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Abstract: Metformin is a widely-used anti-diabetic drug in patients with type 2 diabetic mellitus
(T2DM) due to its safety and efficacy in clinical. The classic effect of metformin on lowering blood
glucose levels is to inhibit liver gluconeogenesis that reduces glucose production as well as increases
peripheral glucose utilization. However, the factors such as hyperglycemia, insulin deficiency, re-
duced serum levels of insulin-like growth factor-1 (IGF-1) and osteocalcin, accumulation of advanced
glycation end products (AGEs), especially in collagen, microangiopathy, and inflammation reduced
bone quality in diabetic patients. However, hyperglycemia, insulin deficiency, reduced levels of
insulin-like growth factor-1 (IGF-1) and osteocalcin in serum, accumulation of advanced glycation
end products (AGEs) in collagen, microangiopathy, and inflammation, reduce bone quality in diabetic
patients. Furthermore, the imbalance of AGE/RAGE results in bone fragility via attenuating osteoge-
nesis. Thus, adequate glycemic control by medical intervention is necessary to prevent bone tissue
alterations in diabetic patients. Metformin mainly activates adenosine 5′ -monophosphate-activated
protein kinase (AMPK), and inhibits mitochondrial respiratory chain complex I in bone metabolism.
In addition, metformin increases the expression of transcription factor runt-related transcription
factor2 (RUNX2) and Sirtuin protein to regulate related gene expression in bone formation. Until
now, there are a lot of preclinical or clinical findings on the application of metformin to promote bone
repair. Taken together, metformin is considered as a potential medication for adjuvant therapy in bone
metabolic disorders further to its antidiabetic effect. Taken together, as a conventional hypoglycemia
drug with multifaceted effects, metformin has been considered a potential adjuvant drug for the
treatment of bone metabolic disorders.

Keywords: metformin; AMPK; RUNX2; AGEs; osteogenesis

1. Introduction

Metformin is a widely prescribed oral antidiabetic drug for the treatment of type 2 di-
abetic mellitus (T2DM). Metformin is a member of the class of biguanide with the property
of carrying two methyl substituents. The French scientist Tanret first extracted and isolated
goat bean alkaloids (galegine) from G. officinalis, and conducted preliminary studies on
this alkaloid in 1914. However, the hypoglycemic effect of guanidine was not discovered
until 1918. Irish chemists Werner and Bell first prepared and obtained metformin in 1922.
Unfortunately, metformin was first to be tried on humans for the treatment of diabetes
by French diabetologist Jean Sterne until 1957. The advantage of low cost, safe profile
and potent efficacy made metformin friendly and affordable for diabetic patients around
the world for over 60 years. Metformin has become the first-line anti-diabetic medication
without risk of hypoglycemia, comparing other anti-diabetic agents [1]. Previous studies
show that the metformin stimulated adenosine 5′-monophosphate-activated protein kinase
(AMPK) complex to regulate nutrition metabolism and inhibited mitochondrial respiratory

Pharmaceuticals 2022, 15, 1274. https://doi.org/10.3390/ph15101274 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15101274
https://doi.org/10.3390/ph15101274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-1894-9172
https://doi.org/10.3390/ph15101274
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15101274?type=check_update&version=3


Pharmaceuticals 2022, 15, 1274 2 of 16

chain I to sense intracellular energy state [2]. AMPK activation increases insulin sensitivity
through sensitizing insulin receptor (IR) or insulin receptor substrate-1 (IRS1) allosterically,
leading to more glucose transporter (GLUTs) transferring into the cell membrane that pro-
motes extracellular glucose uptake [3,4]. Furthermore, metformin did not affect hormone
secretion such as cortisol, glucagon, somatostatin, or growth hormone except glucagon-like
peptide-1 (GLP-1) which is a potent stimulator of glucose-dependent insulin release from
pancreatic b cells [5].

Currently, there is no available therapy for either type 1 or type 2 diabetes that
completely restores normal function, so even in the best-responding patients, there is
still a risk of many complications. New approaches to meet this high unmet medical
need remain a top priority in metabolic disease research. Iminosugars, also known as
an iminosaccharide, are any analog of sugar where a nitrogen atom has replaced the oxygen
atom in the ring of the structure, have been evaluated for the potential treatment of diabetes
as a consequence of their inherent glycosidase inhibition profiles [6]. Its proposed mode of
action is through inhibition of intestinal a-1,4-glucosidases leading to a reduction in glucose
absorption from the gut similar to the effect of acarbose [7–10]. Historically the attention
paid to iminosugars lay in their powerful inhibition and modulation of carbohydrate
processing enzymes, alterations which are implicated in a variety of diseases as the effects
of metformin. As a result, the combined use of iminosugars and metformin might enhance
the hypoglycemia effect without the side effects of hypoglycemia.

