
Citation: Mujammami, M.; Aleidi,

S.M.; Buzatto, A.Z.; Alshahrani, A.;

AlMalki, R.H.; Benabdelkamel, H.; Al

Dubayee, M.; Li, L.; Aljada, A.; Abdel

Rahman, A.M. Lipidomics Profiling

of Metformin-Induced Changes in

Obesity and Type 2 Diabetes Mellitus:

Insights and Biomarker Potential.

Pharmaceuticals 2023, 16, 1717.

https://doi.org/10.3390/

ph16121717

Academic Editor: Agnieszka

Sliwinska

Received: 6 November 2023

Revised: 6 December 2023

Accepted: 8 December 2023

Published: 11 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Lipidomics Profiling of Metformin-Induced Changes in Obesity
and Type 2 Diabetes Mellitus: Insights and Biomarker Potential
Muhammad Mujammami 1,2, Shereen M. Aleidi 3 , Adriana Zardini Buzatto 4 , Awad Alshahrani 5,
Reem H. AlMalki 6, Hicham Benabdelkamel 7 , Mohammed Al Dubayee 5 , Liang Li 4,8 , Ahmad Aljada 9,*
and Anas M. Abdel Rahman 6,9,*

1 University Diabetes Center, Medical City, King Saud University, Riyadh 11472, Saudi Arabia;
mhmujammami@ksu.edu.sa

2 Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University,
Riyadh 11461, Saudi Arabia

3 Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan,
Amman 11942, Jordan; s.aleidi@ju.edu.jo

4 The Metabolomics Innovation Center (TMIC), Edmonton, AB T6G 1C9, Canada;
zardinib@ualberta.ca (A.Z.B.); liang.li@ualberta.ca (L.L.)

5 College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard
Health Affairs, Riyadh 11426, Saudi Arabia; shahranias@ngha.med.sa (A.A.);
aldubayeemo@ngha.med.sa (M.A.D.)

6 Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal
Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; f1525907@kfshrc.edu.sa

7 Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University,
Riyadh 11461, Saudi Arabia; hbenabdelkamel@ksu.edu.sa

8 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
9 Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University,

Riyadh 11461, Saudi Arabia
* Correspondence: aaljada@alfaisal.edu (A.A.); aabdelrahman46@kfshrc.edu.sa (A.M.A.R.)

Abstract: Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In
the current study, an untargeted lipidomic analytical approach was used to investigate the alterations
in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese
diabetic patients, and to examine the alterations associated with metformin administration. A total
of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in
the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly
dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the
obese group. Metformin administration in obese diabetic patients was associated with significant
dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six
molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of
obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs),
one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST),
and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our
understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers
a new platform for potential biomarkers for the progression of diabetes and treatment response in
obese patients.

Keywords: lipidomics; high resolution mass spectrometry; metformin; type 2 diabetes mellitus
(T2DM); obesity; biomarker

1. Introduction

Type-2-diabetes mellitus (T2DM) is a chronic metabolic disease defined by abnormally
high blood glucose levels (hyperglycemia) due to impaired insulin secretion from pancreatic
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β-cells or insufficient cell response to insulin, resulting in insulin resistance [1]. T2DM is
a very common disease worldwide, and more than 700 million people are predicted to
have diabetes by 2045 [2]. The incidence of T2DM is linked to several contributing factors,
including genetic factors, obesity, a sedentary lifestyle, insulin resistance, epigenetics, and
mitochondrial dysfunction [1].

Obesity is an abnormal and excessive accumulation of body fat to an extent that is
associated with a potential health risk [3] (The body mass index (BMI), a measurement
based on individual weight and height, is the currently used screening tool for obesity.
A BMI greater than or equal to 30 kg/m2 indicates the presence of obesity, while a BMI
over 25 kg/m2 is considered overweight. The prevalence of obesity is now experiencing an
alarming increase in the world [3]. It is strongly associated with T2DM, and “diabesity”
describes the simultaneous occurrence of obesity and diabetes [4,5]. Almost 80% of the
patients with T2DM are usually characterized by being obese with a predominant abdomi-
nal fat accumulation, highlighting the link between adiposity and T2DM [4,5]. It is well
known that obesity promotes the pathogenesis of T2DM by developing insulin resistance,
the hallmark of T2DM [5]. Adipose tissue promotes insulin resistance by activating various
inflammatory mechanisms and increasing the release of free fatty acids (FFA), glycerol,
hormones, and pro-inflammatory cytokines that stimulate insulin resistance in the periph-
eral tissues [5,6]. Moreover, the aberrant accumulation and expansion of adipose tissue
in cases of obesity would create a microenvironment characterized by hypoactive fatty
acid metabolism and fuel cellular stress and pro-inflammatory alterations, which results in
increased lipolysis, oxidative stress, mitochondrial dysfunction, hypoxia due to fibrosis,
and insufficient angiogenesis. All these obesity-induced changes would also contribute to
the development of T2DM [7]. In addition, in cases of obesity, the release of adipokines
from the adipose tissue is dysregulated [5]. The most abundant of these adipocytokines is
adiponectin, which is found to be negatively associated with obesity and T2DM [8].

