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Abstract: Even if amyotrophic lateral sclerosis is still considered an orphan disease to date, its
prevalence among the population is growing fast. Despite the efforts made by researchers and
pharmaceutical companies, the cryptic information related to the biological and physiological onset
mechanisms, as well as the complexity in identifying specific pharmacological targets, make it almost
impossible to find effective treatments. Furthermore, because of complex ethical and economic
aspects, it is usually hard to find all the necessary resources when searching for drugs for new
orphan diseases. In this context, computational methods, based either on receptors or ligands,
share the capability to improve the success rate when searching and selecting potential candidates
for further experimentation and, consequently, reduce the number of resources and time taken
when delivering a new drug to the market. In the present work, a computational strategy based
on Molecular Topology, a mathematical paradigm capable of relating the chemical structure of a
molecule to a specific biological or pharmacological property by means of numbers, is presented. The
result was the creation of a reliable and accessible tool to help during the early in silico stages in the
identification and repositioning of potential hits for ALS treatment, which can also apply to other
orphan diseases. Considering that further computational and experimental results will be required
for the final identification of viable hits, three linear discriminant equations combined with molecular
docking simulations on specific proteins involved in ALS are reported, along with virtual screening
of the Drugbank database as a practical example. In this particular case, as reported, a clinical trial
has been already started for one of the drugs proposed in the present study.

Keywords: amyotrophic lateral sclerosis; orphan diseases; molecular topology; drug design; QSAR;
drug repurposing

1. Introduction

In the last few decades, basic and clinical research has witnessed a sensible growth in
drug design and development using computational methods. Among the main reasons
is the necessity for the industry to find more sustainable methods in the process of drug
discovery. Computational methods, based on both receptors and ligands, share the capa-
bility of improving the success rate when searching and selecting potential candidates for
further experimentation, and consequently reduce the number of resources and time spent
when delivering a new drug to the market. The importance of such methods is even more
relevant in complex scenarios, such as the research in drug design and development for
orphan diseases. Due to several reasons which are not a subject of discussion in the present
work, such as undefined economic incomes, cryptic information related to the biological
and physiological onset mechanisms, or difficulties in identifying specific pharmacological
targets, the development of new treatments for orphan diseases is extremely difficult. In
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the present article, in which, again, it is not the authors’ aim to discuss the ethical aspects
and implications of orphan diseases research, the few, actual treatments available for amy-
otrophic lateral sclerosis treatment (ALS) are collected and a computational strategy based
on molecular topology is proposed.

ALS is a fatal motor neuron disease characterized by degenerative changes in both
upper and lower motor neurons [1,2] and its onset typically occurs in late middle life and
presents as a relentlessly progressive muscle atrophy and weakness, with the effects on
respiratory muscles limiting survival to 2–4 years after disease onset in most cases. ALS
prevalence seems to be between 4.1 and 8.4 per 100,000 persons [3]. A slight increase in the
prevalence of ALS has been suggested over the years. In the United States, for example, the
administrative healthcare data sources and capture–recapture methodology [4] reported
an ALS prevalence of 3.7 per 100,000 in 2002, 4.4 per 100,000 in 2003, and 4.8 per 100,000
in 2004. Mehta et al. [5] reported a prevalence of 5.2 per 100,000 in 2015 according to
the US National ALS Registry, which was similar to the prevalence of 5.0 per 100,000 as
reported in 2014. As mentioned above, the problem with orphan diseases such as ALS
lies in the lack of knowledge related to its etiopathology. The specific mechanisms and
targets involved in the onset and progression of the disease are undefined; consequently, it
is not easy to develop new treatments. To date, some biological targets and gene mutations
have been identified in ALS. The TAR DNA-binding protein of 43 KD (TDP-43) [6] and
the superoxide dismutase 1 (SOD-1) [7] are two of the most relevant, and many efforts
are being made to identify molecules capable of acting on these targets. TDP-43 was
identified as a key component of the insoluble and ubiquitinated inclusions in the brains
of patients suffering from amyotrophic lateral sclerosis (ALS). The rNLS8 ALS mouse
model that exhibits inducible expression of ∆NLS-TDP43 in motor neurons is of particular
relevance. This transgenic mouse recapitulates many of the pathologic characteristics of
ALS, including cyTDP43 aggregation, motor neuron death, increases in cerebrospinal fluid
(CSF) neurofilament levels, neuromuscular junction loss, muscle atrophy, and abnormal
compound muscle axon potentials measured by electromyogram [8–10]. On the other
hand, mutations in the SOD1 gene are responsible for 15% of familial ALS cases and
several studies have indicated that SOD1 dysfunction may also play a pathogenic role in
sporadic ALS. In terms of treatments available against ALS, over the last decades, more than
40 randomized controlled trials (based in SOD animal models) in patients with ALS failed
to show a beneficial effect on disease progression or on survival, illustrating the complexity
of the disease [11,12]. All the molecules on the market to date and the recent molecules
selected as potential ALS treatments—see, for example, Tofersen [13]—have been tested
against SOD-1, showing controversial results. However, the effects of these treatments, as
well as the new ones on the new target TAR DNA-binding protein of 43 KD (TDP-43) [14]
must be explored. Riluzole and, most recently, Edaravone are the most representative, but
neither of them can be considered a real treatment because they are only capable of slightly
palliating the symptoms of the disease [15].