High risk of fractures usually occurred in type 1 diabetic mellitus (T1DM) patients with
the property of low bone mineral density (BMD); however, it happened in T2DM patients
with property of high body mass index (BMI) [11,12]. T2DM patients with a high risk of frac-
ture and falling ascribed to a diabetic complication induced by polyol bypass, protein kinase
C (PKC), hexosamine activation, increased advanced glycation end products (AGEs), and
reactive oxygen species (ROS) production in mitochondria under hyperglycemia [13,14].
Another factor that neuropathy and chronic kidney disease caused by long-term hyper-
glycemia may be the reason for local bone mass loss increasing the risk of fracture. It is
worth noting that some of the anti-diabetic medication taken by T2DM patients promoted
skeletal fragility. Taking thiazolidinedione (TZD) for example, as an insulin sensitizer, it
increased the risk of fracture in T2DM patients, particularly in women due to its mediation
on precursor mesenchymal stem cells (MSCs) differentiation into the adipocyte lineage
instead of osteoblast formation through activation of peroxisome proliferator-activated
receptor gamma (PPARγ) [15,16]. Therefore, not all medications for glycemic control have
underlying benefits for bone tissue improvement.

Metformin, a widely known antidiabetic medication, has an off-label effect on protect-
ing damaged bone tissue in patients with T2DM [16]. Independent of metformin’s primary
effect on hyperglycemia correction, it can directly promote progenitor cells differentiation
into osteoblasts by activating the AMPK complex and increasing the levels of runt-related
transcription factor2 (RUNX2) in related osteogenic gene expression [16]. In this review,
the authors discuss the bone metabolic disorder under hyperglycemia and the mechanism
of metformin in bone tissue improvement in the diabetic state.

2. The Relationship between Hyperglycemia and Bone Impairment
2.1. Diabetic Induced the High Risk of Bone Fragility

Long-term hyperglycemia will result in glucose metabolism disorder, leading to ad-
verse effects on microvascular function, glucose oxidative derivatives accumulation, and
endocrine function impairment [17]. Both the bone formation from the differentiation
of osteoblast and the bone resorption from the clearance of osteoclast heavily depend
on energy sources from glucose metabolism [18]. The clinical evidence showed that DM
patients had a high risk of osteoporosis fractures [19]. DM has been identified as one of
the underlying high-risk factors in osteopenia and osteoporosis, both of which present
an accumulation of AGEs in collagen. The abnormal accumulation of AGEs resulted in the
reduction of normal collagen, which damaged osteoblastic differentiation and delayed frac-
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ture healing in DM patients [20]. Studies in vitro indicated that the increase of AGEs under
hyperglycemia resulted in suppressing osteoblastic proliferation and promoting osteoclas-
tic resorption [21,22]. Moreover, osteocalcin (OCN), only secreted by insulin-activated
osteoblasts and a marker of bone mineralization, is regulated negatively under hyper-
glycemia [23]. Thus, hyperglycemia or insulin deficiency led to the accumulation of AGEs
on the bone matrix and the reduction of OCN secretion, affecting the bone formation and
mineralization on damaged bone tissue. Bone marrow progenitor cells (BMPCs), a common
ancestor pluripotent cells of adipocytes and osteoblasts, were induced by RUNX2-mediated
osteoblastic differentiation and PPARγ dominated adipocytic formation respectively [24].
Besides, the increase of ROS levels under hyperglycemia significantly accelerated the
apoptosis of osteoblasts [25]. T1DM patients exhibited not only lower BMD but also the re-
duction of insulin-dependent osteo-anabolic because of damaged pancreatic β-cells, while,
high bone resorption occurred in T2DM patients displayed higher bone resorption without
BMD changes significantly [26,27]. Therefore, long-term hyperglycemia caused high risk
of fracture or bone fragility, although the underlying mechanisms are also different in
different types of diabetes models.

