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Abstract: Hyperuricemia is a metabolic disease with an increasing incidence in recent years. It
is critical to identify potential technology opportunities for hyperuricemia drugs to assist drug
innovation. A technology roadmap (TRM) can efficiently integrate data analysis tools to track
recent technology trends and identify potential technology opportunities. Therefore, this paper
proposes a systematic data-driven TRM approach to identify potential technology opportunities for
hyperuricemia drugs. This data-driven TRM includes the following three aspects: layer mapping,
content mapping and opportunity finding. First we deal with layer mapping. The BERT model
is used to map the collected literature, patents and commercial hyperuricemia drugs data into the
technology layer and market layer in TRM. The SAO model is then used to analyze the semantics of
technology and market layer for hyperuricemia drugs. We then deal with content mapping. The BTM
model is used to identify the core SAO component topics of hyperuricemia in technology and market
dimensions. Finally, we consider opportunity finding. The link prediction model is used to identify
potential technological opportunities for hyperuricemia drugs. This data-driven TRM effectively
identifies potential technology opportunities for hyperuricemia drugs and suggests pathways to
realize these opportunities. The results indicate that resurrecting the pseudogene of human uric
acid oxidase and reducing the toxicity of small molecule drugs will be potential opportunities for
hyperuricemia drugs. Based on the identified potential opportunities, comparing the DNA sequences
from different sources and discovering the critical amino acid site that affects enzyme activity will
be helpful in realizing these opportunities. Therefore, this research provides an attractive option
analysis technology opportunity for hyperuricemia drugs.

Keywords: data-driven TRM; SAO analysis; link prediction; hyperuricemia drug; human uric
acid oxidase

1. Introduction

The amount of uric acid in the body needs to be kept at a stable level. While the
synthesis of uric acid increases or the amount of uric acid excreted from the body decreases,
the concentration of uric acid in the blood increases [1–3]. A person is considered to have
hyperuricemia when the uric acid level in the blood exceeds the average levels [4–7]. The
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increased intake of high-fat, high-protein, and high-sugar food leads to metabolic disorders
and a rising risk of hyperuricemia [8–10]. It is estimated that there are currently about
17.7 million hyperuricemia patients worldwide. As can be seen, hyperuricemia positively
correlates to many other potential diseases, such as obesity, hypertension, diabetes, car-
diovascular disease, and chronic kidney disease [11]. The primary approach in treating
hyperuricemia is to rebalance uric acid synthesis and excretion. Drugs for treating hy-
peruricemia are divided into three categories: xanthine oxidase inhibitors, urate anion
transporter 1 (URAT1) and urate oxidase. However, most of these chemical drugs for
hyperuricemia have specific side effects, and the oxidase-based drugs produce antibodies
with long-term use. Neither of them can dissolve uric stones deposited in the joints [12,13].
Technological innovation for hyperuricemia drugs is imperative.

The interest in developing hyperuricemia drugs is continuously growing. Monitoring
hyperuricemia pharmaceutical technologies are fundamental to analyzing and identify-
ing potential technology opportunities. It is helpful to narrow the scope of technology
research topics and reduce R&D risks, which not only supports the decision-making
of hyperuricemia drug research but also helps to avoid unnecessary R&D costs [14–17].
Various data analysis tools were explored to analyze potential technology opportunities
efficiently [18–20], such as bibliometrics [21], citation analysis [22], technology roadmap
(TRM) [23], Biterm Topic Model (BTM) [24], Bidirectional Encoder Representation from
Transformers (BERT) [25,26], Subject-action-object analysis (SAO), [27] and link predic-
tion [15,28,29]. These tools integrate mathematics, statistics, computer science, and opera-
tions research in technology opportunity analysis [16,30–33]. However, these tools do not
work independently, but often combine into a new, more efficient analysis path.

TRM is a comprehensive approach to capturing changes in technology and markets
over time in an integrated manner. It is not only a flexible approach to analyzing tech-
nologies and market requirements [34,35], but it can also create a more effective way to
track and analyze the latest technology trends by integrating data analysis tools [36–38].
Pharmaceutical technology innovations are influenced by various factors, such as chang-
ing customer expectations, uncertain intellectual property (IP) procedures, unconsidered
technology changes, and resource requirements [23,39–41]. It is necessary to use TRM to
analyze technology opportunity trends from both technological and market dimensions. In
addition, TRM is a valuable tool in shortening the technology development cycle, discover-
ing drug targets, and optimizing resource consumption. There are three major categories of
research on TRMs: theory-based, case study-focused, and data/methodology-specific [15].
Among numerous extensions of TRM, data integration is a notable trend. Some researchers
have employed the data-driven approach in TRM. For example, Yu developed a patent
roadmap for the competitive market and patent layout planning analysis [42]. Zhou traced
the innovation path of Solid lipid nanoparticles [37].

Despite the contributions of previous research using TRM to analyze TOA, data-driven
TRM have some limitations in three areas: processing data data-driven TRM, identifying
potential opportunities, and selecting the data source. From the data processing standpoint,
most previous research has adopted keyword-based network analysis approaches for data-
driven TRM. However, traditional keyword-based analysis approaches neglected to express
the relationships between technologies and the market, inadequately reflecting the contexts.
Compared with identifying potential technology opportunities, most researchers relied on
current trends from the perspective of technology forecasting. The technology opportunity
analysis (TOA) process contains six main stages. It includes data acquisition, description,
potential relationship extraction, visualization, analysis of results, and identifying potential
technical opportunities. Instead of identifying potential technology opportunities, the
current TRM focuses on the first five steps in TOA. Technology opportunities are primarily
based on technology hotspots, while technology opportunities often exist in potential
connections. From the perspective of data source selection, technology and the market
have become complex. Some critical technical information exists not only in patents,
but also in literature and market reports. Similarly, market information is hidden not
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only in market reports but is also embedded in patents and literature. Therefore, it is
necessary to construct a comprehensive data-driven TRM to automatically, quickly, and
accurately extract technology and market data from a large amount of literature, patent,
and commercial data.