In this context, QSAR (quantitative structural analysis relationship) and molecular
docking were combined to define new theoretical aspects as the basis of an effective
strategy for the identification of potential ALS treatments. The trump card of the present
computational study was the use of molecular topology, a mathematical paradigm based
on graph theory which translates a given chemical structure into a set of mathematical
parameters, called topological descriptors [16,17]. The topological descriptors, which
are strictly related to the specific molecular connectivity of the molecule under study,
are calculated using matrices, flexible and versatile mathematical objects which allow all
kinds of operations [18]. Three computational models based on discriminant function
analysis (LDA) were developed, along with a molecular docking study performed on
two crystalized proteins of TDP-43, retrieved from Protein data bank (PDB) [19,20], to
simulate the interaction between the potential candidates identified by molecular topology
and the receptor. With the present study, the authors wish to make their contribution to
the field of drug design and development for orphan diseases by sharing a reliable and
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accessible tool to assist during the development of early in silico stages for the identification
and repositioning of potential ALS treatment, knowing that further in vitro and in vivo
validations will be necessary.

2. Results and Discussion
2.1. ALS Models and Internal Validation

In order to identify potential new drugs against ALS, three computational models
based on linear discriminant analysis (LDA) have been developed. The first, named the
“general model (DFGEN)”, focuses on identifying the mathematical pattern to discriminate
those ALS treatments which have shown certain activity to those decoys with a degree
of structural similarity. The second model, called the “clinical trials model (DFCLIN)”,
discriminates between treatments with proven activity and those showing lack of activity
in ALS clinical trials. The third and final model, named the “promising target TDP-43
model (DFTDP43)”, identifies the topological pattern of molecules with activity against the
receptor TDP-43. These models consider molecules able to interact with TDP-43 by different
mechanisms: reducing stress granule formation such as arcyriaflavin A and ryuvidine,
modulation of autophagy such as rapamycin and berberine, targeting the nuclear receptor
exportin-1 (XPO1) as KPT-335, reduction of TDP-43 phosphorylation by inhibiting Casein
kinase (CK1) such as IGS-2,7 and PHA767491, or by inhibiting Bcr-Abl tyrosine-kinase such
as Bosutinib [14].Table 1 shows statistics and descriptors conforming the three developed
models. Wider information regarding descriptors value, DF value for training data, and
probability of being classified as active by the model is reported in Tables S1–S3 in the
Supplementary Material section. Detailed information about internal validation processes
can be found in Tables S3 and S4 in the Supplementary Material section.

Table 1. Equations of the different discriminant models developed, statistical parameters and internal
validation data.

Model Data Internal Validation

DFGEN = (1.916×MeanDD)− (21.611×MATS5m) + (151.793× X3A)
− (695.461×VE2sign__ D)− 39.907
N = 19, λ = 0.321, F = 7.388, p < 0.002

LOOval:
λCV = 0.318
FCV = 7.093
pcv < 0.004

DFCLIN = (−5.443× SM1_DZ(p))− (0.189× ATSC8m)− (0.222× ATSC3m)
− (11.512×MATS5e)− 12.587

N = 33, λ = 0.525, F = 6.339, p < 0.0009

LOO val:
λCV = 0.522
FCV = 6.217
pcv < 0.001

DFTDP43 =
(
−6.67×VE1signDz(p)

)
+ (12.37× DISPe)

− (1.08× J_G) + 3.59
N = 43, λ = 0.530, F = 11.510, p < 0.00001

LSO val:
λCV = 0.509
FCV = 9.217
pcv < 0.0003

N: number of molecules; λ: Wilks’ lambda; F: Fischer–Snedecor parameter; p: p-value or probability value;
LOO: leave one out; LSO: leave some out; val: validation; cv: cross-validation; MeanDD: mean pairwise detour
distance; MATS5m: Moran autocorrelation of lag 5 weighted by mass; X3A: average connectivity index of order 3;
VE2sign_D: average coefficient of the last eigenvector from topological distance matrix; SM1_DZ(p): spectral
moment of order 1 from Barysz matrix weighted by polarizability; ATSC8m: centred Broto–Moreau autocorre-
lation of lag 8 weighted by mass; ATSC3m: centred Broto–Moreau autocorrelation of lag 3 weighted by mass;
MATS5e: Moran autocorrelation of lag 5 weighted by Sanderson electronegativity; VE1signDz(p): sum of the last
eigenvector from Barysz matrix weighted by polarizability; DISPe: displacement value/weighted by Sanderson
electronegativity; J_G: Balaban-like index from geometrical matrix.