2.2. Key Role of AMPK Complex in Bone Metabolism

AMPK complex, a key energy sensor, played an important role in osteogenesis by reg-
ulating intracellular energy homeostasis and osteogenic-related hormone secretions [28,29].
Previous studies showed that the AMPK complex had three subunits (α, β, γ) encoded
by seven genes forming AMPK heterotrimers [30]. In the complex, catalytic subunit α
and regulatory β and γ subunits cooperate together to turn on catabolic pathways by
sensing the ratio of AMP/ATP within cells [31]. AMPK complex not only regulated energy
production to keep normal cell function, but is also involved in the upregulation of GLUT4
expression [32]. The activation of the AMPK complex inhibited the downstream mechanis-
tic target of rapamycin complex (mTOR) to regulate cell cycle and growth [33]. Additionally,
the AMPK activation stimulated MC3T3-E1 cells to differentiate into osteoblasts and 3T3-L1
cells into adipocytes through the regulation of the AMPK-Gfi1-OPN axis [34]. Likewise,
the activation of AMPK stimulated the MSCs to differentiate into osteoblasts via the upreg-
ulation of RUNX2 and to differentiate into adipocytes by the mediation of PPARγ [35,36].
More interest, PPARγ increased the expression of receptor activator for nuclear factor-kB
(RANKL) to stimulate osteoclastogenesis to promote bone resorption [30]. Furthermore,
the phosphorylation of AMPKα can reduce the levels of intracellular PPARγ directly [37].

2.3. Insulin and Insulin-like Growth Factor-1 in Bone Formation

Previous studies showed that insulin or insulin-like growth factor-1 (IGF-1) had an
important role in osteogenesis [38]. And the receptors of insulin and IGF-1 are widely dis-
tributed on the surface of osteogenic cells and displayed high activity in the differentiation
of osteoblast [39,40]. In osteoblast, insulin or IGF-1 regulated the activity of RUNX2 by
the classic Wnt/β-catenin pathway and the induction of bone morphogenetic protein-2
(BMP-2) [39]. Furthermore, that insulin binding the receptors of osteoblast promoted the
uptake of glucose for bone formation and binding the receptors of osteoclast increased
the secretion of OCN regulating bone resorption and mineralization [26]. In a nutshell,
the synthesis of extracellular collagen, the differentiation of osteoblast, and the induction
of osteoclast depended on the regulation of insulin in vivo. Insulin deficiency in T1DM
patients resulted in a low BMD due to osteoblast impairment, while T2DM patients without
significant changes in BMD because of the damaged function of the osteoclast. IGF-1,
a liver-specific protein factor, mainly acted on osteogenesis in a manner of the endocrine
hormone. Hyperglycemia and AGEs accumulation in bone tissue matrix reduced the
expression of IGF-1 receptors in osteoblast, thereby attenuating the response of osteoblast
to IGF-1 even if the serum IGF-1 levels are normal [41] (Figure 1). More interest, there is
a positive correlation between the levels of IGF-1 and OCN in serum [41]. Therefore, the
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reduction of serum IGF-1 or the deficiency of IGF-1 receptors on the surface of osteoblast
led to bone fragility under hyperglycemia.

Figure 1. Bone fragility induced by hyperglycemia. High levels of AGEs induced by hyperglycemia
resulted in the increase of NADPH and ATP, which lead to high levels of ROS in osteoblastic cells.
Insulin deficiency and desensitization of insulin receptors reduced phosphorylation of PI3K through
the action of insulin binding its receptor the same as the IGF-1 pathway. Extracellular AGEs binding
RAGEs or PI3K stimulate the activation of AKT that thereafter inhibited the phosphorylation of
GSK3b that suppresses b-catenin accumulation in the downstream of Wnt signal pathway and
dephosphorylates NF-kB that promotes the expression of the RANKL in osteoblast. Furthermore,
the downregulation of BMP2 induced by hyperglycemia induces dampened the binding between
Smad1/5/8 and Samd4 in the cytoplasm, which blocked that process of osteogenesis. In addition,
that the reduced activity of AMPKa under hyperglycemia dismissed the inhibition of PPARg and
decreased the expression of RUNX2 and GLUT4, which affected the differentiation of the MSCs into
osteoblasts. Refs. [20–24,32,37,39,41].

3. The Potential Mechanism of Metformin on Diabetic Bone Improvement
3.1. Activation of AMPKa and RUNX2 in Bone Formation

In the bone marrow progenitor cells, metformin targets on AMPK complex as a potent
agonist [16]. In vitro studies, the phosphorylation of AMPKa promotes the differentiation
and mineralization of osteoblasts [42]. RUNX2, as an osteoblast-specific transcription factor,
plays an important role in osteocyte differentiation and bone formation [43]. Alkaline
phosphatase (ALP), as an indicator of the early differentiation of osteoblasts, is closely
associated with bone tissue remodeling and bone matrix mineralization [44]. The high
levels of ALP expression indicate the ongoing differentiation of osteoblasts and the maturity
of bone tissue [45]. In osteogenesis, the main effect of metformin is acting on AMPKa,
upregulating the expression of RUNX2, and promoting the secretion of ALP [16].