Therefore, this article is proposing a systematic method for developing data-driven
TRM to identify potential technology opportunities for hyperuricemia drugs which con-
tains three stages. The first stage is layer mapping. We map the literature, patent, and
commercial data into the technology and market layers based on BERT and semantic
analysis for the technology layer and market layer based on SAO. The second is content
mapping. We identify topics of SAO components for technology and market layers based
on BTM. The last stage is opportunity finding. We identify possible links between un-
connected nodes based on link prediction. This data-driven TRM effectively identifies
potential technology opportunities for hyperuricemia drugs and suggests pathways to
realize these opportunities.

The rest of this paper is organized as follows. Section 2 describes the relevant ther-
motical background on TOA, TRM, and data-driven TRM regarding BTM, SAO, and link
prediction. Section 3 outlines our proposed approach for a data-driven TRM. It explains
integrating BTM, BERT, SAO, and link prediction to analyze technological opportunities
for hypouricemic drugs. A case study of technology prediction related to hyperuricemia is
then presented in Section 4. Section 5 discusses our discovery and extension of the study.
Section 6 summarizes the paper, looks at possible future research, and provides some
limitations of our study.

2. Theoretical Background
2.1. Technology Opportunity Analysis

Technology opportunity analysis (TOA) helps researchers and organizations explore
potential technological opportunities. It also enables a better understanding of scientific and
technological developments by deeply mining valid information in publications, patents,
and the literature [43].

Many researchers have developed effective methods to identify and predict technology
opportunities. Early research used qualitative analysis methods that relied on expert expe-
riences, such as Delphi and Workshop. While in specialized fields, specialist opinion can
provide creative foresight for analyzing technology opportunities. However, information
increased steeply. It is impossible to consistently identify technology trends based on expert
knowledge alone, which is time-consuming and costly. In addition, specialist judgment is
often limited by personal expertise and bias. Sometimes consensus cannot be reached.

Bibliometrics was first introduced to analyze technological opportunities for emerging
technologies [44], which is used to evaluate R&D activities by counting the number of
authors and literature citation relationships [45,46]. This method has been widely used
for the analysis of technology evolution trajectories in energy [47], conductive polymer
nanocomposites [48], and robotics [49]. Bibliometrics provides quantitative data and
objective evidence to evaluate technical opportunities and reach a consensus of experts.
However, bibliometrics cannot extract the meaning of documents in-depth but can only
reflect information such as the flow of knowledge, citations of literature, and patents.
However, it has a time lag.

Then text mining is then introduced in TOA, which is suitable for unstructured text
data analysis and can extract text features in-depth [50]. There are many data analysis
techniques such as machine learning and natural language processes arose. Some research
has focused on developing automated and semi-automated data analysis methods in
TOA [51–53]. Among them, principal component analysis (PCA) and text clustering are
often used to extract topic information [37]. The similarity is used to measure connections
between technical topics [54]. For example, Wu predicted evolutionary relationships
between stem cell themes based on LAD, HMM, and co-occurrence theory [55]. Du used
the topic models to predict potential topics for new drugs [22]. Zheng presented text mining
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tools to reveal possible innovation pathways and commercial applications of solid lipid
nanoparticle drugs [56]. Zheng reviewed the importance of machine learning in facilitating
the translation of bioenergy and biofuel innovations [57].

TOA has evolved over a long period of time and has been enriched by many scholars.
To analyze potential technology opportunities efficiently, various data analysis tools were
explored. These tools integrate mathematics, statistics, computer science, and operations
research in TOA. However, rather than working independently, these methods are often
combined into a new, more efficient analysis path.

2.2. Technology Roadmap and Data-Driven Technology Roadmap

TRM is a time-based multi-layer chart that can be integrated with various data anal-
ysis tools to form a more efficient analysis path in TOA. TRM-based technology oppor-
tunity analysis can better identify the dynamic distribution of technology. It can also
predict technology development trends and identify potential technology opportunities
in a time series [34,40,58]. It usually consists of three layers: the market, product, and
technology [39,59] layers, as shown in Figure 1. The existing research of TRM in TOA
is mainly categorized into the following streams: theory-based, case study-focused, and
data/methodology-specific.

Figure 1. Structure of technology roadmap.

Regarding theory-based TRM, some previous studies have focused on the concept
and process of TRM [60,61]. To support market-pull and technology-driven innovation,
new frameworks for TRM have been proposed, such as T-Plan TRM [62], learning-based
TRM [63], or umbrella-based TRM [61].

In terms of a case study-focused on TRM, some previous studies have focused on apply-
ing TRM in different industries or sectors [59,64–67]. To accommodate the domain-specific
and case-specific needs in other areas, the customization of TRMs has been developed.
There are TRMs in the aeronautical and aerospace sectors [68] and in robotics technologies
in the power sector [69]. There are also TRMs in agile hardware development [67] and
pharmaceutical technology landscape development [70].

Regarding data/methodology specific to TRM, some previous studies have focused
on integrating data analysis tools to develop an efficient TRM [58,71–73]. The TRM has
excellent flexibility in the structure and development process. Various tools can be flexibly
selected to build a TRM according to different purposes of TOA. For example, researchers
have integrated various tools into TRM to accommodate the complex business environment
and the rise of big data. Means such as technology mining (TM), analytic hierarchy process
(AHP) [74], business model canvas (BMC) [75], cross impact analysis (CIA) [76], and fuzzy
set theory [58] have been employed. Some studies used technology mining-based patents
analysis for technology roadmaps to explore AI-healthcare innovation [77]. Furthermore,
some studies employ tools such as Bayesian network and topic modeling to develop a
risk-adaptive technology roadmap under deep uncertainty [78].
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With the rise of big data analytics and the rapid change in the business environment,
TRM integrating data and analysis methodology for TOA is becoming increasingly popular.
More and more researchers concentrate on the importance of data to TRM [79]. The data-
driven technology roadmap is gradually proposed [80]. The data source for data-driven
TRM is increasingly diversified, mainly including patents, literature, and commercial
data. Data analysis tasks can be used for data-driven TRM, such as text classification,
summarizing, key information extraction, topic clustering, semantic analysis, navigation,
topic visualization, and node linking [15,71,81]. To put the data source selected into
proper layers of TRM, some studies choose data analysis tasks, such as text classification
models [82]. Some studies employ data analysis tasks to identify potential technology topics
for TRM, such as text clustering tools [57,83]. Some studies used semantic analysis tools
to extract critical technology information, such as SAO [84,85]. And to identify potential
technology opportunities, some studies adopt link prediction [15].