The classification matrices for all models are presented in Table 2, showing an average
correct classification rate above 80% for all models. The DFGEN model reported higher
specificity than sensitivity, therefore no false positive was expected. On the contrary,
DFCLIN showed a higher sensitivity than specificity, so in this case no false negative was
expected. Finally, DFTDP43 showed an equal sensitivity and specificity, therefore some false
active and negative compounds could be present when applying this model to a virtual
screening of databases.
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Table 2. Classification matrices for the ALS models and internal validation (LOO and LSO).

Model Internal Validation

% of Correct Classification Active Inactive % of Correct Classification

Active 83.3 5 1
95.9 LOODFGEN Inactive 100.0 0 13

Average 91.7
Active 100.0 6 0

84.3 LOODFCLIN Inactive 88.9 3 24
Average 94.5
Active 84.2 16 3

81.7 LSODFTDP43 Inactive 83.3 4 20
Average 83.8

The DFGEN and DFCLIN functions were internally validated using a “leave one out”
procedure because the number of compounds belonging to the active groups was low
(n = 6). As can be seen in Table 2, the results obtained after the internal validation were
similar to those presented by the selected models, yielding an average percentage of correct
classification for test sets higher than 80% for both models. Therefore, models are robust and
their predictions do not depend on the presence of any single compound in the training set.

DFTDP43 validation was performed using the “leave some out” method. Data sets were
divided into four subgroups: LSO1, LSO2, LSO3, and LSO4, each with approximately 25%
of the compounds from both active and inactive/decoys groups. Next, three subgroups
were used to build the LDA model, and one of the four subgroups was used as a test set.
The process was repeated four times, interchanging the training and prediction subgroups
(see Table S4). As can be seen in Table 2, the rate of success in classifying the test set groups
was higher than 80%. Therefore, we can again affirm that the model is robust and its
predictions do not depend on the presence of a group of compounds that make up the
training set data.

In Table 3, all the descriptors used in the construction of the models are listed. As can
be seen, there are different types of indices involved, such as 2D autocorrelation, 2D and
3D matrix-based descriptors, connectivity, and geometrical and topological indices.

Next, we will analyze some of the most relevant descriptors when determining the
chemical–mathematical pattern related to anti-ALS and anti-TDP-43 activity.

In the DFgen, the X3A and MeanDD indices were those that contribute with a positive
sign in the equation, so they were directly related to anti-ALS activity. The higher the value
of these descriptors, the greater the probability of presenting anti-ALS activity. The average
value of the descriptor X3A in the group of active compounds was 0.181, while for decoys
it was 0.189. Although it is not a great difference, we could glimpse how in the group
of decoys, in general lines, compounds with an average number of atoms at a distance
3/number of paths at a distance 3 are greater. This translates into a greater presence of less
condensed molecules from the topological point of view or, interchangably, more elongated
molecules (that is, with a greater presence of linear chains). This can be seen in Figure 1,
although it is true that in both groups we found the presence of more condensed and/or
elongated molecules.
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Table 3. Topochemical descriptors used in the construction of ALS models are presented below.

Descriptor Type Descriptor Name Descriptor Definition

2D autocorrelations index MATS5m Moran autocorrelation of lag 5 weighted by mass
2D autocorrelations index MATS5e Moran autocorrelation of lag 5 weighted by Sanderson electronegativity
2D autocorrelations index ATSC3m Centered Broto–Moreau autocorrelation of lag 3 weighted by mass
2D autocorrelations index ATSC8m Centered Broto–Moreau autocorrelation of lag 8 weighted by mass

2D matrix-based descriptors VE1sign_Dz(p) Sum of the last eigenvector from Barysz matrix weighted by polarizability
2D matrix-based descriptors VE2sign_D Average coefficient of the last eigenvector from topological distance matrix
2D matrix-based descriptors SM1_DZ(p) Spectral moment of order 1 from Barysz matrix weighted by polarizability
3D matrix-based descriptors J_G Balaban-like index from geometrical matrix

Connectivity index X3A Average connectivity index of order 3
Geometrical descriptors DISPe Displacement value/weighted by Sanderson electronegativity

Topological index MeanDD Mean pairwise detour distance

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 5 of 18 
 

 

2D matrix-based de-
scriptors 

VE1sign_Dz(p) Sum of the last eigenvector from Barysz matrix 
weighted by polarizability 

2D matrix-based de-
scriptors 

VE2sign_D Average coefficient of the last eigenvector from 
topological distance matrix 

2D matrix-based de-
scriptors SM1_DZ(p) 

Spectral moment of order 1 from Barysz matrix 
weighted by polarizability 

3D matrix-based de-
scriptors J_G Balaban-like index from geometrical matrix 

Connectivity index X3A Average connectivity index of order 3 
Geometrical de-

scriptors 
DISPe Displacement value/weighted by Sanderson 

electronegativity 
Topological index MeanDD Mean pairwise detour distance 

Next, we will analyze some of the most relevant descriptors when determining the 
chemical–mathematical pattern related to anti-ALS and anti-TDP-43 activity. 

