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Abstract: The preclinical drug discovery stage often requires a large amount of costly and time-
consuming experiments using huge sets of chemical compounds. In the last few decades, this
process has undergone significant improvements by the introduction of quantitative structure-activity
relationship (QSAR) modelling that uses a certain percentage of experimental data to predict the
biological activity/property of compounds with similar structural skeleton and/or containing a
particular functional group(s). The use of machine learning tools along with it has made life even
easier for pharmaceutical researchers. Here, we discuss the toxicity of certain sets of bioactive
compounds towards Pimephales promelas and Tetrahymena pyriformis in terms of the global conceptual
density functional theory (CDFT)-based descriptor, electrophilicity index (ω). We have compared the
results with those obtained by using the commonly used hydrophobicity parameter, logP (where P is
the n-octanol/water partition coefficient), considering the greater ease of computing the ω descriptor.
The Human African trypanosomiasis (HAT) curing activity of 32 pyridyl benzamide derivatives is
also studied against Tryphanosoma brucei. In this review article, we summarize these multiple linear
regression (MLR)-based QSAR studies in terms of electrophilicity (ω, ω2) and hydrophobicity (logP,
(logP)2) parameters.

Keywords: conceptual density functional theory; electrophilicity index; hydrophobicity; QSAR;
multiple linear regression

1. Introduction

With the progress of modern science, especially biochemistry and synthetic organic
chemistry, the field of drug discovery has witnessed huge advances in the use of statistical
approaches. The process of clinical drug screening has always been an exhaustive and
time-consuming process. Thus, the involvement of statistics and computational techniques
in predicting the activity of potential drug molecules with structural similarities has greatly
accelerated the process.

In this regard, quantitative structure-activity relationship (QSAR) modeling that uses
a certain percentage of experimental data plays a crucial role to predict the biological
activity/property of compounds with similar structural skeletons and/or containing a
particular functional group(s) [1–6]. They are applicable in the fields of molecular modelling,
drug discovery, eco-toxicology, antitumor treatment, etc. Hansch et al. [7] in 1962 first
reported a QSAR-based study through the correlation between n-octanol/water partition
coefficient and biological activity exhibited by those compounds. Many scientists have
since followed in his footsteps and reported several such experimental and theoretical
studies that have shaped the field of modern QSAR [8–36].

Toxicity of organic compounds is measured in terms of parameters like pLC50, pIC50,
and pIGC50 which essentially measure the negative logarithm of the concentration of
the toxin needed to kill half of the target population. These measures of toxicity have
been extensively used in QSAR studies [37–42]. In toxicology studies, the aforementioned
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concentration depends on the toxicokinetic and toxicodynamic processes in a linear fashion.
A library of descriptors, namely, quantum chemical and electronic energy descriptors,
thermodynamic potentials, hydrophobicity, shape, topology, etc., have been used in QSAR-
based studies [43]. Several global and local reactivity parameters are available within the
purview of conceptual density functional theory (CDFT) that act as effective descriptors for
predicting biological and toxicological activities [44–49]. Electrophilicity index (ω) is one
such important descriptor that quantifies the electro-deficient nature of a molecule [50,51].
It has been previously utilized in predicting the biological activity (in terms of relative
binding affinity values) of testosterone and estrogen derivatives [40], and the toxicity
of benzidine [52] and polychlorinated biphenyls [38], to name a few. In recent times,
machine learning is also becoming an integral part of drug design and QSAR studies in
general [53–57].

This article provides a concise discussion on the toxicity of certain sets of bioactive
compounds in terms of the global and local electrophilicity indices, and the simple yet
effective methods utilized in developing the models.

2. Theoretical Background

According to Hansch [58,59], any correlation drawn between the biological activity of
any system and its physicochemical properties ideally includes a steric part, a hydrophobic
part, and an electronic part, to model a proper mathematical representation of the bioactivity.
Now, the percentages of these three will vary depending on the mechanism, the receptor
site, the mode of action, and several other factors. The hydrophobicity (or lipophilicity)
parameter has gained a lot of importance in its usage as a descriptor owing to the fact that
it can effectively describe the protoplasmic environment within a biosystem. However,
using only the hydrophobic parameter is not enough in several types of mechanisms. Both
receptor- and non-receptor-mediated toxicological reactions can occur either via covalent or
noncovalent mechanisms. The latter form is especially important in aqueous toxicity, where
the inclusion of the electronic parameter is required to produce a statistically relevant SAR
model since hydrophobicity alone cannot describe the narcotic properties of polar chemicals.
Thus, evaluating the electronic state of a compound is extremely useful in the prediction
of its biological/toxicological properties, especially in reaction mechanisms driven by
electrophile–nucleophile interactions. In this regard, we have resorted to CDFT-based
chemical concepts.

For a system containing N-electrons, chemical reactivity parameters such as elec-
tronegativity (χ) [60,61] and chemical hardness (η) [62] are obtained within the domain
of CDFT [63]. The former describes the ability of an atom in a molecule to attract bonded
electrons towards itself and is perhaps the most fundamental descriptor required for the
analysis of chemical activity. In DFT, this parameter is defined as the first derivative of the
total energy (E) with respect to the total number of electrons (N) while the external potential
(v(
→
r )) is kept constant. Parr [64] made a connection of this formulation with the negative

of chemical potential (µ) which describes the escaping tendency of the electron cloud (see
Equation (1)). Over the years many scales of electronegativity have been developed, such
as those provided by Pauling [60,65], Mulliken [66], Allred-Rochow [67], etc. The second
derivative of E with respect to N at constant v(

→
r ), on the other hand, describes the chemical

hardness (η) of a system. This, by extension to Equation (1), becomes the first derivative
of µ with respect to N (see Equation (2)). These definitions of electronegativity, chemical
potential, and hardness lead up to the description of the electrophilicity index (ω) [64,68,69].
It first originated in the field of organic chemistry by Ingold’s [70,71] classification of
organic chemical reactions in two groups: the electron-deficient species (electrophiles) char-
acterized by their electrophilicity, and electron-rich species (nucleophiles) characterized by
their nucleophilicity. These qualitative descriptions came long before any mathematical
representation of electrophilicity was known. Finally, after Maynard’s [72] qualitative
description of ω as the ratio between the square of electronegativity and hardness, Parr
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et al. [51] gave their quantitative description and defined it as the “electrophilic power” of a
ligand (see Equation (3)), comparing it to the definition of power in classical electrostatics.