2.3. Data Analysis Techniques and Data-Driven Technology Roadmap

Data analysis techniques have been increasingly employed to support quantitative
and intelligent data-driven TRM.

2.3.1. Bidirectional Encoder Representations for Transformers with the Data-Driven
Technology Roadmap

Data analysis tools, such as text classification models, can be used to put the data
source selected into proper layers of data-driven TRM. Classification models such as
support vector machine (SVM) [86], k-nearest neighbor (KNN) [87,88], Hidden Markov [89],
and Bayesian [44,90] can be employed.

To improve classification accuracy, these text classification models should be trained
based on a massive manually labeled training dataset [86], which is time-consuming, labor-
intensive, and costly. The low accuracy of the classification model is often caused by the
small sample size, inefficient model computation, and high reliance on domain experts. To
improve the accuracy of classification based on small sample training set models, the BERT
model is proposing in 2018. The model has been widely used for its excellent performance
in text classification [91]. When dealing with domain-specific classification tasks such as
pharmaceutical technology, it is required to construct small domain sample datasets and
pre-train the model [17,92,93].

This paper intends to create a small domain-specific training set. This will be followed
by training the BERT model based on fine-tuning [94] to accurately classify pharmaceutical
data into proper layers of data-driven TRM.

2.3.2. Subject-Action-Object Analysis with the Data-Driven Technology Roadmap

Data analysis tools, such as SAO, can extract critical technology information for
layer mapping of data-driven TRM [95]. Initially, the SAO structure was widely used to
analyze technical documents such as patents, present valid technical information, critical
technocratic findings, and represent the relationships between technical elements [96–102].
Guo constructed SAO chains to identify future directions of technology [103]. Wang
identified technology opportunities based on SAO and the morphological matrix [104,105].
Natural language processing techniques have enabled SAO structures to express rich
semantic information compared with topics. Therefore, it is considered an effective tool for
identifying critical technical inter-elements in a corpus [106].

Subsequently, the SAO structure has been extended to many other fields, such as
patent similarity analysis [85,107] and patent network analysis [108]. It can also apply to
technology tree analysis [96,109], technology trend analysis [110], online review demand
extraction [27], and M&A target selection [101].

Although SAO is widely used in TRM with TOA, there are still some limitations.
When constructing the data-driven TRM, if the SAO structures are adopted directly without
refining, the TRM is likely has a large amount of redundancy. It is inappropriate for efficient
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analysis and needs further refinement [111]. Therefore, it is necessary to identify topics
of SAO components for different layers of data-driven TRM based on topic modeling
tools [27,105].

2.3.3. Biterm Topic Model with the Data-Driven Technology Roadmap

Data analysis tools, such as topic models, can identify potential technology topics
for data-driven TRM [112,113]. Identifying topics of SAO components for different layers
via a topic modeling tool can help researchers understand the target domain effectively.
It can help to extract which areas the technical solution focuses on, how the solutions
work, and which parts of the solution are the targets [44,52]. The most popular topic
modeling techniques are LDA [81]. The LDA model has been widely used in various
fields, such as text mining, bioinformatics, and image processing. The model has proven
effective in extracting topics from large amounts of text data and analyzing technical topic
changes [114,115].

However, the data is increasingly various, and short text data has emerged and been
exploded. Sparse and unbalanced texts characterize short texts. The accuracy of extracting
topics using the same topic modeling algorithms as long texts, such as LDA, is low. There
is an urgent need to propose a topic model suitable for short texts [24]. Yan proposed
a topic model algorithm, BTM, that is more suitable for short text clustering [116]. The
model enhances the learning efficiency of the topic model by calculating the unordered
co-occurrence word pairs. It effectively solves the semantic sparsity problem of short
texts [117]. BTM can automatically extract hot and potentially technical topics from large
amounts of short text data, even in the face of domain-specific datasets. BTM has become
one of the most widely used short text modeling technologies [118].

BTM analyzes the technologies and market topics based on keywords that can’t reflect
the contexts. To reflect the contextual semantics of the topics, BTM is more effective when
combined with SAO [108]. However, the SAO structure consists of phrases. BTM is suitable
for identifying topics of SAO components, which helps reduce the redundancy of SAO
effectively. Some limitations exist in using BTM and SAO for technical opportunity analysis.
They only consider the existing relationships and links, and pay less attention to identifying
potential technology opportunities in automation [102]. However, technology opportunities
possibly exist in potential connections [111]. SAO and BTM need to be combined with
predictive tools for better performance in TOA, such as link prediction.

2.3.4. Link Prediction with Data-Driven Technology Roadmap

Data analysis tools, such as link prediction, can identify potential connections for data-
driven TRM. Link prediction is a technique for discovering nodes or links in a network that
are currently unknown but may be connected in the future. It has been well developed and
applied in social network analysis and TOA [119,120]. There are three significant categories
of link prediction: link prediction based on similarity, maximum likelihood estimation,
and probabilistic models. Link prediction based on maximum likelihood estimation is
unsuitable for massive amounts of data with low prediction accuracy. Link prediction
based on probabilistic models often relies on external attributes of nodes, which are often
difficult to obtain. In contrast, similarity-based link prediction is more accurate and is
widely used [121].