This pathogenic association between obesity and T2DM would create a conducive
environment for dyslipidemia. Most obese and diabetic patients would have a dysregulated
lipid metabolism, clinically manifested as hyperlipidemia, characterized by increased levels
of triglycerides and low-density lipoprotein cholesterol (LDL-C) [9]. High levels of LDL-
C pose a significant risk for cardiovascular diseases, including ischemic heart disease
and stroke, and consequently, a substantial global health burden [10]. Strategies such
as preventive measures, early detection biomarkers, and effective lipid-lowering agents
are essential to mitigating the hyperlipidemia-associated health, economic, and social
impacts [10]. Statins are the cornerstone lipid-lowering agents. However, the current
lipid management practices [11] highlight the use of new therapeutic agents such as anti-
proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (PCSK9
inhibitors) and ezetimibe, particularly for patients with high cardiovascular risk, including
those who are obese and diabetic [11]. Therefore, understanding the alterations underlying
the molecular link between obesity, insulin resistance, T2DM, and lipid profiles is pivotal
for disease prevention and effective treatment.

Metformin is the first-line oral medication for the treatment of T2DM. It can be used
as a monotherapy in the early stages of the disease or combination with other antidia-
betic medications [12]. Metformin has multiple actions to lower blood glucose levels,
including enhancing insulin sensitivity in the peripheral tissue by increasing peripheral
glucose uptake, reducing intestinal glucose absorption, and inhibiting hepatic gluconeogen-
esis [13]. Moreover, it affects ATP production pathways, including glycolysis and oxidative
phosphorylation [13,14]. Beyond its antidiabetic activity, metformin has documented ef-
fects on weight and waist circumference reduction, particularly in obese and overweight
patients [15,16]. In addition, metformin has a role in the management of women with poly-
cystic ovary syndrome (PCOS) as an effective agent for inducing ovulation in non-obese
women with PCOS [17]. In addition, it has anti-inflammatory properties, a reduction of
oxidative stress [18], and anti-aging activity [19]. Moreover, metformin has lipid-modifying
effects. Its administration was associated with a reduction in the levels of circulating triglyc-
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erides (TGs) and total cholesterol and an increase in the levels of high-density lipoprotein
(HDL) [20,21]. In addition, using metformin was associated with significantly lower risks
of cardiovascular disease in patients with T2DM [22]. Despite the numerous studies about
metformin and its multiple actions, it is still necessary to understand its effects using
advanced analytical approaches, particularly in diabetic-obese patients.

Recently, we have investigated the metabolic effects of metformin in T2DM and its
impact on obesity and insulin resistance using an untargeted mass spectrometry-based
metabolomics approach [23,24]. In addition, we have examined the effects of short-term
metformin administration on lipid metabolisms and biochemical pathways in healthy
individuals [25,26]. In the current study, we used untargeted lipidomics, a comprehensive,
advanced analytical approach, to investigate the changes in the serum lipidome of a cohort
of healthy lean and obese individuals and examine alterations in the serum lipidome
associated with metformin administration in obese T2DM patients.

2. Results
2.1. Demographics and the Clinical Characteristics of this Study Population

Table 1 shows the demographics and clinical characteristics of this study population.
All this study groups, including non-diabetic control (n = 28), non-diabetic obese (n = 21),
obese diabetic (OT2DM) (n = 16), and obese diabetic on metformin (OT2DMMet) (n = 24),
have a significant difference in age (p-value < 0.05). The number of males and females is also
not equal between this study groups: there are more females in the obese and the OT2MMet
groups, while there are more males in the control and the OT2DM groups (Table 1). Among
the recruited controls, there are only 3 subjects with a BMI between 18 and 20 kg/m2

(underweight), and this proportion accounted for 10% of the control group. Regarding
the medication used, including cholesterol-lowering and antihypertensive agents, only
six patients among the OT2DMMet (25%) were taking statins (10–20 mg), and only seven
OT2DMMet patients (29%) were taking antihypertensive agents.

Table 1. Demographic data and the clinical characteristics of this study population.