In the DFgen, the X3A and MeanDD indices were those that contribute with a positive 
sign in the equation, so they were directly related to anti-ALS activity. The higher the 
value of these descriptors, the greater the probability of presenting anti-ALS activity. The 
average value of the descriptor X3A in the group of active compounds was 0.181, while 
for decoys it was 0.189. Although it is not a great difference, we could glimpse how in the 
group of decoys, in general lines, compounds with an average number of atoms at a dis-
tance 3/number of paths at a distance 3 are greater. This translates into a greater presence 
of less condensed molecules from the topological point of view or, interchangably, more 
elongated molecules (that is, with a greater presence of linear chains). This can be seen in 
Figure 1, although it is true that in both groups we found the presence of more condensed 
and/or elongated molecules. 

 
Figure 1. The most relevant descriptors in determining the chemical–mathematical pattern related 
to anti-ALS activity for DFgen. 

The other descriptor that contributed positively to the anti-ALS activity of molecules 
is MeanDD, which considers the length between two atoms of the molecule through the 
longest path. In this case, the mean value of this descriptor was significantly different be-
tween the group of active MeanDD = 8.128 and that of inactive MeanDD = 6.142. This 

Figure 1. The most relevant descriptors in determining the chemical–mathematical pattern related to
anti-ALS activity for DFgen.

The other descriptor that contributed positively to the anti-ALS activity of molecules
is MeanDD, which considers the length between two atoms of the molecule through the
longest path. In this case, the mean value of this descriptor was significantly different
between the group of active MeanDD = 8.128 and that of inactive MeanDD = 6.142. This
index was generally related to the size of the molecule and its shape (Figure 1). In general,
more elongated molecules with a greater presence of cycles adopted a higher value in this
descriptor than molecules that are less elongated and formed mainly with aliphatic chains.

In the DFclin model, none of the descriptors contributed positively to the equation, so
in this case, we analyzed the descriptor that exhibited the highest coefficient (that is, the one
that favored non-activity against ALS to a greater degree). MATS5e is a descriptor which
considers compounds with electronegative elements at distance 5. Therefore, presence of
structural fragments of lag 5, in which the terminal atoms that have high electronegativity
would be linked to ALS inactivity. An example is shown in Figure 2, as the inactive creatine
label has the highest value for MATS5e index (0.257). This descriptor presented an average
value of−0.041 for the inactive group, while the average is−0.264 for the active group, that
is to say, clearly lower (Figure 2). Therefore, we can conclude that the group of compounds
with demonstrated activity against ALS in clinical trials was made up of molecules with
low or no presence of highly electronegative atoms at a distance 5.
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Finally, in the third model, which was focused on the identification of compounds
that modulate TDP-43 (DFTDP43), we found the DISPe descriptor, which was the one
that contributed the most to the activity against TDP-43. This descriptor considers the
three-dimensional structure of the molecule, i.e., the position of the atoms in the three-
dimensional space. DISPe is defined as the Comparative Molecular Moment Analysis
(CoMMA2) value/weighted by atomic Sanderson electronegativities, which represents
the displacement between the geometric and the electronegativity centers of the molecule.
The positive coefficient of DISPe indicated that molecules with increased displacement
between the geometric and the electronegativity centers will show activity against TDP-43.
Therefore, as shown in Figure 3, symmetric compounds adopted a zero value for this de-
scriptor while asymmetric compounds with the presence of more electronegative elements
(F, Cl, . . . ) adopt higher values of this descriptor, which is why they were associated with
active compounds against TDP-43 (Figure 3, compounds Bosutinib and KPT 335). In this
descriptor we found a difference between the average value of active drugs compared to
TDP-43 DISPe = 0.191 and the inactive ones’ DISPe average = 0.102.
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2.2. Receiver Operating Characteristic or ROC Curve

In order to assess the reliability of the developed models, the receiver operating
characteristic or ROC curve was depicted for each model. The ROC curve provided a
graphical plot that illustrates the diagnostic ability of a binary classifier system, as its
discrimination threshold is varied. In Figure 4, the ROC curve for all three models is
reported. For this discriminant equation, the area under the curve (AUC) value was greater
than 0.94 for all models, suggesting a 94% chance that the models correctly distinguished
an active and inactive/decoy compound.
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2.3. Pharmacological Distribution Diagram

