mg , $0.60 \mathrm{mmol})$ was added to a stirred suspension of pyrone $(\boldsymbol{R})-7(120 \mathrm{mg}, 0.50 \mathrm{mmol})$, butanoic acid ($0.055 \mathrm{~mL}, 0.60 \mathrm{mmol}$) and DMAP ($73 \mathrm{mg}, 0.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0-$ $5{ }^{\circ} \mathrm{C}$ under an Ar atmosphere, and the mixture was stirred for 15 h at $20-25^{\circ} \mathrm{C}$. The resulting mixture was quenched with $1 \mathrm{M}-\mathrm{HCl}$ aq. solution, which was extracted twice with AcOEt. The combined organic phase was washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The obtained crude oil was purified using SiO_{2}-column chromatography (hexane $/ \mathrm{AcOEt}=20: 1$) to give the desired product $[(R)$-Plymuthipyranone $\mathrm{B}:(R)-4 \mathbf{b} ; \mathbf{9 5 \%}$ ee, $103 \mathrm{mg}, 66 \%$].

Pale yellow crystal; $\mathrm{mp} 45-46^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{27}-23.9(c 0.73, \mathrm{MeOH})\left[\mathrm{lit} .[16][\alpha]_{\mathrm{D}}\right.$ unknown -22 (c 0.041, MeOH)]; 95\% ee; HPLC analysis (OJ-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{PrOH}=50: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=7.89$ and $11.14 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=7.82 \mathrm{~min} . ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.53(\mathrm{~m}, 14 \mathrm{H})$, $1.61-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{dd}, J=4.0 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=11.5 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94-3.09 (m, 2H), 4.33-4.38(m, 1H), $17.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.9$, $14.2,18.5,22.7,24.8,29.3$ (2C), 29.5, 29.5, 31.9, 34.7, 38.0, 40.4, 73.9, 103.3 164.4, 195.2, 204.4.; IR (neat): $v_{\max }=2957,2926,2855,1717,1558,1466,1275,1070,910,735$.
(S)-3-Butyryl-4-hydroxy-6-nonyl-5,6-dihydro-2H-pyran-2-one [(S)-Plymuthipyranone B: (S)-4b] [16].

Following a similar procedure for the synthesis of (R)-Plymuthipyranone B $[(R)-\mathbf{4 b}]$, the reaction using EDCI• $\mathrm{HCl}(115 \mathrm{mg}, 0.80 \mathrm{mmol})$, pyrone $(S)-7(160 \mathrm{mg}, 0.67 \mathrm{mmol})$, butanoic acid ($0.073 \mathrm{~mL}, 0.80 \mathrm{mmol}$), DMAP ($98 \mathrm{mg}, 0.80 \mathrm{mmol}$) gave the desired product (S)-Plymuthipyranone B [(S)-4b] ($149 \mathrm{mg}, 72 \%$).

Pale yellow crystal; mp $43-44^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{27}+25.7(c 0.67, \mathrm{MeOH})\left[\mathrm{lit} .[16][\alpha]_{\mathrm{D}}\right.$ unknown +33 (c 2.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)]; >97\% ee; HPLC analysis ($\mathrm{OJ}-\mathrm{H}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ i \operatorname{PrOH}=50: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=7.89$ and $11.14 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=10.99 \mathrm{~min}$.
(R)-3-Butyryl-6-decyl-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(R)-4c].

Following a similar procedure for the synthesis of $(\boldsymbol{R}) \mathbf{- 4 b}$, the reaction using $\mathrm{EDCI} \bullet \mathrm{HCl}$ ($230 \mathrm{mg}, 1.20 \mathrm{mmol}$), pyrone (R)-11 ($254 \mathrm{mg}, 1.00 \mathrm{mmol}$), butyric acid ($0.11 \mathrm{~mL}, 1.20 \mathrm{mmol}$), DMAP $(147 \mathrm{mg}, 1.20 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ gave the desired product $(R)-4 \mathrm{c}(236 \mathrm{mg}$, 73\%).