Metformin inhibits AGE-induced inflammatory response in macrophages of mice
through the phosphorylation of AMPKa and the suppression of the receptor of advanced
glycation end products/nuclear factor-kB (RAGE/NF-kB) signal cascade [46,47] (Figure 2).
The association between mTORC1 activation and Notch pathway was usually used to
explain the impaired differentiation of preosteoblasts [48]. Previous studies showed that
the main function of Notch signaling was to regulate the communication among neigh-
boring cells and to determine their fates [49–51]. Besides, the activation of Notch signal-
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ing via the induction of signal transducer and activator of transcription3/p63/Jagged
(STAT3/p63/Jagged) signaling cascade attenuated the differentiation of osteoblast too [52].
In addition, Metformin attenuated abnormal subchondral bone remodeling mediated by
osteoclasts and alleviated early osteoarthritis through the AMPK/NF-kB/ERK signaling
cascade without effect on blood glucose levels and body weight [53].

Metformin can stimulate bone formation at all glucose concentrations via increasing
the expression of RUNX2 and upregulating the serum IGF-1 levels [54], and also signifi-
cantly reducing apoptosis and the levels of intracellular ROS [55,56]. In an ovariectomized
(OVX) rat model with bone cancer, metformin directly inhibited bone loss by inducing
the expression of RUNX2 and low-density lipoprotein receptor-related proteins (LRP5) to
upregulate the activity of bone marrow cells [57]. Notably, RUNX2 was regulated positively
by OCN and osteoprotegrin (OPG), both of which are important osteoblast differentiation
markers [58]. Moreover, mTORC1 regulated RUNX2 negatively via Notch signaling [59].
In addition, the phosphorylation of AMPKa increased the degradation of RUNX2 via the
phosphorylation of the smad ubiquitination regulatory factor (SMURF) [18] (Figure 2).
Metformin enhanced the differentiation of osteoblasts by the upregulation of RUNX2 via
partner AMPK/upstream stimulatory factor-1(USF-1)/small heterodimer partner (SHP)
axis [60] (Figure 2).

3.2. Upregulation of OPG/RANKL in Bone Resorption

Cortical and medullary bones were impaired in rats in a hyperglycemia state, which
indicated that hyperglycemia delayed the osteogenic integration process [61,62]. In a DM
rats’ model, the implant with metformin increased the levels of OPG rather than RANKL
in the area of the implant, directly upregulating the ratio of OPG/RANKL [63]. It is clear
that both OPG and RANKL are secreted by osteoblasts to activate osteoclast and regulate
osteogenesis. Thus, the ratio of OPG to RANKL keeps in balance to maintain normal
bone metabolism. It was reported that metformin upregulated the expression of OPG
to prevent bone loss in estrogen deficiency rats with perispical lesions. [64,65] (Figure 2).
Moreover, metformin partially reversed high tartrate-resistant acid phosphatase (TRAP) in
osteoclasts, increased OCN secretion in osteoblasts, and reduced the ratio of OPG/RANKL
in hyperglycemic animals with periodontitis [57].

3.3. Sirtuins in Bone Metabolism

A new hypothesis proposed that metformin enhanced the differentiation and pro-
liferation of mouse preosteoblasts under a hyperglycemia state via SIRT6/NF-kB/OCT4
pathway [66] (Figure 2). Metformin promoted the expression of SIRT6 that deacetylates his-
tone in nuclei to delay osteogenic-related gene transcription, inhibited NF-kB transport into
the nucleus to reduce RANKL expression, and enhanced the expression of octamer-binding
transcription factor 4 (OCT4) to stimulate cell differentiation in vitro [66]. Notably, damp-
ened NF-kB in nuclei and the reduced expression of OCT4 were detected in sirt6 knockout
(KO) mice [66]. Furthermore, metformin reversed H2O2-induced the apoptosis of osteoblast
in OVX mice by upregulating NAD+ dependent protein deacetylase sirtuin-3 (SIRT3) ex-
pression via the PI3K/AKT pathway, which implied that metformin had a therapeutic
effect in postmenopausal osteoporosis [67].
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Figure 2. The effect of metformin on bone health. In the osteogenesis, metformin was pumped into
osteogenic cells by OCT1, and inhibited gluconeogenesis through the inhibition of mitochondrial
respiratory chain complex 1. Metformin inhibited the activation of AKT to reduce the production of
cytoplasmic NF-kB, however, metformin activated AMPKa to enhance the expression of sirt6. In the
nucleus, the binding of SIRT6 and NF-kB reduced the expression of RANKL which is a key ligand
inducing the differentiation of osteoclast in bone remodeling. In addition, the activated AMPKa
inhibits factors of NFATc1 and PPARg to repress the expression of RANKL respectively. However,
it seems contradictory to the factor of RUNX2 in bone formation. Canonical AMPKa activation
by metformin promoted the upregulation of RUNX2, however more extra glucose pumped into
osteogenic cells by GLUT4 inhibited the phosphorylation of AMPKa resulting in the attenuation
of downstream mTORC1 signaling cascade. It suggested that extra-high levels of glucose had the
opposite effect in osteoblasts compared with that of metformin. Furthermore, AMPKa is a key
regulatory factor in both in the generation and degradation of RUNX2. The activation of AMPKa
promoted the activation of RUNX2 via the AMPK-USF1-SHP axis or mTORC1-Notch axis and
mediated the degradation of RUNX2 via the AMPK-SMURF1 axis. Therefore, metformin, the
extracellular levels of glucose, and the AMPK complex collaborated together to regulate bone
formation and resorption. Refs. [16,18,46,47,60–66].