χ = −µ =

(
∂E
∂N

)
v(
→
r )

(1)

η =

(
∂2E
∂N2

)
v(
→
r )

=

(
∂µ

∂N

)
v(
→
r )

(2)

ω =
µ2

2η
=

χ2

2η
(3)

During computation, we evoke the finite difference approximation [73] where the
∂N is approximated as the transfer of one electron to or from the neutral system and the
∂E becomes the corresponding energy change (EN−1 − EN or EN − EN+1). This way, the
differential equation can be transformed into a set of algebraic equations. The self-consistent
field (SCF) energy of the neutral system (with N electrons) and total single point energies
of the cationic (EN−1) and anionic (EN+1) systems are calculated to obtain the ionization
potential (I) and electron affinity (A) of the system as follows:

I = EN−1 − EN (4)

A = EN − EN+1 (5)

Thus, the hardness, chemical potential, and electronegativity are approximated as

η ≈ I − A (6)

µ = −χ ≈ −1
2
(I + A) (7)

Alternatively, to avoid high computational cost, we sometimes employ Koopmans’
theorem [74] to calculate I and A as follows (EHOMO and ELUMO are the energies of the
highest occupied and lowest unoccupied orbitals, respectively)

I = −EHOMO (8)

A = −ELUMO (9)

Equations (6) and (7) then transform to the following

η ≈ ELUMO − EHOMO (10)

µ = −χ ≈ 1
2
(EHOMO + ELUMO) (11)

The electrophilicity index is then evaluated using the values of µ and η following
Equation (3). Although the global reactivity indices are fundamentally related to the
energies of HOMO and LUMO energies, they help bring out different aspects of the
electronic structure of the systems [75,76].

3. Methodology

First and foremost, energy minimization by way of geometry optimization is per-
formed on all the compounds present in the dataset, viz., a set of 15 benzene derivatives
for studying the toxicity against Pimephales promelas (Figure 1) [56], datasets of polychlori-
nated dibenzofurans (PCDFs) (Table S1) and polychlorinated biphenyls (PCBs) (Table S2)
against radio-labeled tetrachlorodibenzo-p-dioxin (TCDD) [77], a set of 252 aliphatic com-
pounds (comprising alcohols, esters, acids, aldehydes, ketones, and amines; Table S3)
against Tetrahymena pyriformis [78], and a set of 32 pyridyl benzamides (Table S4) against
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Trypanosoma brucei [79]. The levels of theory used for computation of the above datasets are
B3LYP/6-31G(d) (for the first two datasets), HF/6-311G**, and HF/6-31G(d) for the third
and fourth datasets, respectively. The geometry optimization is followed by a frequency
calculation on the compounds at the respective levels of theory to ensure the absence of any
imaginary frequency. These computations are performed using the Gaussian 16 program
package [80]. Relevant CDFT descriptors are then evaluated with the help of the equations
provided in the “Theoretical background” section. We have then employed the multiple lin-
ear regression (MLR) and neural network (NN) methods to construct statistically relevant,
robust QSAR models for predicting toxicological/biological activities of several datasets.
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The general formula of any QSAR model is as follows:
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Activity/Property/Toxicity = f (physicochemical properties)

= a0 + a1x1 + a2x2 + a3x3 + . . . (12)

where xn are the descriptors and an are their corresponding coefficients.
In our cases, the mathematical descriptors for toxicity are pLC50, pIC50, and pIGC50

acting as the dependent variables, whereas the global and local electrophilicity indices and
hydrophobicity are the independent variables.

The efficacy of the constructed model is determined by some statistical parameters,
viz., coefficient of determination (R2), adjusted R2 (R2

adj), standard deviation (SD)

R2 = 1− ∑(Yobs −Ycalc)
2

∑
(
Yobs −Yobs

)2 (13)

R2
adj =

(N − 1) ∗ R2 − p
N − 1− p

(14)

SD =

√
∑(Yobs −Ycalc)

2

N − 1− p
(15)

where Yobs and Ycalc are the experimental and predicted dependent variables, respectively
(in our case, toxicities), N is the total number of observables, and p denotes the number of
descriptors used in the model.

3.1. Multiple Linear Regression (MLR)

The simple yet most widely accepted method, multiple linear regression (MLR) [81–84],
uses regression coefficient or the coefficient of determination (R2) and standard deviation
(SD) as its statistical metrics to judge the efficacy of the generated QSAR model. An initial
descriptor selection based on the knowledge of the reaction mechanism is followed by a
mathematical screening where possible combinations of the selected descriptors are tried
on the whole dataset. The relevance of each descriptor to the target activity is revealed
in terms of the magnitude and sign of the respective coefficients. Models with higher R2

and lower SD values are selected for further use, while the rest are rejected. The selected
combinations of descriptors are then employed on a training–test split of the dataset. The
model is trained on the training set and is used to predict the activity of the compounds in
the test set. Sometimes a validation set is also included. The regression model is generated
on the training set with the experimental toxicity (pLC50 or pIGC50) or bioactivity as
the dependent and the computed descriptors as the independent variables, followed by
utilizing it to predict the activity of the test set compounds.