A pharmacological distribution diagram (PDD) provides information about the range
of applicability of models. Figure 5 shows the PDD for all models developed, and the
distribution of the classification made for training set data (actives and decoys/inactive).
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As can be seen in Figure 5, molecules with reported activity against ALS adopt a
DFGEN value above zero, with only one compound below this threshold. Therefore, when
this model was applied to the identification of potential ALS drugs, compounds with
DF > 0 were selected. Compounds with a DFGEN greater than 10 and lower than −7
were labeled as non-classifiable as they escaped the range of applicability of the model.
Additionally, molecules with reported activity in clinical trials showed a DFCLIN value
greater than 0.5, even if some inactive compounds exhibited DF values between 0.5 and 1
and 3 and 4. Compounds with a DFCLIN greater than 7 and lower than −10 were labeled as
non-classifiable as they escaped the range of applicability of the model. Finally, molecules
with activity against the TDP-43 were mainly adopting a DFTDP43 value greater than 0;
nevertheless, there was an overlapping zone between active and inactive compounds from
DFTDP43 0 and 1; therefore, to avoid false active compounds, only compounds with a
DFTDP43 value greater than 1 were selected as potential TDP-43 compounds. Compounds
with a DFTDP43 greater than 6 and lower than −8 were labeled as non-classifiable.

2.4. Virtual Screening

Once the chemo–mathematical pattern of drugs with reported activity against ALS
was determined, it was possible to carry out a virtual screening, searching for novel
molecules which might be active against the disease. The molecules needed to fulfill three
different requirements (chemo–mathematical pattern): (1) be active against ALS (different
mechanisms of action are considered); (2) be potentially active in a clinical trial against ALS,
and (3) be capable of interacting with TDP-43 by different mechanisms to reduce TDP-43
activity. In Table S5 of the Supplementary Material, a list of preselected compounds as
potential agents against ALS is reported. The Drugbank [21] database was screened and
finally, 50 molecules fulfilling at least one chemo–mathematical pattern were selected as
potential anti-ALS. From these molecules, a final selection of 10 compounds sharing the
same chemo–mathematical pattern as already known ALS active compounds, molecules
showing activity in clinical trials for ALS treatment, and molecules interacting with TDP-43
(a promising target on ALS treatment) can be seen further below, in Table 4. From potential
anti-ALS compounds selected following the molecular topology strategy, we performed a
molecular docking studio to determine its feasibility to link TDP-43 protein and exert the
predicted activity as anti-TDP-43 compounds.

2.5. Molecular Docking

In order to study how active and decoys/inactive compounds interact with TDP-43
protein, a docking simulation study on already known training set compounds (DFTDP43
model) was performed (see Table S6). Only molecules outside overlapping areas of the
PDD (Figure 5) were considered; that is, inactive/decoys molecules with DFTDP43 between
−1.5 and −7 and molecules with reported inhibitory activity against TDP-43 with DFTDP43
value between 1 and 5.

The binding capacity of these molecules was assessed using two different catalytic
sites of TDP-43 crystalized protein (PDB: 4IUF [19] and 4BS2 [20]):

• Leu109, Gly110, Pro112, Trp113, and Arg171 (PDB: 4IUF).
• Cys173 and Cys175 (PDB: 4BS2).

As mentioned previously, the altered subcellular localization of trans-active response
(TAR) DNA binding protein (TDP-43) and subsequent formation of prion-like TDP-43
aggregated in motor neurons is present in ~95% of patients [22]. TDP-43 mutations have
also been identified in patients with familial and sporadic ALS, underscoring the impor-
tance of TDP-43 in the pathophysiology of the neurodegeneration seen in this disease [23].
According to literature, 4IUF TDP-43 RNA−Protein Interface has a druggable site in the
RRM1 portion [24]. The active site pocket includes residues Leu109, Gly110, Pro112, Trp113,
and Arg171 in the RRM1 domain. Among several mutations in the RRM1, mutations
Trp113Ala and Arg171Ala seem to be the most deleterious as they increased the estimated
dissociation constant of TDP-43. On the other hand, for 4BS2, the oxidative stress related to
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the cysteninopathia or aberration of cysteine residues modifications seems to be strictly
related to the development of ALS. All TDP-43 cysteine residues were suggested as tar-
gets: Cys173, Cys175, Cys198, and Cys244 as the major redox-regulated cysteine residues
and Cys39 and Cys50 to a much lesser extent. An independent study demonstrated the
sequential oxidation of RRM1, with Cys173 being preferentially oxidized and leading to
a conformational change allowing Cys175 to be modified and subsequent formation of
crosslinked dimers. Analysis of the tandem RRM1-RRM2 structure shows that Cys173 and
Cys175 make contacts with residues in the RRM1. Loss of those contacts by oxidation could
explain the exposure of amyloidogenic residues 166–173, since Cys173 and 175 were shown
to control both correct and aberrant folding of TDP-43 in ALS depending on the freedom of
their thiol group [25]. In Figure 6, the 3D surface of the crystalized protein TDP-43 (4IUF
and 4BS2) retrieved from PDB is reported. The key catalytic residues of 4IUF and 4BS2 are
labeled in yellow.
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The results of the docking studio for training set molecules (actives and decoys) are
reported in Table S6. When comparing the results for the active compounds during the
docking analysis simulation with the results for the decoys (used in the group of inactive),
which should be theoretically inactive against TDP-43, only two compounds belonging to
the active group did not show interaction with any of the two catalytic sites understudied
for crystallographic TDP-43 structure: arcyriaflavin A and panipenam (Table S6). Instead,
eight molecules belonging to the decoys did not establish bonds with the reference AA
of the two catalytic sites. Therefore, forming interactions with some of the AA of the any
catalytic site understudy on 4IUF and 4BS2 will be considered a cut-off point between
active and inactive molecules.