4. Effects of Metformin on Cells In Vitro
4.1. Effects on Stem Cells

It is well known that the osteogenic potential of mesenchymal stem cells (MSCs) is
seriously affected by persistent inflammation of periodontitis. Metformin carbon dots
(MCDs) including citric acid and metformin hydrochloride effectively improved the ac-
tivity of ALP, the formation of calcium deposition nodules, the expression of genes and
osteogenic proteins in mesenchymal stem cells of the rat bone marrow (rBMSCs), thereafter
effectively helped to regenerate lost alveolar bone in periodontitis rats [68]. A recent study
showed that polycaprolactone/chitosan nanofibrous membranes containing metformin
would be favored for bone regeneration as guided bone regeneration membranes because
it was more suitable for cell proliferation, adhesion, and osteogenic differentiation of rBM-
SCs [69]. A study from canine BMSCs showed that metformin was a better osteogenic
inducer for osteogenic differentiation in vitro [70]. Additionally, Metformin significantly
induced osteogenic differentiation of human BMSCs while it was attenuated via inhibiting
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phosphorylation of glycogen synthase kinase 3b (GSK3b), which suggested that metformin
had a potential effect on stimulating differentiation of human MSCs toward osteoblast [71].

4.2. Acts on Other Bone Cells

Metformin inhibited BMP6-induced Smad1/5 phosphorylation in osteoblast MC3T3-
E1 cells, along with Smad6 up-regulation, and this effect was mitigated by the knockdown
of Smad6 [72]. Thus, metformin may be a potential therapeutic drug for trauma-induced
heterotopic ossification. A novel elastomeric biodegradable bone regenerative films de-
veloped from metformin and polyurethane (PU) exhibited that metformin present in PU
formulation promoted adhesion, proliferation, and calcium deposition of MC3T3-E1 cell
line [73]. In addition, metformin enhanced osteoblastic cell mobility in wound healing and
migration assay and upregulated mark protein expression in osteoblastic differentiation in
U2OS and MG63 cells while suppressing the differentiation of osteoclast in Raw 264.7 cells,
and protected against ischemic necrosis in the rat femoral head epiphysis by preserving
osteocyte function [74]. Metformin-treated preosteoblasts increased the expression of OPN
which reduced the subsequent adherence of myeloma cells when they were silent. Prolifer-
ation markers were reduced in cocultured myeloma cells with preosteoblasts treated with
metformin. Mice with 5TGM1 myeloma cells pre-treated with metformin had increased
tumor loads, associated with increased osteolytic bone damage and high expression of
the OPN in the bone marrow [75]. In an in vitro study of nondiabetic rats with a cranial
defect model, metformin promoted the differentiation of rat adipose tissue (rASCs) into
bone-forming cells. which osteogenic effect of metformin was also demonstrated with the
rich calcium and phosphorous deposits on the newly formed mineralized extracellular
matrix. [76].

5. Research on Bone Defect Animal Models
5.1. Promote Alveolar Bone Repair

In a critical-size alveolar bone defects model of rats, the Gelatin/nano-hydroxyapatite/
metformin scaffold showed superior bone regeneration and promoted the synthesis of
osteogenic proteins such as OCN, osteonectin, and collagen type I, which may be applied
as a potential bone substitute to regenerate alveolar bone due to its good biocompat-
ibility, interconnected pores allowing vascularization, relatively fast degradation, and
higher bioactivity properties [77]. In a periodontitis rat model, local administration of
chitosan-metformin based intra pocket dental film led to the reduction of alveolar bone
destruction and displayed good antibacterial activity [78]. Additionally, the metformin-
loaded b-tricalcium phosphate/Chitosan/mesoporous silica scaffolds implanted in the
region of alveolar bone malformations in rats suffering from periodontitis promoted alve-
olar bone regeneration [79]. In another bone tissue engineering study, the group with
metformin plus osteogenic had three- to four-fold increases over those of the osteogenic
alone group in osteogenic gene expressions, ALP activity, and mineral synthesis, which
demonstrated that human periodontal ligament stem cell (hPDLSCs) was a potent cell
source for bone engineering and the calcium phosphate cement (CPC)-metformin scaffold
with hPDLSCs was a highly promising construct to promote bone repair and regeneration
effectively in craniofacial, dental, and orthopedic applications [80]. Thus, metformin might
be an additional osteoinductive factor in osteogenesis.