The above approach of splitting the data has the drawback that its SD may vary
depending on which compounds are placed in the training and test sets. To remove
any such bias, the model needs to be fitted several times with different combinations
of training–test pairs each time, followed by evaluating the statistical metrics of the test
set and averaging them out. This technique is known as cross-validation. Threefold
cross-validation is employed by splitting the dataset into three equi-sized groups (sets
A, B, and C), where two of them form the training set while the other forms the test set.
Three such combinations are obtained. QSAR models are generated on all of them to
obtain their respective R2 and SD values. Another specific case of cross-validation, known
as the leave-one-out (LOO) cross-validation, is an exhaustive method that includes all
possible combinations within the dataset. In this method, the dataset (of, say, N number
of compounds) is split into a training set with N − 1 number of compounds, leaving only
one compound for testing the trained model. This is repeated N number of times and the
desired metric is averaged. However, being a very exhaustive process, it tends to be rather
time-consuming and computationally expensive.
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3.2. Neural Networks (NNs)

Apart from MLR, we have also utilized a supervised machine learning technique [85–93],
the multilayer perceptron (MLP) neural network [53,54,94–105] for toxicological predictions
by generating QSAR models with known values of hydrophobic (logP) and electronic (ω)
parameters. An MLP comprises input, hidden, and output layers, where the units in the
hidden layer are connected to those of the input layer by certain weights. The units in the
output layer are connected in a similar fashion to those of the hidden layer. The hidden layer
consists of a non-linear (most commonly, sigmoid) transfer function, y = 1/(1 + e−x), where
x is the total weighted input for the unit. Such transfer functions allow the hidden layer to
mimic bio-neurons, hence earning it the name “artificial neurons”. The output layer units also
consist of transfer functions which vary depending on the desired application of the MLP, e.g.,
while sigmoid functions are preferred for classification problems, linear functions are better
suited for regression problems to predict real-valued quantities (like pIGC50).

In our studies, we have initialized all the weights with random values. The training
data of descriptor-activity pairs are supplied as input, and the output error is calculated
for each input as the squared difference of the calculated output from the real output. This
error value is then back-propagated to update the weights between hidden-output and
input-hidden layers. The process is repeated until convergence is reached, where the final
set of weights is the trained set of parameters for the MLP which is then ready to predict
the target activity of the unknown molecules in the test set. This step is done by supplying
the descriptor values which get multiplied by the weights and sent to the hidden layer,
where the sigmoid function acts on them to predict the target activity.

4. Case Studies
4.1. Pimephales Promelas

The toxicity of a set of 15 benzene derivatives (optimized structures are shown in
Figure 1) towards Pimephales promelas (fathead minnow) is studied by developing SAR
models with pLC50 as the dependent variable and the hydrophobicity and electrophilicity
indices as the descriptors [56]. Initially, a training–test split of 10 and 5 is considered,
followed by the threefold cross-validation where each subdivision of the dataset (i.e., A, B,
and C) has five molecules each. The training was done taking either of the two sets, and
then the test was performed with the third set.

The prediction ability of the regression models generated is judged in terms of their
R2, adjusted-R2, and SD values. Several combinations of the electrophilicity (ω, ω2, and
ω3) and hydrophobicity (logP and (logP)2) are taken as the independent variables. The
regression models obtained by applying the three-fold cross-validation technique reveal
that ω2 (with an average R2 of 0.890) shows a higher correlation compared to that of ω
(average R2 = 0.864) or ω3 (average R2 = 0.882). The results obtained considering logP and
(logP)2 are comparable to those obtained by using the electrophilicity indices. Considering
the fact that ω can be obtained much more easily through computation than obtaining the
experimental values of logP, the former is more convenient, cheaper, and faster to use than
the latter. The plot showing a good correlation between the experimental and predicted
pLC50 values for different cases is provided in Figure 2. Analysis through the MLP neural
network validates the results obtained from employing the simple MLR technique.
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4.2. Tetrahymena Pyriformis

A total of 252 aliphatic compounds grouped into six different categories based on
their primary functional group, viz., alcohols, esters, acids, aldehydes, ketones, and amines,
are selected for studying their toxicity (log(IGC50

−1)) against the ciliate Tetrahymena pyri-
formis [78]. CDFT-based electronic descriptors, electrophilicity, and local philicity are
considered as the independent variables for the QSTR modeling for toxicity prediction. The
study is performed for each group separately, and for the whole dataset as well. Each of
the six aforementioned groups (and their respective subgroups) is designated as electron
accepting or donating by comparing their electronegativity values with those of the nucleic
acid bases/selected DNA base pairs. Depending on whether the compound has an electron
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accepting or donating tendency, the local philicity parameter, ωm
+ or ωm

−, respectively, is
chosen as its descriptor of choice. To judge the model efficacy, the statistical parameter, viz.,
coefficient of determination (R2), is calculated. Figure 3 depicts the correlation between
the experimental and calculated toxicity values of all the six aforementioned groups of
compounds, along with those for the electron accepting and donating groups. R2 obtained
in these cases are 0.831 (109 aliphatic alcohols), 0.787 (39 aliphatic acids), 0.766 (51 aliphatic
esters), 0.803 (13 aliphatic aldehydes), 0.778 (15 ketones), and 0.791 (25 aliphatic amines).
Similar calculations performed for all the electron acceptor compounds (171), irrespective
of their functional group, delivers an R2 of 0.801. The same for all the electron donor
compounds (81) is 0.870. From the correlations obtained, it is very clear that the global
electrophilicity along with local philicity makes up a good pair of descriptors in explaining
the toxicity of these aliphatic compounds against T. pyriformis, especially when previous
studies [106–109] have reported SAR models with a higher number of predictors and/or
with poor correlations. The toxicity of the entire dataset is analyzed in terms of the number
of carbon atoms present in the respective compounds [110].
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The global and local electrophilicity indices are also employed [77] on a dataset of
polyaromatic hydrocarbons (PAH) to analyze the extent of their toxic effects towards
displacing half of the radio-labeled tetrachlorodibenzo-p-dioxin (TCDD) from an arylhydro-
carbon (Ah) receptor. For a dataset of electron acceptor [39,46] toxins, viz., polychlorinated
dibenzofurans (PCDF), the model is trained using experimental pIC50 values as dependent
and ω as the independent variables, respectively. The correlations obtained while using
ω as the sole descriptor for the PCDFs, in the training–test split and the whole dataset,
are R = 0.891 (for training; 0.834 for the test), and 0.891 (with an R2 of 0.786), respectively.
An F-ratio of 96.743 is obtained, which is a good number for the given number of data
points and compared to other parameters. Ponec’s [111] method is employed to calculate
the probability of any random distribution producing the same R2, which turned out to be
10−6, ruling out the possibility of any chance correlation. The dataset of PCBs is then used
as an external validation set to test the efficacy of the predictive ability of the QSAR model
constructed for the training set of the PCDFs. A correlation of 0.834 is obtained for the
same, suggesting the relevance of ω as the sole descriptor in such electrophile–nucleophile
mechanism-driven processes (see Figure 4).
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Figure 4. Plots of calculated vs. observed pIC50 for (a) training set of PCDFs, (b) test set of PCBs,
(c) training set of aliphatic amines, and (d) test set of amino alcohols (adapted from Ref. [77] with
permission from Springer Nature. © 2006, Springer Science Business Media, Inc.).