With the development of classification models, Hansen found that link prediction can
be constructed based on them [122]. Supervised classification models based on Bayesian,
neural networks, and support vector machines (SVM) [123] can be employed to improve
model accuracy. Subsequently, scholars began to compare the performance of link predic-
tion based on classification models in processing domain datasets. In TOA, Yoon compared
similarity-based and SVM-based link prediction performance. We can try to identify poten-
tial technology opportunities based on more classification models, such as Lightgbm with
link prediction [123].
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Link prediction is increasingly becoming a research hotspot in technology predic-
tion. It has been widely used in the technical analysis of biological and medical patent
data [124]. Shibata performed link prediction analysis in five large citation networks [125].
Xiao combined SAO with link prediction for identifying technical opportunities in skin
melanoma [111]. Ma proposed a link-prediction-based technical knowledge network frame-
work to predict potential technical opportunities in Alzheimer’s disease [126].

3. Methodology

This article proposed a systematic method for developing data-driven TRM to identify
potential technology opportunities for hyperuricemia drugs. It contains three stages. The
first is layer mapping. We classify the literature, patent, and commercial data into layers
based on BERT and semantic analysis for the technology layer and market layer based on
SAO. The second stage is content mapping. We identify topics of SAO components for
technology and market layers based on BTM. The last stage is opportunity finding. We
identify possible links between unconnected nodes based on link prediction. The data-
driven TRM benefits technology needs assessment and technology response development
in the technology roadmap process. The proposed model consists of three modules, as in
Figure 2.

Figure 2. Research framework.

3.1. Collecting and Pre-Processing Data for Technology and Market
3.1.1. Data Collection

The numerous databases of patents, academic papers, journals, and business reports
contain voluminous technology and market information. Their abstracts are also stored in
a structured database format, making them a beneficial source for data analysis. Since this
study calls for technical and market-related data in developing a data-driven technology
roadmap, we employ Medline, Derwent Innovations Index (DII), and Abstracts of Business
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Information (ABI) databases as data source collection. We then use the different search
queries related to the research topic to download relevant scientific papers, patents and
business journals and reports.

3.1.2. Setting the Timeframe of Data-Driven TRM

Considering the complex and dynamic technology replacement and market changes,
one core of the TRM is setting the time frame. The technology opportunity analysis can be
done within each time frame. Different rules, such as S-curve, can set the time frame. In the
S-curve, the generation and development of technology have their pattern and trajectory.
The stages of the technology life cycle are predictable and iterative. Building a time frame
based on the S-curve helps to identify technology opportunities in a forward-looking
manner. Therefore, this study uses the s-curve-based model to determine the development
stages of R&D activities of technologies, and to identify technology and market trends
within the altered time frame [127].

3.2. Layer Mapping
3.2.1. Classifying the Data into Layers Based on BERT

In the second module, BERT, the text classification algorithm based on fine-tuning
is used to classify the tech-related and market-related data into layers for data-driven
TRM. The previous research on TRM using data-driven approaches tends to use abstracts.
The abstract is an overview of the full text and facilitates a rapid discovery of high-value
information with low-value density data.

This section consists of the following steps: First, the abstracts are separately extracted
from the database in a timeframe. After that, we pre-process the tech-related and market-
related data in text format in the timeframe. This article chooses the sent tokenize module
of the Natural Language Toolkit (NLTK) in the Python package to divide the abstracts
into sentences. We then conducted a BERT model to classify technical and market data.
Even if BERT performs well in classification tasks based on the Google corpus, organizing
technical and market data requires domain training sets, such as pharmaceutical data. To
construct the domain training set, domain experts will invite, and 30 percent of sentences
will be extracted randomly from the entire data set. The extracted training set will then be
manually labeled with technology-related, market-related, and irrelevant data. After that,
we will pre-train the BERT model. Only the technical-related and market-related data will
be left. Finally, the whole dataset will be divided into several subsets and classified into
technology and market layers of data-driven TRM in the timeframe.

3.2.2. Semantic Analysis for the Technology Layer and Market Layer Based on SAO

The SAO structures are a machine learning technique. It is always employed to obtain
objective, structure, and effect data from text and then converts that information into
structured text data. The SAO structures consider contextual meaning, which is superior to
the keyword-based analysis. Thus, we chose the SAO technique to extract technical and
market semantic structures, reflecting the contexts.

This section consists of the following steps: first, we will extract the SAO structures.
SAOs cannot be extracted without the help of a parser, which can analyze textual data
through regular syntax rules. In this study, we employ the Stanford Parser, (Standford
Parser, 3.9.2-models; package for extracting SAO structures) available as an open-source
package for sentence separation [128]. Next, we extract the SAOs with a series of linguistic
algorithms from each sentence in the timeframe. After that, we will filter, clean, and
combine the SAO structures. The data used for technical analysis is likely to be very large
with a low-value density. It contains all of the SAO structures. It is not appropriate for
high-efficient analysis and needs to be filtered, cleaned, and combined. Therefore, we
delete the duplicated technology and market SAO structures; only the unique SAOs are
left. However, in the base of the dependency parser, the SAO (subject + action + object), SO
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(subject + action), and AO (adjective + object) structures all collected [129]. We remove the
technology and market SAOs without subjects, actions, or objects, such as SO and AO.

3.3. Contents Mapping
3.3.1. Pre-Processing the SAO Components

There will be vast redundancy if the contents mapping is solely based on SAO semantic
analysis to identify potential technology opportunities. Hence, in this module, in addition
to filtering the SAO structure above, we will employ a text clustering approach toward the
dimensionality reduction of SAOs. Short text data is sparse text and an imbalance of data.
Text clustering algorithms such as LDA cannot extract topics of short tests. Most of the
SAO structures are phrases. We selected BTM, more appropriate for short text clustering,
to extract technology and market SAOs components topics.

This section consists of the following steps: first, we will divide the remaining tech-
nology and market SAOs into several subsets. We will then remove the data noise and
pre-process the sub-datasets group by group, such as word token, stemming, lemmatization,
and excluding stop words.