Parameters

Non-Diabetic (n = 49) Diabetic (n = 40)

Control (n = 28) Obese (n = 21) OT2DM (n = 16) OT2DMMet (n = 24)

Mean SEM Mean SEM Mean SEM Mean SEM

Age (Y) 26 11.5 34.9 * 22.4 48.7 *§ 22.9 46.4 *§ 22.2

Gender (M/F) 17/17 # - 5/16 # - 11/5 # - 9/15 # -

BMI (kg/m2) 23.1 2.9 38.7 * 17.5 33.6 * 14.9 39.7 §} 14.3

FBG (mmol/L) 5.1 1 5.3 1 10.2 *§ 9.7 9.6 *§ 7.5

HbA1c (%) 5.6 0.5 5.2 3.4 8.4 *§ 5.6 8.6 *§ 3.9

LDL (mmol/L) 2.6 1.7 3.1 1.6 3.4 * 1.7 2.5 §} 1.5

HDL (mmol/L) 1.4 0.4 1.2 0.5 1 *§ 0.4 1 *§ 0.4

TG (mmol/L) 0.8 0.6 1.1 1 2.2 *§ 1.9 1.3 *} 0.9

Abbreviations: OT2DM, obese type 2 diabetic; OT2DMMet, obese type 2 diabetic on metformin; SEM, standard
error of the mean; BMI, body mass index; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; LDL, low-
density lipoprotein; HDL, high-density lipoprotein; TG, Triglycerides. Results are presented as Mean ± SEM.;
* p-value < 0.05 vs. control subjects; § p-value < 0.05 vs. obese subjects; } p-value < 0.05 vs. OT2DM (p-values were
calculated based on the Mann–Whitney test.) # Chi square: (non-diabetic = 0.054, Diabetic = 0.052).

2.2. Lipid Detection and Data Overview Using Multivariate Analysis

A total of 12,877 features (an average of 13,419 ± 920 per sample analysis) were
aligned and employed for identification. A three-tier identification approach embedded
in NovaMT LipidScreener was employed to annotate lipid features putatively. Among
the 12877 unique peaks detected after data processing, 5329 (Supplementary Table S2)
were annotated (abbreviations are presented in Supplementary Table S1). We applied a
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10-tier filtering and scoring approach based on the characteristics and behavior expected
for each lipid class within the employed method and biological samples to select the best
identification for isomeric/isobaric species and calculate match scores. The weighted scores
from every 10 tiers were combined to calculate a final match score for each annotated
feature. In Tier 1, 1168 features were annotated using tandem-MS (MS/MS match score
≥500) and a precursor mass filter (m/z tolerance of 20.0 ppm and 5.0 mDa). In Tier 2,
89 additional features were annotated using tandem-MS (MS/MS match score <500 and
m/z tolerance of 20.0 ppm and 5.0 mDa). In tier 3, the remaining unannotated features were
searched on NovaMT LipidScreener for mass match, and 4072 features were annotated. The
annotated lipid classes include fatty acyls, glycerolipids (GL), glycerophospholipids (GPL),
sphingolipids, sterols, and others (polyketides, prenols, saccharolipids, and compounds
not classified as lipids) (Figure 1).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 4 of 21 
 

 

annotated (abbreviations are presented in Supplementary Table S1). We applied a 10-tier 

filtering and scoring approach based on the characteristics and behavior expected for each 

lipid class within the employed method and biological samples to select the best identifi-

cation for isomeric/isobaric species and calculate match scores. The weighted scores from 

every 10 tiers were combined to calculate a final match score for each annotated feature. 

In Tier 1, 1168 features were annotated using tandem-MS (MS/MS match score ≥500) and 

a precursor mass filter (m/z tolerance of 20.0 ppm and 5.0 mDa). In Tier 2, 89 additional 

features were annotated using tandem-MS (MS/MS match score <500 and m/z tolerance of 

20.0 ppm and 5.0 mDa). In tier 3, the remaining unannotated features were searched on 

NovaMT LipidScreener for mass match, and 4072 features were annotated. The annotated 

lipid classes include fatty acyls, glycerolipids (GL), glycerophospholipids (GPL), sphin-

golipids, sterols, and others (polyketides, prenols, saccharolipids, and compounds not 

classified as lipids) (Figure 1). 

 

Figure 1. Lipid class distribution for identified features. Compounds identified by tandem-MS with 

MS/MS score ≥500 and precursor m/z error ≤5.0 mDa and 20.0 ppm were considered Tier 1; those 

identified by tandem-MS with MS/MS score <500 and precursor m/z error ≤5.0 mDa and 20.0 ppm 

were considered Tier 2; and compounds identified by mass-match with m/z error ≤5.0 mDa and 20.0 

ppm were deemed Tier 3. 