In the presence of biomolecules, while PCDFs and PCBs exhibit an electron-accepting
nature [39,52,112,113], aliphatic amines behave as electron donors. The electron accept-
ing/donating nature of these compounds is determined by analyzing the transfer of a
fractional number of electrons (∆N) from these compounds to the DNA base pairs/nucleic
acid bases. A positive and negative ∆N represents the compounds as electron acceptors and
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donors, respectively. The toxicity of these amines towards T. pyriformis is also studied. They
interact with the biomolecules through the donation of electrons [78]. Since there exists no
reliable measure of global nucleophilicity, the maximum value of the local variant (ωmax

−)
at the N atom of the amines is considered as the independent variable of the regression
model. A correlation (R) of 0.936 was obtained with the NPA-derived ωmax

− values for the
QSAR equation:

pIC50 = 2.2137 (0.2076) ∗ ω−N max − 1.6895(+0.0822) (16)

N = 18, SD = 0.1493, R = 0.9363, R2
adj = 0.8689

A high F-ratio of 113.7066 is obtained, and a high Q2 value (leaving five points) of
0.8243 is obtained. The possibility of a chance correlation is ruled out by a probability value
of 0.18 × 10−5. Further, models are also generated for the combined datasets of amines and
amino alcohols, followed by a training–test split. The predictive ability of global and local
electrophilicity indices is demonstrated for both electron acceptors and donors in both the
gas and solution phases.

Another study [114] on T. pyriformis includes the performance of an extensive MLP
neural network and an MLR study using electrophilicity indices in conjunction with the
hydrophobicity parameters of 169 aliphatic compounds. The correlation coefficient of the
models based on the hydrophobicity and electrophilicity parameters lies within 0.790–0.983
and 0.703–0.779. Among all possible descriptor combinations, the best QSTR models turned
out to be the ones with {ω, logP}, {ω2, logP} and {logP, (logP)2} pairs of descriptors.

4.3. Trypanosoma Brucei

A total of 32 numbers of pyridyl benzamide derivatives are considered for the study
against the sleeping sickness, Human African trypanosomiasis (HAT) causing parasite
Trypanosoma brucei [79]. All possible combinations of ω, ω2 and other descriptors utilized
by Masand and coworkers [115] (provided in Table 1) are utilized to generate relevant
regression models through MLR. The R2 and SD values obtained for the undivided dataset
and the three combinations of the training–test split in the three-fold CV are provided
in Table 2, which indicates that the 1st, 3rd, 4th, 6th, 7th, and 10th models show good
correlation, while for the rest of the models the R2 does not cross the threshold value of 0.6
and is thus statistically irrelevant. An important observation is noted that on the removal
of the RDF55s descriptor, there is a drastic reduction in the model efficiency, which clearly
suggests its importance in this study.

Table 1. List of descriptors obtained from Ref. [115] used along with the electrophilicity index to
develop QSTR models describing the HAT activity of pyridyl benzamide derivatives.

GATS8c Geary autocorrelation of lag-8/weighted by atomic charges

RDF40p Radial distribution function-040/weighted by relative polarizabilities

RDF55s Radial distribution function-055/weighted by relative I-state

E1 1st component accessibility directional WHIM index/weighted by relative I-state

RDF40m Radial distribution function-040/weighted by relative mass
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Table 2. R2 and SD values obtained for the undivided dataset and the three combinations of training–
test split in the three-fold cross-validation (reprinted from Ref. [79]. © 2019, IGI Global).