5.2. Enhance Tendon-Bone Interface Healing

The healing of the tendon-bone interface (TBI) is a clinical dilemma that is closely
related to the forming and remodeling of new bones at the repair site. A canine model study
showed that the Achilles tendon-calcaneus (ATC) interfaces treated with metformin were
repaired with a significantly higher fracture load and stiffness than the metformin-free test
site. The micro-computed tomography (CT) analysis showed that the metformin-treated
samples exhibited significantly higher bone volume/total volume and trabecular thickness
than those of the metformin-free controls. These results were confirmed by hematoxylin
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and eosin (HE) staining as well. Immunohistochemical (IHC) staining showed that there
were considerably more cells with OCN in newly formed bones with metformin-treated
than those in the metformin-free control site at week 4. Furthermore, Masson’s trichrome
staining showed that significantly more oriented collagen fibers anchored in the newly
formed bone of the metformin-treated site than in the metformin-free control site [71].
Consequently, the local administration of metformin provided bone microarchitecture
improvement at the calcaneus and an increase in the tensile properties of the repaired ATC
interfaces in canines. These important findings demonstrated that the local administration
of metformin may be an effective strategy for TBI healing in clinic.

5.3. Single Use of Metformin in Bone Repair

In a rat model of TiAl6Va4 implants on tibial bone, the ratio of peri implant bone
tissue filling was higher in the metformin group than those in the control group, which
suggested that systemic administration of metformin might increase titanium implant
osseointegration in non-diabetic rats [81]. A poly lactic acid and polycaprolactone scaffold
with the delivery of metformin-loaded gelatin nanocarriers enhanced the expression of the
markers of osteogenic and angiogenic considerably and ameliorate bone in angiogenesis,
growth, and defect reconstruction in a rat model of calvarial bone defects [82]. Additionally,
metformin can accelerate bone healing and mature tissue formation at a fracture site in
a cranial defect rats’ model [83]. In collagen-induced arthritis (CIA) model rats, metformin
significantly inhibited systemic inflammation and synovitis, the changes of trabecular bone
and degradation of the cartilage layer matrix, and osteoclast formation in the knee joint, and
the apoptosis of chondrocytes [83]. In a chronic kidney disease-mineral and bone disorder
(CKD-MBD) rat model, metformin protected against the development toward severe CKD
to prevent vascular calcification development and high bone turnover disease progression,
but there was no evidence of the reduction of aorta or small vessel calcification [84].

Moreover, metformin effectively increased the levels of serum ALP in the ketogenic
diet (KD) mice while reducing the levels of serum TRAP in the OVX mice, but the OCN
expression up-regulated and the TRAP expression down-regulated in both OVX and KD
mice [85]. This study revealed that metformin can effectively alleviate KD-induced cancel-
lous bone loss and maintain the biomechanical properties of long bones, which suggested
that metformin was a potential drug for the treatment of KD-induced osteoporosis in
teenage [85]. In ultra-high-molecular-weight polyethylene particle-induced osteolysis
mouse models, metformin reduced dickkopf-related protein 1 (DKK1), and sclerostin that
is the negative regulator of bone formation, and increased OPG secretion and the ratio of
OPG/RANKL to exert the property of bone protect [86]. These findings suggested that
metformin-induced differentiation and mineralization of osteoblasts, while it inhibited
osteoclastogenesis through the secretion of mature osteocytes [86]. A systematic review
was conducted in accordance with the 2020 PRISMA guidelines to evaluate the evidence
supporting the bone-protective effects of metformin on male animal models with T2DM.

This study shows that metformin enhanced bone density and reduced the effects of
T2DM on fat formation in animal models, however, further research is needed to determine
the optimal dose of metformin needed to show these therapeutic effects [87].

5.4. Combinational Use of Metformin in Bone Repair

A novel poly L-lactic acid/nanoscale hydroxyapatite/metformin nanocomposite scaf-
fold had the dual function of tumor repression and bone repair, which provides a promising
new therapy for tumor-induced bone defects [88]. The metformin-incorporated nano-
gelatin/hydroxyapatite fibers upregulated osteogenic gene and protein expression, and
greatly improved healing potential in a rat model of forearm critical bone defect [89].
A study on the combined use of metformin and alendronate showed that the alendronate
use alone can increase serum GLP-1 levels significantly and the use of metformin alone
can improve bone microstructure like Tb.Sp and Tb.N of the spinal in the control group.
Consequently, metformin and alendronate in combination can improve the progress of
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glucose metabolism and bone metabolism such as lowering blood glucose levels, increasing
glucose tolerance, increasing insulin sensitivity, and reducing bone loss than the control
group, however, they do not appear to act in a clearly synergistic manner in their combined
use [90].