According to the presented chemo–mathematical models, a selection of the most
promising potential anti-ALS molecules is reported in Table 4. These molecules satisfied all
the three chemical–mathematical functions requirements under study: GEN, CLIN, and
TDP43. For the docking simulation, only those molecules classified as active against ALS
(DFGEN and DFCLIN) and potential inhibitors of TDP-43 are employed.

Potential compounds selected by molecular topology and molecular docking sim-
ulation on TDP-43 protein are listed in Table 4, as experimental compounds (i.e., drugs
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that are at the preclinical or animal testing stage), “investigational” (i.e., drugs that are in
human clinical trials), and drugs with different mechanisms of action such as anticancer or
antipsychotic agent are selected as promising to treat ALS [26–28].

Table 4. Potential anti-ALS compounds selected by Molecular Topology and docking score (PDB:4IUF
and 4BS2) for TDP-43.

Compounds DFGEN DFCLIN DFTDP43

PDB:4IUF PDB:4BS2

Binding Pocket 1 Binding Pocket 2

Docking
Score

Amino
Acids

Interacted

Docking
Score

Amino
Acids

Interacted

9-Methylguanine
(DB02489) 11.369 2.217 1.05 −5.076

Arg171
(pi-C+ x2)

Trp113
(pi-pi)
Leu111

(H)
Gly146

(H)

−5.39

Cys175
(H x2)
Gln164

(H)

Arimoclomol
(DB05025) 3.453 0.364 1.904 −4.761

Lys176
(H, salt)
Lys145

(H)

−4.692

Asp174
(2H, salt)
Lys176

(H, salt)

Belaperidone 6.004 0.58 0.671 −3.691

Gly110
(H)

Asn179
(aroH)
Gly146

(H)

−4.014

Asp119
(aroH, H)
Asp169

(H)
Glu122
(aroH)

Dutasteride 13.278 3.412 0.998 −2.675 Lys145
(H) −2.843 Asp174

(H)

EGCG
(DB12116) 6.849 1.088 4.051 −1.853

Asp174
(H x2)

Arg171
(pi-C+)
Gly110

(H)
Leu111

(H, aroH)

−3.569

Cys175
(H)

Asp174
(H, aroH)
Arg165

(H)

Levoleucovorin 7.082 3.271 2.234 −3.739

Trp113
(aroH)
Gly146
(aroH)
Arg165

(halo, H x2)
Trp172

(aroH, H)
Asp174
(aroH)
Leu111
(aro H)

−2.902

Arg165
(H x2)

Asp174
(aroH)
Lys176

(H, salt)
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Table 4. Cont.

Compounds DFGEN DFCLIN DFTDP43

PDB:4IUF PDB:4BS2

Binding Pocket 1 Binding Pocket 2

Docking
Score

Amino
Acids

Interacted

Docking
Score

Amino
Acids

Interacted

Neflumozide 8.695 1.587 1.954 −3.598

Ser144
(aroH)
Trp113
(pi-pi)
Lys145

(H)
Gly146
(aroH)
Arg171
(pi-C+)

−4.194

Arg165
(H)

Asp174
(salt, H)

Olinciguat
(DB15238) 6.699 5.706 1.141 −5.03

Trp113
(pi-pi)
Lys145
(aroH)
Leu111

(aroH x2)
Gly146
(aroH)
Arg171

(H)
Trp172

(H)
Asp174

(H)
Arg165
(H x2)

−2.896

Cys175
(aroH x2)
Asp174
(aroH)
Ser163
(aroH)
Arg165
(H x2)

Met162
(aroH)

Oxidized
coenzyme A
(DB01846)

8.410 3.127 1.455 −5.967

Arg165 (H,
halo)

Trp172
(H)

Arg171
(H x2, halo,

pi-pi)
Lys176

(H,halo x2)
Gly146

(H)
Asp169

(H)

−5.548

Asp174
(2H)

Arg165
(4H,3x salt)

Trp172
(H, pi-pi)

EGCG: Epigallocatechin gallate; H: H bond interaction; aroH: aromatic H bond; pi–pi interaction; pi-C+: pi–cation
interaction; salt: salt bridge interaction; halo: halogen bond.