In addition, out of the 5329 annotated compounds, 885 (16.6%) contained vinyl-ether 

bonds (plasmalogens), 3507 (65.8%) included polyunsaturated fatty acids (PUFA), 1928 

(36.2%) had odd-chain fatty acids (OCFA), and 2561 (48.1%) were annotated with extra 

oxygen atoms that could indicate oxidation. 

As presented in Section 2.1, there was a significant difference between these study 

groups in demographic data, including age and gender. These were considered confound-

ing factors; therefore, their effect was extracted from the data set (n = 5329) to enhance the 

validity of the findings. Using Venn diagram analysis and a two-way ANOVA with an 

FDR corrected p-value (FDRp) cut-off = 0.05, the gender (Figures 2A) and age (Figure 2B) 

independent lipid molecules (n = 1265) (Supplementary Table S3) were extracted sequen-

tially from the overall detected features (n = 5329) and used throughout the conducted 

analysis. 

  

Figure 1. Lipid class distribution for identified features. Compounds identified by tandem-MS with
MS/MS score ≥500 and precursor m/z error ≤5.0 mDa and 20.0 ppm were considered Tier 1; those
identified by tandem-MS with MS/MS score <500 and precursor m/z error ≤5.0 mDa and 20.0 ppm
were considered Tier 2; and compounds identified by mass-match with m/z error ≤5.0 mDa and
20.0 ppm were deemed Tier 3.

In addition, out of the 5329 annotated compounds, 885 (16.6%) contained vinyl-ether
bonds (plasmalogens), 3507 (65.8%) included polyunsaturated fatty acids (PUFA), 1928
(36.2%) had odd-chain fatty acids (OCFA), and 2561 (48.1%) were annotated with extra
oxygen atoms that could indicate oxidation.

As presented in Section 2.1, there was a significant difference between these study
groups in demographic data, including age and gender. These were considered confound-
ing factors; therefore, their effect was extracted from the data set (n = 5329) to enhance the
validity of the findings. Using Venn diagram analysis and a two-way ANOVA with an FDR
corrected p-value (FDRp) cut-off = 0.05, the gender (Figure 2A) and age (Figure 2B) inde-
pendent lipid molecules (n = 1265) (Supplementary Table S3) were extracted sequentially
from the overall detected features (n = 5329) and used throughout the conducted analysis.

The age- and gender-independent lipidomics profile (n = 1265) of this study group was
examined using multivariate analysis. The principal component analysis (PCA) score plot
showed an overlap between some of these study groups, with a slight separation between
Lean and each of the obese+T2DM (OT2DM) and Obese+T2DM+Met (OT2DMMet) groups
(Figure 3A). The supervised analysis using a partial least squares discriminant analysis
(PLS-DA) score plot showed a clustering of the diabetics’ group versus non-diabetics but
with no apparent separation between the datasets (Figure 3B). However, in both models,
the lean control group was separated from the diabetics’ group, which can be observed in
the PLS-DA score plots.
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Figure 2. Sequential extraction of gender- and age-independent lipids from the panel of overall
detected features (A) The Venn diagram shows 2417 lipid molecules are gender-free after performing
a two-way ANOVA on 5329 to exclude the gender effect from the detected lipid molecules (groups
and gender). (B) The Venn diagram shows 1265 lipid molecules that are gender- and age-independent
after applying a two-way ANOVA to 2417.
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Figure 3. Lipidomic profile of this study group. The lipidomes of serum samples from this study
group were evaluated using (A) PCA score plots using the class order matters option and (B) PLS-DA
score plots based on 1265. Control, n = 28; obese, n = 21; obese with type 2 diabetes mellitus (OT2DM),
n = 16; and obese with type 2 diabetes mellitus taking metformin (OT2DMMet, n = 24).

2.3. Lipidomic Alterations Associated with Obesity in Non-Diabetic Subjects

The lipidomics alterations among the detected features (n = 1265) associated with
obesity in the absence of T2DM were examined by comparing the lean controls (n = 28)
with the obese non-diabetics (n =21) group. The supervised analysis using OPLS-DA
showed apparently clear group separation and sample clustering between lean and
obese subjects (R2 = 0.929, Q2 = 0.724), indicating a possible effect of obesity on the
serum lipidome profile (Figure 4A). Univariate analysis through a volcano plot was
performed to investigate the significantly up- and down-regulated lipid molecules
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between obese and lean groups, where the cut-offs were FDR p-value < 0.05 and FC
1.5 (Figure 4B). A total of 115 lipid molecules were significantly dysregulated in the
obese group compared to the lean group, where 64 and 51 lipid molecules were up- and
down-regulated, respectively (Supplementary Table S4). Diacylglycerols (DGs), Hexosyl
ceramides (HexCer), and Triacylglycerols (TGs) were the most upregulated subclass in
the obese compared to lean controls (n = 11, 10, and 7, respectively). In contrast, Sterol
Lipids (ST), Phosphatidylcholines (PCs), and Phosphatidylglycerols (PGs) were mostly
downregulated (ST, n = 9, PCs, n = 7, PGs, n = 5, respectively) (Figure 4C).