3.3.2. Identify Topics of SAO Components for Technology and Market Layers Based on BTM

We conducted a BTM-based topic model to identify meaningful core and potential
technology and market topics automatically. Perplexity is a crucial index to evaluate
the clustering effect of topic modeling models. Nonetheless, perplexity cannot explain
the semantic coherence of words for each topic on a non-probabilistic model. Topic co-
herence can describe it. Therefore, we chose coherence as a metric to evaluate the BTM
model’s effectiveness.

This section consists of the following steps: first, we evaluate the value of coherence
while varying the number of topics to determine the optimal number. Second, we pre-train
the BTM model. Lastly, we identify topics of SAO components for technology and market
layers based on BTM.

3.4. Opportunity Finding
3.4.1. Identify Potential Connections Based on Link Prediction

The core of building a data-driven roadmap is to predict possible technology oppor-
tunities. However, content mapping only analyzes past data and ignores potential future
technological opportunities. Therefore, in this module, we chose link prediction to predict
the potential links between unlinked nodes.

This section consists of the following steps: first, we select the results of SAO pre-
processing in Section 3.3.1 as a train set. We then train the model based on link prediction
to construct the overall network. Finally, we identify the probability of potential links for
all unlinked topic nodes based on the trained link prediction model.

3.4.2. Integrating TRM and Analyzing Technology Opportunities

It is challenging to analyze such a large-scale network, so we only keep and interpret
technology and market subnetworks. Subnetwork nodes are selected from the topics
extracted by BTM.

This section consists of the following steps: first, we map the technology and market
subnetworks in a time series and layer series in two-dimensional data-driven TRM. Figure 3
shows an example of the final visualization. As shown in the figure, the technology
roadmap is divided into two layers, technology and market. For example, the technical
layer is divided into three sub-layers, from sub-layer S, sub-layer A to sub-layer O, along
the vertical axis. The horizontal axis is the time series arranged in the timeframe—the same
for the market layer.
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Figure 3. The data-driven TRM for the technology layer. The technical layer was divided into six
communities represented by C1, C2, C3, C4, C5, and C6. Dashed cycles with different colors highlight
diverse communities. The edges’ width and arrows’ width represent the probability of a potential
link between unconnected nodes. The wider the edges and arrows, the higher the likelihood of a
potential link. Arrows and edges with different colors represent different community themes.

Second, we select the nodes and edges in the technology and market subnetworks
where potential links exist and visualize them in technical and market layers. If there
is a potential link between two unlinked topics, the two nodes are linked with a line
with arrows. The edges’ width and arrows represent the probability of a potential link
between unconnected nodes. The wider the edges and arrows, the higher the likelihood of
a potential link. We use these connections as possible directions for future technology and
market development.

We then divide the link prediction visualization results into different communities in
technical and market layers [130,131]. Arrow edges with different colors represent different
community themes. Dashed cycles with different colors highlight diverse communities.

Lastly, we analyze possible opportunities for future technology and market develop-
ment based on the final technology roadmap.
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4. Illustrative Example
4.1. Collecting and Pre-Processing Data for Technology and Market
4.1.1. Data Collection

The dataset of this study was derived from three distinct databases extracted from
Medline, Derwent, and ABI, respectively. We then used the Mesh term ‘MH = (gout
OR hyperuricemia)’ as a search query from Medline. We chose the International Patent
Classification Number ‘IP = (A61P-019/06)’ as a search query from Derwent. And we
selected the keyword “hyperuricemia” as a search query for ABI. The cutoff date was
31 December 2021. Any data beyond that date are not part of this study. Therefore, a set of
6124 hyperuricemia-related essays, a collection of 5158 hyperuricemia-related patent data,
and 4582 hyperuricemia-related commercial data were extracted, as shown in Table 1. The
study keeps the dataset with abstracts. It includes 5066 literature abstracts, 5158 patent
abstracts, and 1447 commercial data. The databases used in this study are presented in
Table 1. The literature abstracts, patent abstracts, and commercial data were analyzed for
technology opportunities.

Table 1. Database for data-driven TRM.

Type Data Source Retrieval Strategy Count

Paper Medline MH = (gout OR hyperuricemia) 6124
Patent Derwent IP = (A61P-019/06) 5158
Market ABI hyperuricemia 4582

4.1.2. Setting the Timeframe of Data-Driven TRM

This study divides the part of the dataset with abstracts related to hyperuricemia
drugs into three sub-periods according to the S-curve, as shown in Figure 4. They are
the stable period (2010–2013), the rising period (2014–2018), and the fluctuating period
(2019–2021), which are represented by TS1, TS2, and TS3, respectively. This study then
analyzes the technology and market trends from period to period.

Figure 4. Statistical results of papers, patents, and commercial data related to hyperuricemia drugs.

4.2. Layer Mapping
4.2.1. Classifying the Data into Layers Based on BERT

In the second module, the abstracts are separately extracted from the tech-related and
market-related data of TS1, TS2, and TS3 for text analysis. After that, we pre-processed the
data extracted from TS1, TS2, and TS3 by dividing the 11,671 abstracts into
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85,656 individual sentences with Python’s NLTK package. We then conducted a BERT
model to classify technical and market data. Even if BERT is beneficial for classifying
technical and market data, how to build a training set cannot do without the help of experts.
Three experts engaged in introducing hyperuricemia drugs for more than ten years were
invited to construct the training set. With the help of the domain experts, we reviewed the
data sentence-by-sentence and extracted 30 percent sentience randomly from the entire data
set as the training set. The extracted training set is then manually labeled and classified
into technical-related, market-related, and irrelevant data, denoted by C1 and C2, and
C0, respectively.