The reported compounds have shown favorable docking scores and stable interactions
with relevant amino acids of the TDP-43 crystalized structures (PDB: 4IUF and 4BS2). One
of these molecules, arimoclomol, has already been described as a potential ALS treatment
in experimental Phase 3 [29] and dutasteride is currently part of an ongoing recent clinical
trial, therefore its potential as a treatment for ALS will soon be known [30,31]. Authors
cannot exclude other possible activity through the interaction of these molecules with
other amino acids of a different active pocket of TDP-43 or dutasteride developing its
activity against a completely different target. In Figure 7, the docking pose and amino acid
interaction of one of the most promising compounds interacting with the crystallographic
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structure of TDP-43 is reported (both 4IUF and 4BS2). To date, this xanthine derivative,
named 9-methylguanine, is described as an experimental small molecule whose target is
dihydroneopterin aldolase, as reported in Drugbank [32] for November 2021.
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According to the present results, 9-methylguanine establishes three hydrogen bonds
with key amino acids of the catalytic pocket of TDP-43 crystalized protein (4IUF) and
two hydrogen bonds with the Cys175 amino acid residue of the catalytic site of TDP-43
(4BS2), giving insights on its viable profile in targeting a key protein involved in ALS
development. Considering all the present computational results, a promising in silico
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strategy for the identification of potential hits against ALS is established; however, in vitro
and in vivo experiments will be crucial to corroborate the current results and the reliability of
the model.

3. Materials and Methods
3.1. Analysis of Dataset Compounds and Search Algorithm

The dataset used in the construction of the three discriminant models was collected
from literature [14,33–35]. Molecules were retrieved from online chemical databases, such
as Chemspider [36] or designed ad hoc, using ChemDraw software from PerkinElmer [37]. A
total of 93 active, inactive or decoy molecules were collected. Structural similarity between
active and inactive/decoys sets was determined by the Tanimoto coefficient and visual
inspection in order to assess a reliable discrimination model (DFGEN and DFTDP43). The set
of inactive/decoys compounds were selected from CMC databases [38]. All the data are
reported in the Supplementary Material section.

In Figure 8, the search algorithm strategy developed in the present study for the
identification of potential ALS treatments is reported.
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ALS drugs.

The topological and topochemical indices were calculated using alvaDesc software [39]
(version 2) and all their values for the selected equations for each compound included in
the study (training set) are shown in the Supplementary Material section.

3.2. Statistical Modeling Methods

Statistical methods are essential when searching for strong and reliable predictive
models. The linear algorithms used in predictive equations, such as Linear Discriminant
Analysis (LDA), allow a linear combination of features to separate two or more classes
of objects in specific classification categories. In the present study, the LDA is employed
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to generate three different reliable discriminant models, which, when combined, should
provide enough information to repurpose drugs with potential anti-ALS activity: (1) general
model (DFGEN); (2) clinical trials model (DFCLIN) and (3) TDP43 model (DFTDP43). The
most important aspect of a robust LDA model is the selection of the most significant
variables or descriptors which will characterize the compounds and their ALS activity or
inactivity. Selection of the best descriptors is made here by following the forward stepwise
algorithm based on p-value, therefore in each step the variable with a more favorable
p-value < 0.05 is selected and so on. The process finishes when the algorithm cannot
introduce anymore descriptors with a p-value less than 0.05. Therefore, at each step, the
variable that adds the most to the separation of the groups is entered into the discriminant
function. The significance of the selected descriptor could be addressed by the Fisher–
Snedecor parameter [40], the more significance, the higher value adopts. The quality of the
discriminant function is assessed by the Wilks’ lambda parameter [40]. Generally speaking,
the Wilks’ lambda can take values between 0 and 1, and the smaller the value, the better the
prediction. Statistica was the software used for developing linear discriminant models [41].

3.3. ALS Models and Validation
3.3.1. Classification Matrix, LOO and LSO Validation

The discriminant reliability of the LDA models was evaluated following two methods.
The first was the classification matrix, which sorts all cases from the model into categories
by determining whether the predicted value matches the actual value. The number of
cases classified into each group and the percentage of correct classifications are reported in
the Supplementary Material. The predictive power of the model was checked using the
“leave one out” (LOO) jackknife cross-validation strategy [42,43]. In the LOO algorithm,
one compound is eliminated from the dataset and the discriminant analysis, with the
N-1 remaining compounds and the original descriptors, is performed again. Over the
calculation of the remaining compounds, the previously removed case is then classified.
“Leave some out” (LSO) cross-validation follows the same procedure as LOO, but instead
of just leaving one compound out, it involves leaving a percentage of the training set out.