2.4. Lipidomic Alterations Associated with T2DM in Obese Patients

The lipidomics changes associated with T2DM in cases of obesity among the detected
age- and gender-independent lipids (n = 1265) were investigated based on a comparison
between obese diabetic patients (n = 16) and obese non-diabetics (n = 21). An evident
separation was noted in the OPLS-DA score plot (R2 = 0.973, Q2 = 0.822) (Figure 5A),
suggesting T2DM significantly affects the serum lipidome of obese individuals.

A volcano plot (Cut-offs FDR p-value < 0.05 and FC 1.5) revealed a significant dys-
regulation in the levels of 224 lipid molecules, where the levels of 125 were up- and
99 down-regulated in obese diabetics compared to the obese group (Figure 5B). The iden-
tity of these lipid molecules and their changed levels with fold change and p-values are
presented in Supplementary Table S5. Moreover, the distribution of the significantly dys-
regulated molecules (n = 224) on lipid subclasses in obese diabetics compared with obese
non-diabetics is shown in Figure 5C. Thirty-four lipid subclasses were dysregulated in obese
subjects due to T2DM. Among them, TGs and DGs were mostly dysregulated (TGs; n = 28,
16 up and 13 downregulated, and DGs; n = 29.15 up and 13 downregulated, Figure 5C). In
addition, several GLP classes were dysregulated due to T2DM. Among them, PCs (n = 16),
PGs (n = 12), HexCer (n = 21), and SM (n = 18) were the most dysregulated in obese diabetic
subjects (Figure 5C, Table S5).
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Figure 4. Lipidomic profile of obese versus lean subjects. (A) OPLS-DA shows separation between
lean and obese groups (R2: 0.929; Q2: 0.724) based on 1265 (age-gender free lipid molecules).
(B) The volcano plot revealed 115 out of 1265 dysregulated lipid molecules, where 64 (Red) and
51 (Blue) molecules were up- and down-regulated in obese subjects compared to lean control subjects,
respectively (Cut-off: FDR p-value ≤ 0.05 and FC 1.5). (age and gender-independent). (C) A bar
graph shows the distribution of significantly dysregulated lipids between obese and lean (n = 115) on
lipid subclasses.

2.5. Lipidomic Alterations Associated with Metformin Administration in Obese Type 2 Diabetic
Patients (OT2DM)

The effect of metformin administration on the serum lipidome of obese diabetic
patients was examined based on a comparison between the OT2DMMet (n = 24) and
OT2DM (n = 16) groups. The OPLS-DA score plot showed an obvious separation and
clustering between the compared groups (R2 = 0.983, Q2 = 0.751, Figure 6A). Considering
the age and gender-independent group of lipids (n = 1265), volcano plot analysis revealed
that 54 lipid molecules were significantly altered when metformin was administered to
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obese diabetic patients. Among them, 20 and 34 lipid molecules were up- and down-
regulated, respectively, in OT2DMMet compared to OT2DM (Cut-off: FDR p-value ≤ 0.05
and FC 1.5, Figure 6B). The identity of these dysregulated lipid molecules is presented in
Supplementary Table S6. The significantly altered lipid molecules (n = 54) were distributed
among nineteen lipid subclasses (Figure 6C). Specifically, TGs, PCs, PEs, and ST were the
most dysregulated subclasses for the metformin comparison (Figure 6C and Table S6).
Interestingly, 83.3% of TGs were mostly up-regulated (5 molecules out of 6), while lipid
molecules in other subclasses (60% PCs, 66.6% PEs, and 75% ST) were down-regulated in
OT2DMMet compared to OT2DM (Figure 6C and Table S6).
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Figure 5. Lipidomic profile of obese diabetics versus obese non-diabetics. (A) OPLS-DA clearly
separates obese and obese diabetic groups (R2: 0.973; Q2: 0.822). (B) The volcano plot revealed
224 dysregulated lipid molecules, where 125 (Red), and 99 (Blue) lipid molecules were up- and
down-regulated in the obese diabetic group compared to the obese group, respectively (Cut-off:
FDR p-value ≤ 0.05 and FC 1.5). This analysis is based on 1265 lipid molecules (age and gender-
independent). (C) A bar graph shows the distribution of significantly dysregulated lipids (n = 224)
on lipid subclasses between the obese diabetic group and the obese group.