Pale yellow crystal; mp 47-48 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}-25.2(c 1.03, \mathrm{MeOH}) ; 97 \%$ ee; HPLC analysis (OJ-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=50: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=7.54$ and 10.66 $\min . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=7.45 \mathrm{~min} . ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.54(\mathrm{~m}, 16 \mathrm{H}), 1.61-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.09$ $(\mathrm{m}, 2 \mathrm{H}), 4.33-4.39(\mathrm{~m}, 1 \mathrm{H}), 17.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,14.1,18.3$, $22.7,24.6,29.3,29.3,29.4,29.5,29.5,31.9,34.6,37.8,40.3,73.8,103.2,164.4,195.1,204.4$. IR (neat): $v_{\max }=2963,2920,2849,1709,1692,1557,1466,1281,1081,912,762 ;$ HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{4}[M+\mathrm{Na}]^{+} 347.2198$; found: 347.2181.
(S)-3-Butyryl-6-decyl-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(S)-4c].

Following a similar procedure for the synthesis of ($\boldsymbol{R} \mathbf{)} \mathbf{- 4 \mathbf { b }}$, the reaction using $\mathrm{EDCI} \bullet \mathrm{HCl}$ $(230 \mathrm{mg}, 1.20 \mathrm{mmol})$, pyrone $(S)-11(254 \mathrm{mg}, 1.00 \mathrm{mmol})$, butyric acid $(0.11 \mathrm{~mL}, 1.20 \mathrm{mmol})$,

DMAP ($147 \mathrm{mg}, 1.20 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ gave the desired product $(S)-4 \mathrm{c}(246 \mathrm{mg}$, 76\%).

Pale yellow crystal; mp $47-48^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{21}+24.9$ (c 1.03, MeOH); 99% ee; HPLC analysis $(\mathrm{OJ}-\mathrm{H}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=50: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=7.54$ and 10.66 $\min . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=10.47 \mathrm{~min}$.
(R)-3-Butyryl-6-undecyl-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(R)-4d].

Following a similar procedure for the synthesis of (R)-plymuthipyranone B $[(R)-4 \mathbf{b}]$, the reaction using EDCI• $\mathrm{HCl}(230 \mathrm{mg}, 1.20 \mathrm{mmol})$, pyrone $(R)-12(268 \mathrm{mg}, 1.00 \mathrm{mmol})$, butanoic acid ($0.11 \mathrm{~mL}, 1.20 \mathrm{mmol}$), DMAP ($147 \mathrm{mg}, 1.20 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ gave the desired product $(\boldsymbol{R})-4 d(230 \mathrm{mg}, 68 \%)$.

Pale yellow crystal; mp $50-51^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{24}-23.5$ (c 1.00, MeOH); 97% ee; HPLC analysis (OJ-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=50: 1$) $\mathrm{t}_{\mathrm{R}}($ racemic $)=7.09$ and $9.90 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=6.98 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.54(\mathrm{~m}, 18 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.09(\mathrm{~m}$, 2H), 4.33-4.39 (m, 1H), $17.92(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,14.1,18.4,22.7$, 24.7, 29.3, 29.3, 29.4, 29.5, 29.6(2C), 31.9, 34.6, 37.9, 40.3, 73.9, 103.2, 164.4, 195.1, 204.4 IR (neat): $v_{\max }=2920,2849,1707,1688,1558,1468,1070,912,735 . ;$ HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{4}[M+\mathrm{Na}]^{+} 361.2355$; found: 361.2337.
(S)-3-Butyryl-6-undecyl-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(S)-4d].

Following a similar procedure for the synthesis of (R)-plymuthipyranone $\mathrm{B}[(\boldsymbol{R})-\mathbf{4 b}]$, the reaction using EDCI• $\mathrm{HCl}(230 \mathrm{mg}, 1.20 \mathrm{mmol})$, pyrone $(S)-12(268 \mathrm{mg}, 1.00 \mathrm{mmol})$, butanoic acid ($0.11 \mathrm{~mL}, 1.20 \mathrm{mmol}$), DMAP ($147 \mathrm{mg}, 1.20 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ gave the desired product (S)-4d ($222 \mathrm{mg}, 66 \%$).

Pale yellow crystal; mp $48-49^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}+23.5$ (c $\left.0.93, \mathrm{MeOH}\right) ; 98 \%$ ee; HPLC analysis (OJ-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ i \mathrm{PrOH}=50: 1) \mathrm{t}_{\mathrm{R}}($ racemic $)=7.09$ and $9.90 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=9.74 \mathrm{~min}$.
(R)-3-Butyryl-6-(dec-9-en-1-yl)-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(R)-4e].