Model No. Generalized Regression Equations
Undivided Case 1 Case 2 Case 3

R2 SD R2 SD R2 SD R2 SD

1 pIC50 = a + b*GATS8c + c*RDF40p + d*RDF55s 0.8284 0.1960 0.9182 0.1320 0.8216 0.1877 0.6971 0.2213
2 pIC50 = a + b*GATS8c + c*RDF40p + d*ω 0.3743 0.3742 0.4839 0.1872 0.3764 0.1546 0.2351 0.4378
3 pIC50 = a + b*GATS8c + c*ω + d*RDF55s 0.7599 0.2318 0.8325 0.1768 0.7829 0.2063 0.5114 0.2415
4 pIC50 = a + b*ω + c*RDF40p + d*RDF55s 0.7113 0.2542 0.7644 0.1983 0.7098 0.2283 0.4961 0.2529
5 pIC50 = a + b*GATS8c + c*RDF40p + d*ω2 0.3650 0.3770 0.4825 0.1827 0.3901 0.1447 0.2211 0.4098
6 pIC50 = a + b*GATS8c + c*ω2 + d*RDF55s 0.7592 0.2322 0.8323 0.1762 0.7853 0.2058 0.5817 0.2299
7 pIC50 = a + b*ω2 + c*RDF40p + d*RDF55s 0.7068 0.2562 0.7620 0.1977 0.7101 0.2301 0.4645 0.2575
8 pIC50 = a + b*GATS8c + c*ω + d*ω2 0.3285 0.3877 0.4334 0.1888 0.2506 0.1882 0.1725 0.4421
9 pIC50 = a + b*ω + c*RDF40p + d*ω2 0.3660 0.3767 0.4746 0.1781 0.2911 0.1800 0.1810 0.4594
10 pIC50 = a + b*ω + c*ω2 + d*RDF55s 0.6836 0.2661 0.7637 0.2014 0.6962 0.2212 0.5163 0.2364
11 pIC50 = a + b*E1s + c*RDF40m + d*GATS6m 0.3056 0.3942 0.3991 0.1983 0.3199 0.2404 0.1159 0.2055
12 pIC50 = a + b*E1s + c*RDF40m + d*ω 0.3647 0.3771 0.4949 0.1839 0.3196 0.1784 0.2793 0.3939
13 pIC50 = a + b*E1s + c*ω + d*GATS6m 0.4847 0.3396 0.5936 0.2275 0.5415 0.2138 0.3369 0.3171
14 pIC50 = a + b*ω + c*RDF40m + d*GATS6m 0.4758 0.3425 0.5824 0.2177 0.5019 0.2127 0.3263 0.3134
15 pIC50 = a + b*E1s + c*RDF40m + d*ω2 0.3571 0.3793 0.4997 0.1769 0.3241 0.1706 0.2135 0.4273
16 pIC50 = a + b*E1s + c*ω2 + d*GATS6m 0.4763 0.3424 0.5839 0.2266 0.5473 0.2083 0.2648 0.3481
17 pIC50 = a + b*ω2 + c*RDF40m + d*GATS6m 0.4666 0.3455 0.5708 0.2181 0.5105 0.2030 0.2518 0.3441
18 pIC50 = a + b*E1s + c*ω + d*ω2 0.3421 0.3421 0.4673 0.1865 0.2898 0.1777 0.1339 0.4681
19 pIC50 = a + b*ω + c*ω2 + d*GATS6m 0.4784 0.3417 0.5861 0.2301 0.4044 0.2680 0.1784 0.3648
20 pIC50 = a + b*ω + c*RDF40m + d*ω2 0.3583 0.3790 0.4822 0.1844 0.2185 0.2091 0.1454 0.4405
21 pIC50 = a + b*ω + c*ω2 0.3272 0.3813 0.4540 0.1813 0.2922 0.1765 0.1288 0.4612

A technique for comparing the developed regression models, known as the sum of
ranking differences (SRDs) [116,117], is carried out where the models are ranked in order
of their efficacy. It requires the data to be arranged in a matrix structure with the rows
representing the statistical metrics (R2 and SD), and the columns are the models to be
ranked. An ideal or golden standard is chosen (here they are the highest R2 and least SD
values) whose difference from the R2 and SD values of each of the models generates the
SRD values. These SRD values are then compared to judge the models’ efficacy. In this
ranking method, the lower the SRD value, the better is the model. Figure 5 represents the
ranking of the models, showcasing their relative position and extent of the similarity.
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Several other studies on QSAR modeling are reported on the effective use ofω as the
electronic factor. The toxicity of arsenic ions is predicted using regression models based on
atomic charge along with global and local electrophilicity indices. The model was trained
on datasets of alkali and transition-metal ions [118]. The bio-activity of the derivatives of
the sex hormones, testosterone and estrogen, are also successfully reported in terms of
ω [40]. Several other quantum chemical descriptors, viz., IP, EA, η, softness (S), χ, along
with ω are employed for studying the correlations in an alkane series, where it is noted
that the IP performs best in describing various macroscopic properties [119].

5. Conclusions

The present article focuses on an analysis relating to the simplest yet effective re-
gression techniques in the field of QSAR. Specifically, it delivers strong evidence for the
effectiveness of both global and local electrophilicities in predicting toxicity and bioac-
tivity. The ease of their computation compared to other common descriptors comes as
an added bonus for their extensive usage. Employing them, either as solo descriptors
in single-parameter models, or with other descriptors like the number of carbon atoms,
charge transfer, hydrophobicity, etc., in multi-parameter regression models, has resulted in
high coefficients of determination and low standard deviation. Needless to say, however,
prior knowledge of the reaction mechanism is of the utmost importance in order to select
appropriate descriptors for the target activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15111383/s1, Table S1: Polychlorinated dibenzofurans with
identity number (ID) representing the substitution pattern. (reprinted from ref. [77] with permission
from Springer Nature. Copyright © 2006, Springer Science Business Media, Inc.); Table S2: Polychlo-
rinated biphenyls with identity number (ID) rep- resenting the substitution pattern. (reprinted from
ref. [77] with permission from Springer Nature. Copyright © 2006, Springer Science Business Media,
Inc.). Table S3: Dataset of 252 aliphatic compounds considered against Tetrahymena pyriformis [78].
Table S4: The dataset of 32 pyridyl benzamides considered against Trypanosoma brucei (reprinted from
Ref. [79]. © 2019, IGI Global).

Author Contributions: Conceptualization, P.K.C., R.P. and S.G.P.; methodology, R.P. and S.G.P.;
software, R.P.; validation, P.K.C., R.P. and S.G.P.; formal analysis, R.P. and S.G.P.; investigation, R.P.
and S.G.P.; resources, P.K.C.; data curation, R.P. and S.G.P.; writing—original draft preparation, R.P.
and S.G.P.; writing—review and editing, P.K.C., R.P. and S.G.P.; visualization, P.K.C.; supervision,
P.K.C.; project administration, P.K.C.; funding acquisition, P.K.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Department of Science and Technology (DST), New Delhi,
grant number SR/S2/JCB-09/2009.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary material.

Acknowledgments: P.K.C. thanks Chia Ming Chang for kindly inviting him to contribute a review
article to the Special Issue of Pharmaceuticals on “Applications of Conceptual Density Functional
Theory to the Chemistry and Discovery of Bioactive Compounds”. R.P. and S.G.P. thank CSIR and
IIT Kharagpur, respectively, for their fellowships.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of this article, financial, and/or otherwise.

References
1. Karcher, W.; Devillers, J. SAR and QSAR in environmental chemistry and toxicology: Scientific tool or wishful thinking? In

Practical Applications of Quantitative Structure–Activity Relationships (QSAR) in Environmental Chemistry and Toxicology; Karcher, W.,
Devillers, J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1990; pp. 1–12.