2.6. Commonly Altered Lipid Molecules as Effects of Obesity, T2DM, and
Metformin Administration

To investigate the altered lipid molecules simultaneously with the presence of obesity,
T2DM, and metformin, an overlap between the dysregulated lipid molecules as an effect of
obesity, indicated by BMI (BMI panel, n = 115), T2DM (T2DM panel, n = 224), and metformin
administration (Metformin panel, n = 54), was carried out using Venn diagram analysis
and a moderated t-test (p-value < 0.05). The results highlighted five lipid subclasses as
common and significantly altered between the three panels. The identity of the significantly
dysregulated lipid molecules, subclasses, and regulation patterns due to BMI, T2DM, and
metformin administration is presented in Table 2.

Table 2. Common and significantly altered lipid molecules as effects of BMI, T2DM, and metformin
administration.

Lipid Molecules Characteristics BMI Panel T2DM Panel Metformin Panel

Subclass Level of
Identification

Compound RT
(min)

Mass
(m/z)

[Obese] vs.
[Control]

([OT2DM] vs.
[Obese])

[OT2DMMet] vs.
[OT2DM]

FC * FC * FC *

ST Tier 3 ST 26:0;O4;H 1.5 602.4306 ↑1.94 *** ↓0.31 *** ↑2.17 ***

MIPC Tier 3 MIPC
32:4;O3 8.57 941.5348 ↑1.95 *** ↓0.41 *** ↑1.74 *

PG Tier 3 PG 40:5 9.58 847.548 ↑3.10 ** ↓0.29 ** ↑4.74 *

TG
Tier 3 TG O-76:6 13.7 1196.091 ↑3.13 ** ↓0.30 * ↑4.76 *

Tier 3 TG 52:4 18.8 872.7744 ↑1.96 ** ↓0.28 *** ↑2.31 *

PC Tier 1 PC
O-14:1_22:1 12.32 772.6243 ↑2.49 * ↓0.30 ** ↑4.82 *

Abbreviations: RT, Retention time; OT2DM, obese type 2 diabetic; OT2DMMet, obese type 2 diabetic on metformin;
BMI, body mass index; ST, Sterol Lipids; MIPC, Mannosyl-inositolphosphoryl-ceramides; PG, Phosphatidylglyc-
erols; TG, Triacylglycerols; PC, Phosphatidylcholines; FC, Fold change; ↑: up-regulated or ↓: down-regulated.
* p-value < 0.05. ** p-value < 0.005, *** p-value < 0.00005.
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Figure 6. Lipidomic profile of obese diabetics on metformin versus obese diabetics. (A) OPLS-DA
shows a clear separation between obese diabetics on metformin and obese diabetic groups (R2: 0.983;
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Q2: 0.751). (B) The volcano plot revealed 54 dysregulated lipid molecules, where 20 (Red) and
34 (Blue) lipid molecules were up- and down-regulated in the (OT2DMMet) vs. (OT2DM) group,
respectively (Cut-off: FDR p-value ≤ 0.05 and FC 1.5). This analysis is based on 1265 lipid molecules
(age and gender-independent). (C) A bar graph shows the distribution of significantly altered lipids
as an effect of metformin in obese diabetics (n = 54).

3. Discussion

Metformin is a biguanide oral drug widely used as a first-line medication for the
initial treatment of T2DM. It has a role in enhancing insulin sensitization and inhibiting
gluconeogenesis [27]. Metformin has been prescribed for other indications, such as PCOS
and obesity associated with insulin resistance. Using the LC-MS-based metabolomics
approach, we have previously reported significant alterations in the metabolic pattern of
long-term metformin administration in diabetic, obese, and lean patients [23]. In addition,
it has been shown that metformin affects the metabolome and lipid metabolism after
single-dose intake in healthy subjects [25,26]. However, its impact on the lipid metabolism
associated with metformin intake in diabetic patients has not been investigated yet. In
the current study, the LC-MS-based lipidomics analysis of serum samples from obese
non-diabetic and obese diabetic patients taking metformin was conducted to explore
the lipidomics profiles and to investigate the lipid molecule alterations associated with
metformin administration in obese diabetic patients.

The age- and gender-specific lipid signature in metabolic disorders associated with
obesity has been reported [28–30]. In our analysis, the effect of confounding factors,
including gender and age, were considered and excluded from the dataset. Therefore,
the putatively annotated dysregulated lipid molecules were specifically dependent on
metformin administration in obese diabetic patients.