Following a similar procedure for the synthesis of (R)-plymuthipyranone $\mathrm{B}[(\boldsymbol{R})-\mathbf{4 b}]$, the reaction using EDCI•HCl ($230 \mathrm{mg}, 1.20 \mathrm{mmol}$), pyrone (R)-13 (252 mg, 1.00 mmol), butanoic acid $(0.11 \mathrm{~mL}, 1.20 \mathrm{mmol})$ and DMAP $(147 \mathrm{mg}, 1.20 \mathrm{mmol})$ gave the desired product (R)-4e ($237 \mathrm{mg}, 73 \%$).

Pale yellow crystal; mp $34-35{ }^{\circ} \mathrm{C},[\alpha]_{D}{ }^{25}-25.1(c 0.64, \mathrm{MeOH}) ; 97 \%$ ee; HPLC analysis (OJ-H, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=50: 1$), $\mathrm{t}_{\mathrm{R}}($ racemic $)=10.06$ and $15.51 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(R)$-form $]=9.96 \mathrm{~min} . ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22-1.56(\mathrm{~m}, 12 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 4 \mathrm{H}), 2.02-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=3.4 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (dd, $J=11.5 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-3.09(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.92-5.02(\mathrm{~m}, 2 \mathrm{H})$, 5.77-5.85 (m, 1H), 17.92 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,18.4,24.6,28.9,29.0$, 29.2, 29.3, 29.3, 33.8, 34.6, 37.9, 40.3, 73.8, 103.2, 114.1, 139.1, 164.3, 195.1, 204.4.; IR (neat): $\nu_{\max }=2926,2857,1715,1558,1464,1273,1069,910,767$; HRMS (DART): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$323.2222; found: 323.2205.
(S)-3-Butyryl-6-(dec-9-en-1-yl)-4-hydroxy-5,6-dihydro-2H-pyran-2-one [(S)-4e].

Following a similar procedure for the synthesis of (R)-Plymuthipyranone B , the reaction using EDCI $\bullet \mathrm{HCl}$ ($230 \mathrm{mg}, 1.20 \mathrm{mmol}$), pyrone (S) $\mathbf{- 1 3}$ ($252 \mathrm{mg}, 1.00 \mathrm{mmol}$), butanoic acid $(0.11 \mathrm{~mL}, 1.20 \mathrm{mmol})$ and DMAP $(147 \mathrm{mg}, 1.20 \mathrm{mmol})$ gave the desired product (S)-4e ($227 \mathrm{mg}, 70 \%$).

Pale yellow crystal; mp $34-35^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}+24.9(c 0.75, \mathrm{MeOH}) ; 98 \%$ ee; HPLC analysis $(\mathrm{OJ}-\mathrm{H}$, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$, solvent: hexane $/ \mathrm{iPrOH}=50: 1), \mathrm{t}_{\mathrm{R}}($ racemic $)=10.06$ and $15.51 \mathrm{~min} . \mathrm{t}_{\mathrm{R}}[(S)$-form $]=15.39 \mathrm{~min}$.

3.2. Bioassay

ATCC 43300 and ATCC 33591 were purchased from the American Type Culture Collection and were stored at $-80^{\circ} \mathrm{C}$ in a freezer by using the Microbank system (IWAKI \& CO., Ltd., Tokyo, Japan). For each experiment, a bacterial strain was cultured overnight on mannitol salt agar plates to confirm the purity and viability of the microbe.

The minimal inhibitory concentration (MIC) of synthetics were determined by microdilution method using Mueller-Hinton broth according to Clinical and Laboratory Standards Institute (CLSI) guidelines [33,34]. Briefly, after diluting the suspension of bacteria equivalent to 1×10^{6} colony-forming units (CFU)/mL with Mueller-Hinton II broth (Becton, Dickinson and Company, MD, USA) with $17.5 \mathrm{mg} / \mathrm{L}$ of calcium, the dilution ($50 \mu \mathrm{~L}$) was applied into 96-well plate, which included synthetics or vancomycin (Cayman Chemical Company, MI, USA) ($50 \mu \mathrm{~L}$) at concentrations of $0.5-256 \mu \mathrm{~g} / \mathrm{mL}$. Final inoculum concentration was approximately $5 \times 10^{5} \mathrm{CFU} / \mathrm{mL}$. Synthetics concentration was $0.25-128 \mu \mathrm{~g} / \mathrm{mL}$. After incubation at $37^{\circ} \mathrm{C}$ for $16-20 \mathrm{~h}$, MICs were determined.