6. Investigations on Clinical Settings

A large cohort study of Chinese patients with T2DM including 11,458 T2DM pa-
tients aged no less than 40 years showed that the overall prevalence of osteopenia and
osteoporosis was 37.4% and 10.3% respectively, and was lower in metformin-treated pa-
tients (34.6% vs. 38.3% and 7.1% vs. 11.3%, both p < 0.001) [91]. Patients who had older
age, a lower BMI, and estimated glomerular filtration rate (eGFR), had more osteoporo-
sis, a lower BMD and T-score at the femoral neck (FN), lumbar spine (LS), and total hip
(TH) [84]. Metformin use and the male sex were associated with a higher BMD. Met-
formin treatment was also independently associated with higher T-score at LS, FN and
TH (b = 0.120, 0.082 and 0.108; all p < 0.001), and lower odds ratio (OR) of osteoporosis
(OR = 0.779, 95%CI: 0.648–0.937, p = 0.008) or low BMD (OR = 0.834, 95%CI: 0.752–0.925,
p = 0.001) [91]. However, when analyzed by sex, this association of a lower OR for osteo-
porosis with metformin was only significant in women. (OR = 0.775, 95%CI:0.633–0.948;
p = 0.013) [91]. Consequently, metformin treatment was associated with a lower OR of
osteoporosis and a higher T-score, particularly in the female population, regardless of age,
BMI, and eGFR [91].

Currently, a prospective study with enrollments of 142 patients with T2DM treated
with metformin or metformin plus a-glucosidase inhibitors was conducted in China. Their
results showed that patients with metformin plus a-glucosidase inhibitors were associated
with significantly lower levels of 2-h postprandial blood glucose (2hPG), hemoglobin
A1c (HbA1c), fasting plasma glucose (FPG), and homeostasis model assessment-insulin
resistance (HOMA-IR) vs. metformin alone (p < 0.05) after 12 weeks treatment [92]. The
BMD index was correlated with IGF-1R positively and with vascular endothelial growth
factor (VEGF) and endothelin negatively after treatment in both groups [92]. Metformin
plus a-glucosidase inhibitors can effectively control blood glucose and reduce HOMA-IR
in patients with primary T2DM, however, a large sample study was essential to predict
osteoporosis development in T2DM patients [92].

A study about the effect of metformin on primary bone cancer risk conducted by
Taiwan’s National Health Insurance showed that the incidence rates were 10.56 and
12.90 per 100,000 person-years for 453,532 metformin initiators and 220,000 non-metformin
initiators respectively, and the hazard ratio between initiators and non-initiators was
0.830 (p = 0.0551) in the intention-to-treat analysis. Additionally, the incidence rates were
7.58 and 11.77 per 100,000 person-years, respectively, and the risk ratio was 0.615 (p = 0.0005)
in the per-protocol analysis [93]. In addition, metformin treatment in patients with excess
endogenous glucocorticoid showed potential protective effects by reducing bone resorption,
thereby reducing the undesirable side effects of glucocorticoid treatment [94].

In addition, one cannot ignore the side effects of metformin when it is applied in
clinical settings. The most common adverse effect of metformin is gastrointestinal irritation,
including diarrhea, cramps, nausea, vomiting, and increased flatulence; metformin is more
commonly associated with gastrointestinal adverse effects than most other antidiabetic
medications [95]. The most serious potential adverse effect of metformin is lactic acidosis;
this complication is rare, and the vast majority of these cases seem to be related to condi-
tions such as impaired liver or kidney function, rather than to the metformin itself [96].
Metformin is not approved for use in those with severe kidney disease, but may still be used
at lower doses in those with kidney problems [97]. Lactic acidosis almost never occurs with
metformin exposure during routine medical care [98]. Rates of metformin-associated lactic
acidosis are about nine per 100,000 persons/year, which is similar to the background rate of
lactic acidosis in the general population [99]. A systematic review concluded no data exists
to definitively link metformin to lactic acidosis [100]. The risk of metformin-associated
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lactic acidosis is also increased by a massive overdose of metformin, although even quite
large doses are often not fatal [101].