The BERT model is pre-trained, and each subset (TS1, TS2, TS3) was divided into three
categories. This study calls for technical and market-related data in developing a data-
driven technology roadmap. The irrelevant data in C0 is useless to our research [15]. Thus,
after classification, we only kept 54,026 tech-related sentences in C1 and 31,630 market-
related sentences in C2. Finally, the whole dataset is divided into six subsets and classified
into different layers of data-driven TRM. C1 in TS1 means tech-related data in 2010–2013, C1
in TS2 means tech-related data in 2014–2018, C1 in TS3 means tech-related data in 2019–2021,
C2 in TS1 means market-related data in 2010–2013, C2 in TS2 means market-related data in
2014–2018, and C2 in TS3 means market-related data in 2019–2021.

4.2.2. Semantic Analysis for the Technology Layer and Market Layer Based on SAO

After classifying the data into different layers of data-driven TRM, we chose SAO to
extract technical and market semantic structures, reflecting the contexts. The SAO structures
are retrieved from each sentence employing word annotation. The word annotation is
performed using the Stanford parser, employed by many investigators. In reliance on the
Stanford parser, 54,026 technology SAO structures and 31,630 market SAO structures were
extracted in the timeframe. The original SAOs are heavily redundant. To analyze them
efficiently, we filtered, cleaned, and combined the SAOs. We then deleted 1022 duplicates of
technology SAO structures and 1681 market structures. A total of 41,826 unique technology
SAO structures and 10,621 unique market SAO structures remained. We are removing the
35,483 invalid technology SAO records and 9545 market SAO records with no subjects,
actions, or objects. There were 6343 technology structures and 1076 market structures left,
as shown in Tables 2 and 3.

Table 2. Number of SAOs for the technology layer.

Time Series Sentences
SAO Components

Original Duplicate Incomplete Reserved

2010–2013 12,161 9912 202 8263 1447
2014–2018 24,441 19,902 596 16,408 2898
2019–2021 17,424 13,034 224 10,812 1998

In total 54,026 42,848 1022 35,483 6343

Table 3. Number of SAOs for market layer.

Time Series Sentences
SAO Components

Original Duplicate Incomplete Reserved

2010–2013 4371 2439 219 1960 260
2014–2018 17,799 6315 1035 4767 513
2019–2021 9460 3548 427 2818 303

In total 31,630 12,302 1681 9545 1076

4.3. Contents Mapping
4.3.1. Pre-Processing the SAO Components

In the third module, we extract technology and market SAO components topics in
the timeframe. Thus, we divided the 6343 technology SAOs and 1076 market SAOs into
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19 subsets, as shown in Table 4. For example, T-S-TS1 meant the technology S components
related data in 2010–2013, and M-S-TS1 represents the market S components associated
data in 2010–2013. To remove the data noise, we pre-processed the 18 sub-datasets group
by group, such as word token, stemming, lemmatization, and excluding stop words. In
addition to the 972 basic stop-words, we designated 2188 domain-specific stop-words and
excluded them from analysis, such as ‘uric acid’, ‘hyperuricemia’, ‘treatment’, etc.

Table 4. The group result of SAO components for the technology and market layer.

Layer SAO Components Time Series Group

Technology

S
2010–2013 T-S-TS1
2014–2018 T-S-TS2
2019–2021 T-S-TS3

A
2010–2013 T-A-TS1
2014–2018 T-A-TS2
2019–2021 T-A-TS3

O
2010–2013 T-O-TS1
2014–2018 T-O-TS2
2019–2021 T-O-TS3

Market

S
2010–2013 M-S-TS1
2014–2018 M-S-TS2
2019–2021 M-S-TS3

A
2010–2013 M-A-TS1
2014–2018 M-A-TS2
2019–2021 M-A-TS3

O
2010–2013 M-O-TS1
2014–2018 M-O-TS2
2019–2021 M-O-TS3

4.3.2. Identify Topics of SAO Components for Technology and Market Layers Based
on BTM

We conducted a BTM-based topic model to identify meaningful core and potential
technology and market topics automatically. To determine the optimal number of topics, we
evaluate the value of coherence while varying the number of topics. The maximization of
the coherence value defines the number of optimal topics. We then calculated the coherence
value subset by subset, as shown in Table 5, Figures 5 and 6.

Table 5. Topic coherence value for each sub-set.

Technology Market

Group Number of Topics Coherence Group Number of Topics Coherence

T-S-TS1 9 −45.59 M-S-TS1 9 −16.61
T-A-TS1 1 12.03 M-A-TS1 1 −8.79
T-O-TS1 10 −61.45 M-O-TS1 7 −2.38

T-S-TS2 10 −78.55 M-S-TS2 9 −35.95
T-A-TS2 2 −30.04 M-A-TS2 1 −8.27
T-O-TS2 10 −87.32 M-O-TS2 2 2.24

T-S-TS3 9 −64.03 M-S-TS3 10 −24.46
T-A-TS3 1 −16.53 M-A-TS3 1 −26.92
T-O-TS3 9 −70.89 M-O-TS3 2 15.48

As a result, 9, 1, 10, 10, 2, 10, 9, 1 and 9 topics were derived for sub-set T-S-TS1,
T-A-TS1, T-O-TS1, T-S-TS2, T-A-TS2, T-O-TS2, T-S-TS3, T-A-TS3, and T-O-TS3. 9, 1, 7, 9, 1, 2,
10, 1, and 2 topics were derived for sub-set M-S-TS1, M-A-TS1, M-O-TS1, M-S-TS2, M-A-
TS2, M-O-TS2, M-S-TS3, M-A-TS3, and M-O-TS3, respectively. The critical and potential
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topics of SAO components for technology and market layers are shown in Supplementary
Tables S1–S6. Take Supplementary Table S6 as an example. The topics identified can be
defined as O components for the market layer in the time-based framework. There are
topics in stage TS1 such as key amino acid mutations (M-O-TS1-T1), reduced side effects of
small molecule drugs (M-O-TS1-T2), Chinese medicine treatment (M-O-TS1-T3), the need to
develop drugs with low nephrotoxicity (M-O-TS1-T4), the need to develop immunogenic
drugs with low (M-O-TS1-T5), drug market risk (M-O-TS1-T6), improve patients’ quality of
life (M-O-TS1—T7). There are small molecule drug products such as Zurampic and Duzallo
(M-O-TS2-T1); enterprises need to find key amino acid sites (M-O-TS2-T2) topics in stage
TS2. There are reduced drug side effects (M-O-TS3-T1) and market demand for drugs with
low immunogenicity (M-O-TS3-T2) topics in stage TS3. Identifying SAO component topics
at the technical and market layers helps each investigator understand the complex topics in
his field and throughout hyperuricemia drug development.