The significantly altered lipid molecules simultaneously with the presence of obesity,
T2DM, and metformin include triacylglycerols (TGs), plasmenyl phosphatidylcholine (PC),
phosphatidylglycerol (PGs), sterol lipid (ST), and Mannosyl-phosphoinositol ceramide
(MIPC). MIPCs are a class of lipids strictly related to fungi membranes, where the fungi
may be part of the human microbiome, and some sources are pathogenic. These belong
to phospholipids, glycolipids, and phosphosphingolipids within the sphingolipids. The
main biological functions of these lipid molecules were structural components of the lipid
bilayer of cells, metabolic fuels, and signaling molecules. It is well known that regulating
lipid metabolism pathways is tightly associated with obesity. Moreover, factors associ-
ated with obesity, such as the availability of saturated fatty acids [31] and circulating
inflammatory cytokines, selectively activate enzymes that promote lipid synthesis, such as
sphingolipids [32]. Therefore, comprehensive lipidomics profiling of obese subjects would
provide new insights into our understanding of lipid metabolism in relation to obesity
and its associated metabolic diseases, such as T2DM. Our analysis revealed that most of
the upregulated lipid molecules affecting obesity/BMI belong to glycerolipids, such as
TGs and DGs, and sphingolipids, such as HexCer. It has been reported that obesity is
associated with dysregulation in sphingolipid metabolism, particularly ceramides, and
insulin resistance in tissues such as adipose tissue, liver, and skeletal muscle [33–35]. In
addition, our results showed that the levels of GPLs, including PCs, PGs, and ST, were
dysregulated in obese subjects. In line with our findings, lipidomic profiling of plasma
samples from large cohorts indicated that glycerolipids and sphingolipids had a strong
positive association. In contrast, GPLs, including PC species, had a negative association
with increasing waist circumference and BMI [29,36].

Clinically, the association between T2DM and dyslipidemia is well established, and
dyslipidemia incidence is very common, especially in obese diabetic patients [37]. The
clinical components of diabetic dyslipidemia involve an increase in the levels of low-density
lipoprotein cholesterol (LDL-C) and triglycerides (TGs) associated with a decrease in the
levels of high-density lipoprotein cholesterol (HDL-C) particles [37]. In addition, it is
associated with increased levels of other atherogenic lipoproteins, including LDL, very
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low-density lipoprotein (VLDL), and intermediate-density lipoproteins [38,39]. All the
aforementioned lipoproteins, except HDL, contain apoB, a key component of the athero-
genic lipoproteins, representing their total number in the circulation [39]. Therefore, consid-
ering apoB levels provides more accurate clinical lipidomics for diabetic patients. Several
recent studies have examined the lipidomics profiles of diabetic patients versus healthy
subjects [40,41]. In addition, a recent systematic review and meta-analysis of prospective
cohort studies indicated that glycerolipids (DGs and TGs), lysophosphatidylethanolamines
(LPE), and Cer were associated with a higher risk of T2DM [42]. In the current study,
lipidomics profiling of obese diabetics versus obese non-diabetics revealed dysregulation
of 224 lipid molecules. Consistent with previous lipidomics analysis [35,41], our analysis
showed that sphingolipids, including Cer, HexCer, and sphingomyelin (SM), were up-
regulated in the diabetics’ group. The association between Cer and insulin resistance is
evident [43]. Ceramides [11] are bioactive lipids and part of the membrane microdomains,
called lipid rafts. They are important in mediating different cell signaling pathways, in-
cluding insulin signaling [43]. In addition, Cer has been implicated as an antagonist of
insulin action by inhibiting Akt/PKB [44]. Thus, the accumulation of Cer could interfere
with glucose uptake, indicating a progression of T2DM.

Among the significantly dysregulated lipid subclasses due to obesity and T2DM
were TGs and DGs. A central pathway that connects lipid and glucose metabolisms is
the glycerolipid/free fatty acid (GL/FFA) cycle [45]. This cycle has an important role in
maintaining the balance between lipogenesis and lipolysis via the formation of TGs through
the esterification of FFA glucose-derived glycerol, the hydrolysis of TG, and the release
of FFA and glycerol, respectively [45]. Insulin is crucial in regulating the key enzymes
participating in this cycle. It has an activating effect on the lipoprotein lipase enzyme in
the circulation and inhibitory effects on the hormone-sensitive lipase in the adipose tissue.
Lipidomic and transcriptomic analyses of nerve tissue biopsies from hyperlipidaemic
diabetic patients with peripheral neuropathy revealed an increase in the expression of
the diacylglycerol acyltransferase 2 (DGAT2) enzyme, which mediates the committed
step in TG synthesis [46]. Therefore, abnormalities and perturbations in the GL/FAA
cycle would lead to metabolic diseases, including obesity, insulin resistance, T2DM, and
hyperlipidemia [45]. Moreover, animal studies using a diabetic mouse model indicated that
diabetes is associated with an accumulation of lipid hydroperoxides and, thus, an increase
in oxidative stress [47]. In line with this, most of the detected upregulated lipid molecules
were oxidized as an effect of T2DM (Table S5).