4. Conclusions

We performed asymmetric total syntheses of all of the both enantiomers of the antiMRSA active plymuthipyranone B and three unnatural analogues. The present synthetic method utilized a privileged asymmetric Mukaiyama aldol addition using $\mathrm{Ti}(\mathrm{OiPr})_{4} /(S)$ or (R)-BINOL catalysis as the key step, originally developed by Soriente and Scettri's group. The total syntheses were each implemented in three steps and an overall yield of 42-56\% with a highly enantiomeric excess ($95-99 \%$). The bioassay of the anti-MRSA activity against ATCC 43300 and 33591 revealed that natural (R)-plymuthipyranone B and (R)-undecyl synthetic analogue at the C 6 position exhibited the highest activity with low MIC values.

These findings provide new insight into the SAR with the chiral discrimination regarding anti-MRSA compounds comprising the 3-acyl-5,6-dihydro-2H-pyran-2-one structure.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/ 10.3390 /ph14090938/s1, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR spectra for compounds 6-13, 4b-4e (Figures S1-S28). Figure S1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 6. Figure S2. ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 6. Figure S3. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 8. Figure S4. ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectrum of the Compound 8. Figure S5. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 9. Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 9. Figure S7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 10. Figure S8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 10. Figure S9. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 7. Figure S10. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 7. Figure S11. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 11. Figure S12. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 11. Figure S13. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectrum of the Compound 12. Figure S14. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 12. Figure S15. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 13. Figure S16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 13. Figure S17. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $\mathbf{4 b}$. Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $\mathbf{4 b}$. Figure S19. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $\mathbf{4 b}$. Figure S20. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 4c. Figure S21. ${ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ Spectrum of the Compound 4c. Figure S22. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $\mathbf{4 c}$. Figure S23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 4 d . Figure S24. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 4d. Figure S25. ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 4d. Figure S26. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $\mathbf{4 e}$. Figure S27. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound $4 \mathbf{e}$. Figure S28. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectrum of the Compound 4e. Charts of HPLC analyses for compounds 6 (racemic), (R)-6, (S)-6, 8 (racemic), (R)-8, (S)-8, 9 (racemic), (R)-9, (S)-9, 10 (racemic), (R)-10, (S)-10, $\mathbf{4 b}$ (racemic), (R)-4b, (S)-4b, 4c (racemic), (R)-4c, (S)-4c, 4 d (racemic), (R)-4d, (S)-4d, 4 e (racemic), (R)-4e and (S)-4e.