7. Discussion and Perspective

Diabetic patients are at high risk of bone and joint problems, such as osteoporosis
and bone fractures. It is well known that metformin can reduce blood glucose levels by
inhibiting hepatic gluconeogenesis, decreasing the intestinal absorption of glucose, as
well as increasing insulin sensitivity by promoting peripheral glucose uptake and uti-
lization. It is well established that metformin inhibits mitochondrial complex I activity,
which contributed to the potent antidiabetic effects of metformin [102,103]. The mito-
chondrial complex I inhibited by metformin led to the reduction of ATP production, and
subsequently inhibit fructose-1,6-bisphosphatase (F-1,6-BP) enzyme to attenuate cell gluco-
neogenesis [104–106]. Furthermore, the activation of AMPKa by metformin phosphorylated
both two isoforms of acetyl-CoA carboxylase (ACC) enzyme, thereafter inhibiting the fat
synthesis and stimulating fat oxidation that reduced hepatic lipid stores and increased liver
sensitivity to insulin [104]. In the gut, metformin increased anaerobic glucose metabolism
in enterocytes to reduce the net glucose uptake and promoted GLP-1 secretion from small
intestinal endometrial cells to increase the glucose utilization of the gut [104].

Treatment with metformin not only provided adequate glycemic control, but also
alleviated diabetic complications and reduced the risk of bone fracture. For patients with
T1DM, the changes in BMD provided a good diagnostic mark in bone fragility induced
by hyperglycemia. However, it was difficult in diagnosing bone impairment for patients
with T2DM in the clinic with regard to BMD index, because the BMD index in T2DM
patients keeps normal or even higher than that of the nondiabetic. Currently, there is no
suitable method to assess the degree of bone fragility for patients with T2DM. Thus, to deal
with bone impairment under hyperglycemia, it is important to take medicine on glycemic
control to prevent fracture for diabetic patients except for TZDs treatment that had a side
effect on the aggravation of bone fragility through upregulation of PPARγ. Notably, both
high and low doses of metformin use can improve bone impairment in diabetic patients,
especially for patients with T2DM [107].

The accumulation of AGEs and upregulation of the expression of RAGEs are common
in diabetic patients because the cells regulate their own stress state in response to the
changes in the environment under hyperglycemia [107–110]. The binding of insulin and
its receptors on the surface of osteoblasts stimulated the secretion of OCN, which in turn
promoted the proliferation of β-cells in the pancreas and insulin sensitivity, however, hyper-
glycemia and high levels of ROS regulated the production of OCN negatively [111]. More-
over, the activation of AMPKa by metformin inhibited intracellular levels of nuclear factor
of activated T-cell cytoplasmic 1 (NFATc1), and the activity of 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase in the mevalonate pathway, which exerted a positive
influence on bone tissue [112–114]. Previous studies showed that metformin had a poten-
tially positive effect on 20% reductions of fracture risk in T2DM patients [115]. In addition,
metformin is indirectly involved in the action of ERK activation and the induction of in-
ducible nitric oxide synthase (iNOS), both of which are an important regulative factor in
osteogenesis [68]. Since metformin has no substantial effect or side effect on the control
of glucose levels in nondiabetic individuals, it may be regarded as a potential adjuvant
therapeutic drug for bone disorders in patients without diabetes.

In addition to the mechanisms and application of metformin in bone improvement
described above, more investigations are needed on the complex pathophysiology of
osteoporosis induced by hyperglycemia and the effect of metformin in bone quality im-
provement. Recently, the bone fragility in the diabetic in Europe-towards a personalized
medicine approach (FIDELIO) consortium has been founded. This research network will
supply a platform for the application of next-generation techniques on the aspect of genetic
epidemiological and biological pathways of diabetic bone disease via Mendelian random-
ization. For another, head-to-head studies are needed to compare metformin with other
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anti-osteoporotic drugs for their different efficacy in fracture prevention in the diabetic
or nondiabetic. Last but not the least, individual differences such as heredity, gender,
age, height, weight, lifestyle, and disease states, and external factor such as drug to drug
interactions (DDI) should not be ignored in the assessment of metformin in osteoporosis
prevention. It is essential to put pharmacogenetic studies on the agenda to take genetic
polymorphisms including drug metabolic enzymes, transporters, and receptors into con-
sideration for the better efficacy difference assessment of anti-osteoporosis agents.

In this review, the authors discussed the link between hyperglycemia and bone fragility,
and the relationship between metformin and relevant signaling pathways involved in bone
metabolism. A lot of preclinical findings have shown that metformin is a potent chemical
agent in the promotion of osteogenic formation in diabetic or nondiabetic animal models.
Furthermore, multiple clinical trials on the bone protection effect of metformin have been
conducted to reduce bone fragility in diabetic or nondiabetic patients throughout the world
(clinicaltrials.gov, accessed on 16 March 2022). All in all, metformin may be a promising
candidate drug for the treatment of diabetic or nondiabetic bone impairment in the future.
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