Figure 5. Topic coherence curve for technology layer. (A) Topic coherence value of S components for
technology layer in 2010–2013 (T-S-TS1). (B) Topic coherence value of S components for technology
layer in 2014–2018 (T-S-TS2). (C) Topic coherence value of S components for technology layer in
2019–2021 (T-S-TS3). (D) Topic coherence value of A components for technology layer in 2010–2013
(T-A-TS1). (E) Topic coherence value of A components for technology layer in 2014–2018 (T-A-TS2).
(F) Topic coherence value of A components for technology layer in 2019–2021 (T-A-TS3). (G) Topic
coherence value of O components for technology layer in 2010–2013 (T-O-TS1). (H) Topic coherence
value of O components for technology layer in 2014–2018 (T-O-TS2). (I) Topic coherence value of O
components for technology layer in 2019–2021 (T-O-TS3).
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Figure 6. Topic coherence curve for market layer. (A) Topic coherence value of S components for
market layer in 2010–2013 (M-S-TS1). (B) Topic coherence value of S components for market layer
in 2014–2018 (M-S-TS2). (C) Topic coherence value of S components for market layer in 2019–2021
(M-S-TS3). (D) Topic coherence value of A components for market layer in 2010–2013 (M-A-TS1).
(E) Topic coherence value of A components for market layer in 2014–2018 (M-A-TS2). (F) Topic
coherence value of A components for market layer in 2019–2021 (M-A-TS3). (G) Topic coherence
value of O components for market layer in 2010–2013 (M-O-TS1). (H) Topic coherence value of O
components for market layer in 2014–2018 (M-O-TS2). (I) Topic coherence value of O components for
market layer in 2019–2021 (M-O-TS3).

4.4. Opportunity Finding
4.4.1. Identify Potential Connections Based on Link Prediction

The last section forecasts possible technical opportunities for hyperuricemia. We
constructed the entire network based on link prediction. To build the whole network,
we selected the data set pre-processed in Section 4.3.1 to train the model in technology
and market layers based on link prediction. The entire technology network consists of
7693 nodes and 17,190 edges. The whole market network consists of 1868 nodes and
2907 edges.

4.4.2. Integrating TRM and Analyzing Opportunities

We select some nodes and edges in the technology and market sub-networks for
visualization. Only the nodes and edges that are potentially connected are selected for
visualization from the 61 technology topics and 42 market topics extracted in Section 4.3.2.

Next, in the timeframe, we arrange the visualizations in technology and market layers
of data-driven TRM from sub-layer S to sub-layer O, as shown in Figures 3 and 7. Finally, we
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divided the communities. The technical layer was divided into six communities represented
by C1, C2, C3, C4, C5, and C6. The marketing layer was divided into five communities
represented by C7, C8, C9, C10, and C11.

Figure 7. The data-driven TRM for the market layer. The marketing layer was divided into five
communities represented by C7, C8, C9, C10, and C11. Dashed cycles with different colors highlight
diverse communities. The edges’ width and arrows’ width represent the probability of a potential
link between unconnected nodes. The wider the edges and arrows, the higher the likelihood of a
potential link. Arrows and edges with different colors represent different community themes.

Figures 3 and 7 integrate semantic analysis, topic modeling, and link prediction results
and show the final technology roadmap. We analyzed the 11 communities in the technology
and market layers. Several technological opportunities can be identified. The technical
opportunities in the C1, C4, C7, and C10 communities are mostly related to chemical-based
drugs such as small molecule drugs. The technological opportunities in the C2, C3, C6, C8,
and C11 communities are primarily associated with biological-based medications such as
protein drugs.

Take protein drugs related communities as an example. The technology opportu-
nities for hyperuricemia drugs are protein drugs related to the C2, C3, C6, C8, and C11
communities. From 2010 to 2013, the opportunities focus on how to extend the half-life of
protein drugs in patients and how to develop new protein drugs. Protein drug research is
mainly based on recombinant Aspergillus flavus uricase and PEG-modified urate oxidase
derived from pig baboons (T-S-TS1-T5 in C2, M-S-TS1-T7 in C8). All uric acid oxidases
on the market are foreign proteins (M-O-TS1-T4 in C11, M-O-TS1-T5 in C11). It is easy to
produce antibodies after long-term administration of foreign protein. The immunogenicity
of uric acid oxidase limits its use, and there are many adverse reactions after entering the
market (T-S-TS1-T1 in C2). From 2014 to 2018, it was discovered that active urate oxidase
drugs with relatively low immunogenicity could be obtained by “resurrecting” human
urate oxidase (M-O-TS2-T2 in C11). And it ultimately achieve the purpose of treating hyper-
uricemia and gout (T-S-TS2-T1, T-S-TS2-T2, T-S-TS2-T4, and T-S-TS2-T5 in C2, T-A-TS2-T1 in
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C4). From 2019 to 2021, while trying to restore human urate oxidase activity, researchers
continued to study how to reduce the half-life of existing protein drugs. We can derive
urate oxidase from Aspergillus flavus (T-S-TS3-T1 in C2, T-S-TS3-T4, and T-S-TS3-T5 in C2).
How to eliminate or reduce the immunogenicity of existing urate oxidase and obtain active
and non-immunogenic human urate oxidase drugs will be the future direction of protein
drug development. At these three stages, developers’ attention to restoring human uric
acid oxidase activity is greater than the market demand. In the future, a comparison of
DNA sequences of uric acid oxidase from different sources could be considered to discover
the critical amino acid sites that affect the enzyme activity (T-S-TS2-T1 in C2). The essential
amino acid sites were then mutated (M-O-TS2-T2 in C2). After each completed mutation,
human uric acid oxidase (T-A-TS2-T2 in C4) was induced, and the activity of uric acid
oxidase (T-S-TS3-T1 in C2) was assayed after affinity purification. We can resurrect the
human uric acid oxidase pseudogene through the above pathway. We can also overcome
the disadvantage that existing oxidase drugs are immunogenic and produce antibodies
when used for a long time. We can obtain human uric acid oxidase with high drug activity
but low immunogenicity to improve the treatment of hyperuricemia and gout.