Author Contributions: M.M., X.L. and Y.E. contributed the majority of experiments. K.M. supervised the bioassay and prepared the part of manuscript. Y.T. conceived and designed the project, and prepared the whole manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Grant-in-Aids for Scientific Research on Basic Area (B) "18350056", Basic Areas (C) 15K05508 and Priority Areas (A) "17035087" and "18037068", and Exploratory Research "17655045" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Informed consent was obtained from subjects involved in the study.
Data Availability Statement: Data is contained within article and supplementary material.
Acknowledgments: We thank Atsushi Fujiwara and Takeshi Tsutsumi for their preliminary synthetic efforts. One of the authors (Y.T.) offers his warmest congratulations to Ben L. Feringa (University of Groningen, The Netherlands) on being awarded the 2016 Nobel Prize in Chemistry. This article is dedicated to the late Teruaki Mukaiyama who passed away in 2018 and the late Kenji Mori who passed away in 2019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Davies-Coleman, M.T.; Rivett, D.E.A. Naturally Occurring 6-Substituted 5,6-Dihydro- α-pyrones. In Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G.W., Tamm, C., Eds.; Springer: New York, NY, USA, 1989; Volume 55, pp. 1-35, ISBN 978-3-7091-9004-3.
2. Brian, P.W.; Curtis, P.J.; Hemming, H.G.; Unwin, C.H.; Wright, J.M. Alternaric Acid, a Biologically Active Metabolic Product of the Fungus Alternaria solani. Nature 1949, 164, 534. [CrossRef]
3. Tabuchi, H.; Ichihara, A. Structures and stereochemistries of new compounds related to alternaric acid. J. Chem. Soc. Perkin Trans. 1994, 1, 125. [CrossRef]
4. Tabuchi, H.; Hamamoto, T.; Miki, S.; Tejima, T.; Ichihara, A. Total Synthesis and Stereochemistry of Alternaric Acid. J. Org. Chem. 1994, 59, 4749-4759. [CrossRef]
5. Trost, B.M.; Probst, G.D.; Schoop, A. Ruthenium-Catalyzed Alder Ene Type Reactions. A Formal Synthesis of Alternaric Acid. J. Am. Chem. Soc. 1998, 120, 9228-9236. [CrossRef]
6. Slade, M.C.; Johnson, J.S. Alternaric acid: Formal synthesis and related studies. Beilstein J. Org. Chem. 2013, 9, 166-172. [CrossRef]
7. Nagase, R.; Oguni, Y.; Ureshino, S.; Mura, H.; Misaki, T.; Tanabe, Y. Asymmetric Ti-crossed Claisen condensation: Application to concise asymmetric total synthesis of alternaric acid. Chem. Commun. 2013, 49, 7001. [CrossRef]
8. Sugi, M.; Nagase, R.; Misaki, T.; Nakatsuji, H.; Tanabe, Y. Asymmetric Total Synthesis of (-)-Azaspirene by Utilizing Ti-Claisen Condensation and Ti-Direct Aldol Reaction. Eur. J. Org. Chem. 2016, 2016, 4834-4841. [CrossRef]
9. Miyakado, M.; Inoue, S.; Tanabe, Y.; Watanabe, K.; Ohno, N.; Yoshioka, H.; Mabry, T.J. Podoblastin A, B and C. New antifungal 3-acyl-4-hydroxy-5,6-dihydro-2-pyrones obtained from Podophyllum Peltatum L. Chem. Lett. 1982, 11, 1539. [CrossRef]
10. Tanabe, Y.; Miyakado, M.; Ohno, N.; Yoshioka, H. A new 3-acyl-4-hydroxy-2-pyrone synthesis and its application to total synthesis of (\pm) podoblastin A, B and C. Chem. Lett. 1982, 11, 1543-1546. [CrossRef]
11. Kawakami, H.; Hirokawa, S.; Asaoka, M.; Takei, H. New Method for the Synthesis of Podoblastin Derivatives and 3-Acyltetronic Acids. Chem. Lett. 1987, 16, 85. [CrossRef]
12. Ichimoto, I.; Machiya, K.; Kirihata, M.; Ueda, H. Stereoselective Synthesis of Podoblastins and Their Antiblast Activity. J. Pestic. Sci. 1988, 13, 605-613. [CrossRef]
13. Ayer, W.A.; Villar, J.D.F. Metabolites of Lachnellulafuscosanguinea (Rehm). Part 1. The isolation, structure determination, and synthesis of lachnelluloic acid. Can. J. Chem. 1985, 63, 1161-1165. [CrossRef]
14. Mineeva, I.V. Asymmetric synthesis of (+)-(S)-Massoia lactone, pheromone of Idea leuconoe. Formal total synthesis of valilactone and lachnelluloic acid. Russ. J. Org. Chem. 2013, 49, 1647-1654. [CrossRef]
15. Fujiwara, T.; Tsutsumi, T.; Nakata, K.; Nakatsuji, H.; Tanabe, Y. Asymmetric Total Syntheses of Two 3-Acyl-5,6- dihydro-2Hpyrones: (R)-Podoblastin-S and (R)- Lachnelluloic Acid with Verification of the Absolute Configuration of (-)-Lachnelluloic Acid. Molecules 2017, 22, 69. [CrossRef]