2. Selassie, C.; Mekapati, S.; Verma, R. QSAR: Then and Now. Curr. Top. Med. Chem. 2002, 2, 1357–1379. [CrossRef]

https://www.mdpi.com/article/10.3390/ph15111383/s1
https://www.mdpi.com/article/10.3390/ph15111383/s1
http://doi.org/10.2174/1568026023392823


Pharmaceuticals 2022, 15, 1383 13 of 16

3. Roy, K.; Mitra, I. Advances in quantitative structure–activity relationship models of antioxidants. Expert Opin. Drug Discov. 2009,
4, 1157–1175. [CrossRef]

4. Schultz, T.W.; Cronin, M.T.D.; Walker, J.D.; Aptula, A.O. Quantitative structure–activity relationships (QSARs) in toxicology: A
historical perspective. J. Mol. Struct. THEOCHEM 2003, 622, 1–22. [CrossRef]

5. Schultz, T.W.; Cronin, M.T.D.; Netzeva, T.I. The present status of QSAR in toxicology. J. Mol. Struct. THEOCHEM 2003, 622, 23–38.
[CrossRef]

6. Gombar, V.K.; Mattioni, B.E.; Zwickl, C.; Deahl, J.T. Computational Approaches for Assessment of Toxicity: A Historical
Perspective and Current Status. In Computational Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 183–215.

7. Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett
Substituent Constants and Partition Coefficients. Nature 1962, 194, 178–180. [CrossRef]

8. Hansch, C.; Hoekman, D.; Leo, A.; Weininger, D.; Selassie, C.D. Chem-bioinformatics: Comparative QSAR at the interface
between chemistry and biology. Chem. Rev. 2002, 102, 783–812. [CrossRef]

9. Katritzky, A.R.; Kuanar, M.; Slavov, S.; Hall, C.D.; Karelson, M.; Kahn, I.; Dobchev, D.A. ChemInform Abstract: Quantitative
Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. ChemInform 2011, 42. [CrossRef]

10. Fujita, T.; Winkler, D.A. Understanding the Roles of the “two QSARs”. J. Chem. Inf. Model. 2016, 56, 269–274. [CrossRef]
11. Wang, L.; Ding, J.; Pan, L.; Cao, D.; Jiang, H.; Ding, X. Quantum chemical descriptors in quantitative structure–activity relationship

models and their applications. Chemom. Intell. Lab. Syst. 2021, 217, 104384. [CrossRef]
12. Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010, 29, 476–488. [CrossRef]
13. Verina, J.; Malde, A.; Khedkar, S.; Iyer, R.; Coutinho, E. Local indices for similarity analysis (LISA)-A 3D-QSAR formalism based

on local molecular similarity. J. Chem. Inf. Model. 2009, 49, 2695–2707. [CrossRef]
14. Verma, R.P.; Hansch, C. Use of 13C NMR chemical shift as QSAR/QSPR descriptor. Chem. Rev. 2011, 111, 2865–2899. [CrossRef]
15. McFarland, J.W. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 1970, 13, 1192–1196.

[CrossRef]
16. Itskowitz, P.; Tropsha, A. K nearest neighbors QSAR modeling as a variational problem: Theory and applications. J. Chem. Inf.

Model. 2005, 45, 777–785. [CrossRef]
17. Ruggiu, F.; Gizzi, P.; Galzi, J.L.; Hibert, M.; Haiech, J.; Baskin, I.; Horvath, D.; Marcou, G.; Varnek, A. Quantitative structure-

property relationship modeling: A valuable support in high-throughput screening quality control. Anal. Chem. 2014, 86,
2510–2520. [CrossRef]

18. Nieto-Draghi, C.; Fayet, G.; Creton, B.; Rozanska, X.; Rotureau, P.; De Hemptinne, J.C.; Ungerer, P.; Rousseau, B.; Adamo, C. A
General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. Chem.
Rev. 2015, 115, 13093–13164. [CrossRef]

19. Shahlaei, M.; Fassihi, A. QSAR analysis of some 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas as CCR5 inhibitors using
genetic algorithm-least square support vector machine. Med. Chem. Res. 2013, 22, 4384–4400. [CrossRef]

20. Katritzky, A.R.; Maran, U.; Lobanov, V.S.; Karelson, M. Structurally Diverse Quantitative Structure-Property Relationship
Correlations of Technologically Relevant Physical Properties. J. Chem. Inf. Comput. Sci. 2000, 40, 1–18. [CrossRef]

21. Shahlaei, M.; Madadkar-Sobhani, A.; Fassihi, A.; Saghaie, L.; Shamshirian, D.; Sakhi, H. Comparative quantitative structure-
activity relationship study of some 1-aminocyclopentyl-3-carboxyamides as CCR2 inhibitors using stepwise MLR, FA-MLR, and
GA-PLS. Med. Chem. Res. 2012, 21, 100–115. [CrossRef]

22. Simarro, P.P.; Franco, J.; Diarra, A.; Postigo, J.A.R.; Jannin, J. Update on field use of the available drugs for the chemotherapy of
human African trypanosomiasis. Parasitology 2012, 139, 842–846. [CrossRef]

23. Vigneresse, J.L. Revisiting immiscibility through DFT chemical descriptors. Theor. Chem. Acc. 2020, 139, 1–15. [CrossRef]
24. Gupta, S.P. Quantitative Structure–Activity Relationship Studies on Na+, K+-ATPase Inhibitors. Chem. Rev. 2012, 112, 3171–3192.