The technology opportunities for hyperuricemia drugs are small molecule drugs
related to the C1, C4, C7, and C10 communities. Similarly, how to reduce the side effects
of small molecule drugs will be the future direction of small molecule drug R&D, such as
lowering hepatotoxicity and nephrotoxicity(M-O-TS1-T2). At these three stages, developers’
attention to reducing the side effects of small molecule drugs is lower than the market
demand. Reducing the side effects of small molecule drugs is critical in the future. We
can try to discover new structures from Chinese medicine or in combination with Chinese
medicine, such as combining heat-clearing, dampness-relieving herbs with small molecule
drugs (M-S-TS3-T10 in C7, M-S-TS3-T10 in C3). In addition, it would be good to try to change
diet patterns combined with small molecule drug therapy. We can reduce the intake of
high purine foods and prevent a eutrophication diet (T-S-TS2-T6 in C1, T-O-TS3-T2 in C5,
M-S-TS2-T9 in C7, M-S-TS3-T7 in C8).

5. Discussion

This paper presents a systematic approach to developing a data-driven TRM to identify
potential technology opportunities for hyperuricemia drugs. Despite the contributions of
previous research, we can extend the existing data-driven TRM from three aspects. These
are identifying potential opportunities with data-driven TRM, the process, and the data
source of data-driven TRM.

Compared with current trends, we chose link prediction from the perspective of tech-
nology forecasting to identify potential technology opportunities for opportunity finding
of data-driven TRM. SAO considers existing technology connections, while technology
opportunities are often hidden in potential relationships. SAO needs to be combined with
link prediction to predict technology opportunities better. Therefore, we identify possible
links between unconnected nodes based on link prediction. Based on the results of the link
predictions, we should focus on resurrecting the pseudogene of human uric acid oxidase
and reducing the toxicity of small molecule drugs in the future.

From the perspective of the data process, compared with keyword-based analysis, we
chose SAO to extract critical technology information for layer mapping of data-driven TRM
reflecting the contexts. The SAO structure was widely used to analyze documents such as
patents, online review demand extraction, and paper. Although SAO is commonly used
in TOA, the SAO structures must be refined for efferent analysis. Therefore, this article
identifies topics of SAO components for different layers of data-driven TRM based on BTM.
It can reduce the redundancy of SAO effectively. Besides that, it can also help to extract
which areas the technical solution focuses on, how the solution works, and which parts
of the solution are the targets of SAOs. Based on the potential opportunities identified by
the link prediction, the realization path of the opportunity is inferred by the SAO structure.
For example, it is critical to resurrect the pseudogene of human uric acid oxidase. We could
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consider comparing DNA sequences of different sources of uric acid oxidase to discover
the critical amino acid site that affects enzyme activity (T-S-TS2-T1 in C2). We would then
mutate the essential amino acid site (M-O-TS2-T2 in C2) and induce the expression of
uric acid oxidase (T-A-TS2-T2 in C4) affinity purification to analyze the enzyme activity
(T-S-TS3-T1 in C2).

From the perspective of data source selection, compared with selecting patents as
technical data and commercial reports as market data, we choose patent, literature, and
commercial reports as technical and market data of data-driven TRM. We distinguish
technology and market data from the vast amount of literature, patent, and commercial
data automatically based on BERT and combined with the small domain training set
to train BERT models to classify hyperuricemia drugs with high accuracy. To identify
potential technology opportunities in concert with market demand, it is necessary to
analyze technology opportunities from both market and technology perspectives.

6. Conclusions

It is essential to assist hyperuricemia developers via a data-driven TRM for TOA.
However, less attention has been paid to integrating multiple analytical tools within a
data-driven TRM to identify potential technology opportunities automatically, such as SAO,
BTM, and link prediction. This study extends the existing data-driven TRM from several
aspects to fill this gap. There are data process, technology forecasting, and data source
selection. And we try to respond to the following questions in this study. First, we illustrate
how to build a semantic-based data-driven TRM and identify topics of SAO components
based on BTM. Second, we point out how to identify potential technology opportunity
points through link prediction. Last, we demonstrate how to extract technical and market
information automatically based on text classification tools from various patents, literature,
and business data. Therefore, this research provides an attractive option for hyperuricemia
drugs TOA. It is critical to narrow down the technology research topics, reducing R&D
risks, and supporting the decision-making of hyperuricemia drug research.

Despite the promise of data-driven TRM in hyperuricemia drugs’ TOA, challenges
have remained in one aspect that can be addressed by future research. First, the SAO
structure is complex. It is challenging for machine learning models to identify semantic
relations from complex sentences. In future research, we will focus on exploring how to
extract SAO structures from complex sentences in the future. Second, patent, literature,
and commercial data are not real-time data because of the time lag. It is difficult to obtain
the latest technology and market information for TOA. In the future, we will consider
developing a dynamic data-driven TRM, such as by adopting dynamic topic models for
the topic analysis of the SAO structure. Finally, this paper selects patent, technical and
commercial data for data source selection. In the future, more diversified data sources,
such as online reviews, drug instructions, etc., will be selected to complement the existing
analysis effectively.
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