16. Bjerketorp, J.; Levenfors, J.J.; Sahlberg, C.; Nord, C.L.; Andersson, P.F.; Guss, B.; Öberg, B.; Broberg, A. Antibacterial 3,6Disubstituted 4-Hydroxy-5,6-dihydro-2H-pyran-2-ones from Serratia plymuthica MF371-2. J. Nat. Prod. 2017, 80, 2997-3002. [CrossRef]
17. Broberg, A.; Andersson, P.; Levenfors, J.; Bjerketorp, J.; Sahlberg, C. Preparation of Substituted Dihydropyranones and Methods of Treating Bacterial Infections. WO Patent 2017095319 A1, 8 June 2017.
18. Tanabe, Y.; Suzukamo, G.; Komuro, Y.; Imanishi, N.; Morooka, S.; Enomoto, M.; Kojima, A.; Sanemitsu, Y.; Mizutani, M. Structureactivity relationship of optically active 2-(3-pyridyl)thiazolidin-4-ones as a PAF antagonists. Tetrahedron Lett. 1991, 32, 379-382. [CrossRef]
19. Tanabe, Y.; Yamamoto, H.; Murakami, M.; Yanagi, K.; Kubota, Y.; Okumura, H.; Sanemitsu, Y.; Suzukamo, G. Synthetic study of the highly potent and selective anti-platelet activating factor thiazolidin-4-one agents and related compounds. J. Chem. Soc. Perkin Trans. 1995, 1, 935-947. [CrossRef]
20. Nishii, Y.; Wakimura, K.-I.; Tsuchiya, T.; Nakamura, S.; Tanabe, Y. Synthesis and Stereostructure-activity Relationship of a Synthetic Pyrethroid, 2-chloro-1-methyl-3-phenylcyclopropylmethyl-3-phenoxybenzyl ether. J. Chem. Soc. Perkin Trans. 1996, 1, 1243-1249. [CrossRef]
21. Nishii, Y.; Maruyama, N.; Wakasugi, K.; Tanabe, Y. Synthesis and stereostructure-activity relationship of three asymmetric center pyrethroids: 2-methyl-3-phenylcyclopropyl-methyl 3-phenoxybenzyl ether and cyanohydrin ester. Bioorg. Med. Chem. 2001, 9, 33-39. [CrossRef]
22. Taniguchi, T.; Taketomo, Y.; Moriyama, M.; Matsuo, N.; Tanabe, Y. Synthesis and Stereostructure-Activity Relationship of Novel Pyrethroids Possessing Two Asymmetric Centers on a Cyclopropane Ring. Molecules 2019, 24, 1023. [CrossRef] [PubMed]
23. Kawamoto, M.; Moriyama, M.; Ashida, Y.; Matsuo, N.; Tanabe, Y. Total Syntheses of All Six Chiral Natural Pyrethrins: Accurate Determination of the Physical Properties, Their Insecticidal Activities, and Evaluation of Synthetic Methods. J. Org. Chem. 2020, 85, 2984-2999. [CrossRef]
24. Moriyama, M.; Nakata, K.; Fujiwara, T.; Tanabe, Y. Divergent Asymmetric Total Synthesis of All Four Pestalotin Diastereomers from (R)-Glycidol. Molecules 2020, 25, 394. [CrossRef]
25. Soriente, A.; De Rosa, M.; Villano, R.; Scettri, A. Enantioselective aldol condensation of 1,3-bis-(trimethylsilyloxy)-1-methoxy-buta-1,3-diene promoted by chiral Ti(IV)/BINOL complex. Tetrahedron Asymmetry 2000, 11, 2255-2258. [CrossRef]
26. Soriente, A.; De Rosa, M.; Stanzione, M.; Villano, R.; Scettri, A. An efficient asymmetric aldol reaction of Chan's diene promoted by chiral Ti(IV)-BINOL complex. Tetrahedron Asymmetry 2001, 12, 959-963. [CrossRef]
27. Villano, R.; Rosaria, M.; De Rosa, M.; Soriente, A.; Stanzione, M.; Scettri, A. Pronounced asymmetric amplification in the aldol condensation of Chan's diene promoted by a Ti(IV)/BINOL complex. Tetrahedron Asymmetry 2004, 15, 2421-2424. [CrossRef]
28. $\mathrm{Xu}, \mathrm{Q} . ;$ Yu, J.; Han, F.; Hu, J.; Chen, W.; Yang, L. Achiral additives dramatically enhance enantioselectivities in the BINOL-Ti(IV) complex catalyzed aldol condensations of aldehydes with Chan's diene. Tetrahedron Asymmetry 2010, 21, 156-158. [CrossRef]
29. Chan, T.-H.; Brownbridge, P. Reaction of electrophiles with 1,3-bis(trimethylsiloxy)-1-methoxybuta-1,3-diene, a dianion equivalent of methyl acetoacetate. J. Chem. Soc. Chem. Commun. 1979, 578-579. [CrossRef]
30. Chan, T.-H.; Brownbridge, P. Chemistry of enol silyl ethers. 5. A novel cycloaromatization reaction. Regiocontrolled synthesis of substituted methyl salicylates. J. Am. Chem. Soc. 1980, 102, 3534-3538. [CrossRef]
31. Langer, P. Cyclization Reactions of 1,3-Bis-Silyl Enol Ethers and Related Masked Dianions: A Review. Synthesis 2002, 441-459. [CrossRef]
32. Garnero, J.; Caperos, J.; Anwander, A.; Jacot-Guillarmod, A. Flavoring substances: Design of 6-alkyl- (and 6,6-dialkyl-) 5,6-dihydro-2-pyrone. Dev. Food Sci. 1988, 18, 903-913.
33. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 10th ed.; CLSI Document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015.
34. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