3.3.2. ROC Curve

To assess the predictive capability of the LDA models and determine their sensitivity
and specificity, the relative operating characteristic curve or ROC curve was calculated [44].
The sensitivity is intended as the true positive rate and is defined as the percentage of
active molecules correctly classified by the model, while specificity, or true negative rate,
is the percentage of no-active molecules correctly classified by the model. In the ROC
curve the y-axis represents the sensitivity of the model as the discrimination threshold is
varied, which simultaneously affects the specificity of the model. For convenience, the
x-axis represents 1-specificity, so that both magnitudes change in the same direction as the
discrimination threshold is varied. In this context, the area under the ROC curve (AUC)
is often regarded as an indicator of the performance of the classifier. A value of AUC = 1
would be obtained for a perfect classifier, whereas the diagonal line would represent a
model with no classification power in predicting binary outcomes. The best possible
prediction method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space, representing 100% sensitivity (no false negatives) and 100% specificity (no false
positives). The (0,1) point is also called a perfect classification. A random guess would give
a point along a diagonal line (the so-called line of no discrimination) from the left bottom
to the top right corner (regardless of the positive and negative base rates).

3.4. Pharmacological Distribution Diagram

Linear discriminant analysis in topological QSAR enables the plotting of frequency
distribution diagrams, called pharmaceutical distribution diagrams [45]. The diagrams
represent a frequency of the number of molecules within an interval of values of the dis-
criminant function vs. these values. The plot provides a straightforward way of visualizing
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the regions of minimum overlap between active and inactive compounds, DF regions, with
the highest expectancy of finding active molecules and range of applicability domain for a
DF. For an arbitrary range of values of a given function, an “expectancy of activity” can be
defined as Ea = a/(i + 1), where “a” is the number of active compounds in the range divided
by the total number of active compounds and “i” is the number of inactive compounds
in the interval divided by the total number of inactive compounds. The expectancy of
inactivity is defined in a symmetrical way, as Ei = i/(a + 1).

3.5. Virtual Screening

Virtual screening of the Drugbank database [21] was used to identify potential repur-
posed drugs against ALS. A stepwise strategy was adopted, performing a virtual screening
using each one of the models described (DFGEN, DFCLIN and DFTDP43). Finally, a docking
studio was performed on potential anti-ALS repurposed drugs in order to address its
mechanism of action.

3.6. Molecular Docking

The crystal structure of TDP-43 RRM1-DNA complex, also called 4IUF [19], was
retrieved from the Protein Data Bank (PDB) along with the 4BS2 UG-rich RNA TDP-43 [20].
To perform the molecular docking simulations, Maestro software from Schrödinger Suite
was employed [46]. The key residues of the catalytic site were identified and the protein
was prepared. Although water can play a crucial role in docking simulations, especially
water next to the interaction pocket, in the present study, the protein was prepared by
removing water in order to avoid unwanted interactions. Of course, this aspect must be
considered when evaluating the simulation results. Docking was performed on the active
region by assigning specific grid-box coordinates. For each molecule, the “five best subset
binding scores” were calculated, reporting the free Gibbs energy value and the number of
HBs (hydrogen bonds) between the molecule and the residues of the catalytic site along
with the bond length.

4. Conclusions

In the present study, pattern recognition analysis was developed to identify a specific
chemo–mathematical pattern for ALS treatments, using the few drugs that have thus far
shown activity against different therapeutic targets. The most promising target seems to be
TDP-43, whose modulation seems to alleviate ALS symptoms and progression. After the
construction of three predictive QSAR models based on linear discriminant analysis for the
identification of molecules with potential activity in ALS and targeting TDP-43, the models
were validated and applied to the virtual screening of the Drugbank database with the aim
of redirecting known drugs to ALS. Ten compounds were finally identified, of which one
was already known and the other is currently part of an ongoing clinical trial for ALS. As
for the other eight compounds, in vitro and in vivo tests will be crucial to determine their
activity as anti-ALS and to corroborate the reliability of the in silico strategy. As far as the
authors are aware, this is the first work in which molecular topology is used to identify a
common chemo–mathematical pattern for ALS treatments and to redirect known drugs for
the treatment of symptoms linked to ALS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15010094/s1. For the three discriminant models, descriptors
and DF value, probability of being classified as active by the model before and after LOO internal
validation procedure for all the training set molecules are reported in Tables S1–S3. LSO internal
validation procedure for DFTDP43 is reported in Table S4. Results of the Drugbank database virtual
screening are reported in Table S5. In Table S6, TDP43 inhibitors and decoys from DFTDP43 training
set employed as references for molecular docking analysis are detailed.
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