[CrossRef] [PubMed]
25. Gholivand, K.; Ebrahimi Valmoozi, A.A.; Mahzouni, H.R.; Ghadimi, S.; Rahimi, R. Molecular docking and QSAR studies:

Noncovalent interaction between acephate analogous and the receptor site of human acetylcholinesterase. J. Agric. Food Chem.
2013, 61, 6776–6785. [CrossRef] [PubMed]

26. Ahmed, A.; Sandler, S.I. Physicochemical properties of hazardous energetic compounds from molecular simulation. J. Chem.
Theory Comput. 2013, 9, 2389–2397. [CrossRef] [PubMed]

27. Gupta, S.P. QSAR Studies on Hydroxamic Acids: A Fascinating Family of Chemicals with a Wide Spectrum of Activities. Chem.
Rev. 2015, 115, 6427–6490. [CrossRef]

28. Hu, J.; Zhang, X.; Wang, Z. A review on progress in QSPR studies for surfactants. Int. J. Mol. Sci. 2010, 11, 1020–1047. [CrossRef]
29. Bo, W.; Chen, L.; Qin, D.; Geng, S.; Li, J.; Mei, H.; Li, B.; Liang, G. Application of quantitative structure-activity relationship to

food-derived peptides: Methods, situations, challenges and prospects. Trends Food Sci. Technol. 2021, 114, 176–188. [CrossRef]
30. Belfield, S.J.; Enoch, S.J.; Firman, J.W.; Madden, J.C.; Schultz, T.W.; Cronin, M.T.D. Determination of “fitness-for-purpose” of

quantitative structure-activity relationship (QSAR) models to predict (eco-)toxicological endpoints for regulatory use. Regul.
Toxicol. Pharmacol. 2021, 123, 104956. [CrossRef]

31. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini,
R.; et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010. [CrossRef]

http://doi.org/10.1517/17460440903307409
http://doi.org/10.1016/S0166-1280(02)00614-0
http://doi.org/10.1016/S0166-1280(02)00615-2
http://doi.org/10.1038/194178b0
http://doi.org/10.1021/cr0102009
http://doi.org/10.1002/chin.201120272
http://doi.org/10.1021/acs.jcim.5b00229
http://doi.org/10.1016/j.chemolab.2021.104384
http://doi.org/10.1002/minf.201000061
http://doi.org/10.1021/ci900224u
http://doi.org/10.1021/cr100125d
http://doi.org/10.1021/jm00300a040
http://doi.org/10.1021/ci049628+
http://doi.org/10.1021/ac403544k
http://doi.org/10.1021/acs.chemrev.5b00215
http://doi.org/10.1007/s00044-012-0430-2
http://doi.org/10.1021/ci9903206
http://doi.org/10.1007/s00044-010-9501-4
http://doi.org/10.1017/S0031182012000169
http://doi.org/10.1007/s00214-020-02652-6
http://doi.org/10.1021/cr200097p
http://www.ncbi.nlm.nih.gov/pubmed/22360614
http://doi.org/10.1021/jf401092h
http://www.ncbi.nlm.nih.gov/pubmed/23796225
http://doi.org/10.1021/ct301129x
http://www.ncbi.nlm.nih.gov/pubmed/26583729
http://doi.org/10.1021/cr500483r
http://doi.org/10.3390/ijms11031020
http://doi.org/10.1016/j.tifs.2021.05.031
http://doi.org/10.1016/j.yrtph.2021.104956
http://doi.org/10.1021/jm4004285


Pharmaceuticals 2022, 15, 1383 14 of 16

32. Bruce, C.L.; Melville, J.L.; Pickett, S.D.; Hirst, J.D. Contemporary QSAR Classifiers Compared. J. Chem. Inf. Model. 2007, 47,
219–227. [CrossRef]

33. Ferrins, L.; Gazdik, M.; Rahmani, R.; Varghese, S.; Sykes, M.L.; Jones, A.J.; Avery, V.M.; White, K.L.; Ryan, E.; Charman, S.A.;
et al. Pyridyl benzamides as a novel class of potent inhibitors for the kinetoplastid Trypanosoma brucei. J. Med. Chem. 2014, 57,
6393–6402. [CrossRef] [PubMed]

34. Escuder-Gilabert, L.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Quantitative Retention-Structure and
Retention-Activity Relationship Studies of Local Anesthetics by Micellar Liquid Chromatography. Anal. Chem. 1998, 70, 28–34.
[CrossRef] [PubMed]

35. Guo, X.D.; Zhang, L.J.; Qian, Y. Systematic Multiscale Method for Studying the Structure–Performance Relationship of Drug-
Delivery Systems. Ind. Eng. Chem. Res. 2012, 51, 4719–4730. [CrossRef]

36. Burden, F.R. Quantitative Structure-Activity Relationship Studies Using Gaussian Processes. J. Chem. Inf. Comput. Sci. 2001, 41,
830–835. [CrossRef] [PubMed]

37. Khadikar, P.V.; Mather, K.C.; Singh, S.; Phadnis, A.; Shrivastava, A.; Mandaloi, M. Study on quantitative structure–toxicity
relationships of benzene derivatives acting by narcosis. Bioorg. Med. Chem. 2002, 10, 1761–1766. [CrossRef]

38. Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P.K. Group Philicity and Electrophilicity as Possible Descriptors
for Modeling Ecotoxicity Applied to Chlorophenols. Chem. Res. Toxicol. 2006, 19, 356–364. [CrossRef]

39. Parthasarathi, R.; Padmanabhan, J.; Subramanian, V.; Maiti, B.; Chattaraj, P.K. Chemical Reactivity Profiles of Two Selected
Polychlorinated Biphenyls. J. Phys. Chem. A 2003, 107, 10346–10352. [CrossRef]

40. Parthasarathi, R.; Subramanian, V.; Roy, D.R.; Chattaraj, P.K. Electrophilicity index as a possible descriptor of biological activity.
Bioorg. Med. Chem. 2004, 12, 5533–5543. [CrossRef]

41. Russom, C.L.; Bradbury, S.P.; Broderius, S.J.; Hammermeister, D.E.; Drummond, R.A. Predicting modes of toxic action from
chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas). Environ. Toxicol. Chem. 1997, 16, 948–967.
[CrossRef]

42. Zhao, Y.H.; Cronin, M.T.D.; Dearden, J.C. Quantitative Structure-Activity Relationships of Chemicals Acting by Non-polar
Narcosis—Theoretical Considerations. Quant. Struct. Relatsh. 1998, 17, 131–138. [CrossRef]

43. Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96,
1027–1044. [CrossRef] [PubMed]

44. Chakraborty, A.; Giri, S.; Duley, S.; Anoop, A.; Bultinck, P.; Chattaraj, P.K. Aromaticity in all-metal annular systems: The
counter-ion effect. Phys. Chem. Chem. Phys. 2011, 13, 14865–14878. [CrossRef] [PubMed]

45. Chattaraj, P.K.; Roy, D.R. Update 1 of: Electrophilicity Index. Chem. Rev. 2007, 107, PR46–PR74. [CrossRef]
46. Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity Index. Chem. Rev. 2006, 106, 2065–2091. [CrossRef]
47. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [CrossRef]
48. Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA; Oxford, UK,

1989.
49. Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P.

Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Acc. 2020, 139, 36. [CrossRef]
50. Parthasarathi, R.; Padmanabhan, J.; Elango, M.; Chitra, K.; Subramanian, V.; Chattaraj, P.K. p K a Prediction Using Group Philicity.

J. Phys. Chem. A 2006, 110, 6540–6544. [CrossRef]
51. Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [CrossRef]
52. Parthasarathi, R.; Padmanabhan, J.; Sarkar, U.; Maiti, B.; Subramanian, V.; Chattaraj, P.K. Toxicity analysis of benzidine through

chemical reactivity and selectivity profiles: A DFT approach. Internet Electron. J. Mol. Des. 2003, 2, 798–813.
53. Bansal, S.; Dixit, R. Performance enhancement of the pattern recalling efficiency of Hopfield neural network using genetic

algorithm for cursive handwritten character recognition. Int. J. Appl. Pattern Recognit. 2016, 3, 59. [CrossRef]
54. Gridach, M. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform. 2017, 70, 85–91. [CrossRef]

[PubMed]
55. Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; CRC Press: Boca Raton, FL, USA, 2018;

Volume 44, ISBN 9780429968211.
56. Pal, R.; Jana, G.; Sural, S.; Chattaraj, P.K. Hydrophobicity versus electrophilicity: A new protocol toward quantitative structure–

toxicity relationship. Chem. Biol. Drug Des. 2019, 93, 1083–1095. [CrossRef] [PubMed]
57. Bianucci, A.M.; Micheli, A.; Sperduti, A.; Starita, A. A Novel Approach to QSPR/QSAR Based on Neural Networks for Structures.

In Soft Computing Approaches in Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; pp. 265–296.
58. Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem.

Soc. 1964, 86, 1616–1626. [CrossRef]
59. Kubinyi, H. Methods and Principles in Medicinal Chemistry. In QSAR: Hansch Analysis and Related Approaches; Wiley-VCH:

Weinheim, Germany; New York, NY, USA, 1993; p. 438, ISBN 352730035X.
60. Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithica, NY, USA, 1960.
61. Sen, K.; Jorgenson, C. Electronegativity. In Structure and Bonding Bonding; Springer: Berlin/Heidelberg, Germany, 1987.
62. Pearson, R.G. Chemical Hardness; WileyVCH: Weinheim, Germany, 1997.
63. Chattaraj, P.K. (Ed.) Chemical Reactivity Theory; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9780429137228.

http://doi.org/10.1021/ci600332j
http://doi.org/10.1021/jm500191u
http://www.ncbi.nlm.nih.gov/pubmed/24978605
http://doi.org/10.1021/ac970464o
http://www.ncbi.nlm.nih.gov/pubmed/21644596
http://doi.org/10.1021/ie2014668
http://doi.org/10.1021/ci000459c
http://www.ncbi.nlm.nih.gov/pubmed/11410065
http://doi.org/10.1016/S0968-0896(02)00055-X
http://doi.org/10.1021/tx050322m
http://doi.org/10.1021/jp035620b
http://doi.org/10.1016/j.bmc.2004.08.013
http://doi.org/10.1002/etc.5620160514
http://doi.org/10.1002/(SICI)1521-3838(199804)17:02&lt;131::AID-QSAR131&gt;3.0.CO;2-L
http://doi.org/10.1021/cr950202r
http://www.ncbi.nlm.nih.gov/pubmed/11848779
http://doi.org/10.1039/c1cp21430f
http://www.ncbi.nlm.nih.gov/pubmed/21792426
http://doi.org/10.1021/cr078014b
http://doi.org/10.1021/cr040109f
http://doi.org/10.1021/cr990029p
http://doi.org/10.1007/s00214-020-2546-7
http://doi.org/10.1021/jp055849m
http://doi.org/10.1021/ja983494x
http://doi.org/10.1504/IJAPR.2016.076987
http://doi.org/10.1016/j.jbi.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28502909
http://doi.org/10.1111/cbdd.13428
http://www.ncbi.nlm.nih.gov/pubmed/30597757
http://doi.org/10.1021/ja01062a035


Pharmaceuticals 2022, 15, 1383 15 of 16

64. Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys. 1977, 68,
3801–3807. [CrossRef]

65. Pauling, L. The nature of the chemical bond. IV. the energy of single bonds and the relative electronegativity of atoms. J. Am.
Chem. Soc. 1932, 54, 3570–3582. [CrossRef]

66. Mulliken, R.S. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and
Electron Affinities. J. Chem. Phys. 1934, 2, 782–793. [CrossRef]

67. Allred, A.L.; Rochow, E.G. A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 1958, 5, 264–268.
[CrossRef]

68. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef]
69. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138.

[CrossRef]
70. Ingold, C.K. 266. Significance of tautomerism and of the reactions of aromatic compounds in the electronic theory of organic

reactions. J. Chem. Soc. 1933, 1120–1127. [CrossRef]
71. Ingold, C.K. Principles of an Electronic Theory of Organic Reactions. Chem. Rev. 1934, 15, 225–274. [CrossRef]
72. Maynard, A.T.; Huang, M.; Rice, W.G.; Covell, D.G. Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the

perspective of density-functional theory. Proc. Natl. Acad. Sci. USA 1998, 95, 11578–11583. [CrossRef]
73. Atoms, D.T.; Parr, M.R.G.; Yang, W. Book Review. Density Funct. Theory Atoms Mol. 1989, 47, 10101.
74. Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica

1934, 1, 104–113. [CrossRef]
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