Metformin-associated lipidomics alterations have been reported in animal models [48],
healthy human subjects [26], and PCOS women [49]. The annotated lipidomics signature
due to metformin included alterations in sphingolipid metabolism, GPL metabolism, and
specifically a decrease in oxidized lipids [26,48,49], confirming the protective effect of
metformin on the oxidative stress status [50].

The effect of metformin administration on the lipidomics profiles of obese diabetic
patients was examined in this study. The levels of several lipid molecules were significantly
altered by metformin. They were distributed among nineteen lipid subclasses, including
DGs, TGs, PCs, PEs, PGs, Hex2Cer, SM, and ST. Interestingly, most TG molecules were up-
regulated, while molecules in other lipid subclasses, such as PCs, PEs, and ST were down-
regulated in diabetic patients receiving metformin. It has been shown that metformin affects
phospholipid metabolism in various ways. One of the underlying anti-diabetic effects of
metformin is mediated by the activation of AMP-activated protein kinase (AMPK). This
is cellular energy sensor that has a regulatory role in lipid metabolism, including altered
synthesis and breakdown of various lipid molecules [51,52]. However, the specific effects
of metformin on lipid metabolism and the levels of circulating lipid molecules depend
on various factors, including the overall patient’s lipid profile, genetic and environmental
factors, the patient’s characteristics, and, on top of these, the presence of metabolic disorders
such as obesity and T2DM.
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The results revealed common significant lipid subclasses simultaneously dysregulated
by obesity, T2DM, and metformin (Table 2).

The pattern of these lipid subclass alterations was up-regulation in obese people,
down-regulation in diabetics, and then up-regulation as an effect of metformin, reaffirming
the role of metformin in enhancing insulin sensitivity and glucose uptake by cells and in
regulating lipid metabolism. Moreover, the different patterns annotated in the regulations
of these annotated lipid molecules indicate that each status (obesity, T2DM, metformin)
impacts the patients’ lipidomics profiles differently.

Among the common and significantly altered lipid molecules detected were TG species
that were upregulated in obese diabetic patients receiving metformin. TGs are circulating
lipids transported in the bloodstream via very-low-density lipoprotein (VLDL) and LDL.
High levels of TGs are associated mainly with elevated VLDL, an atherogenic lipoprotein
that contributes to atherosclerosis development. The effect of metformin on the TGs and
their transporting lipoproteins, mainly VLDL, clearance, and metabolism, still needs to be
fully understood. Recently, it has been reported that 12-week metformin treatment in obese
humans with non-alcoholic fatty liver disease (NAFLD) resulted in a significant decrease in
VLDL-TG concentrations [53]. On the other hand, three-month metformin treatment in a
randomized, placebo-controlled clinical trial in T2DM patients indicated no change in the
VLDL-TGs levels after treatment [54].

This study has some limitations, particularly in characterizing the recruited patients.
Given that T2DM is a common metabolic disease among overweight and obese individuals,
it was difficult to find and recruit diabetic lean patients to compare them with diabetic
obese patients to examine the effect of obesity on the lipidomics profile of diabetic patients.
In addition, recruiting healthy controls matched in age with the included diabetic patients
was challenging in this study as most T2DM patients are elderly or over 35. Therefore, the
sample size of 89 participants would limit the generalizability of this study findings and
thus require further validation in a large-scale cohort. In a future study, we are aiming
to recruit an independent cohort to validate the potential biomarkers discovered using a
targeted approach using tandem mass spectrometry and reference standard materials for
absolute quantification.

Despite these limitations, we excluded the effect of confounding factors, including age,
in our analysis and carried out multiple comparisons to extract the significant alterations in
the annotated lipid molecules. Furthermore, this is a prospective study based on untargeted,
comprehensive lipidomics. As such, we recognize the potential for false-positive annotation
of lipid species, particularly for the Tier 3 IDs. Follow-up investigations will focus on the
confirmation of lipid annotations.

4. Materials and Methods
4.1. Study Population

A cohort of 89 participants was involved in this study. They were divided into two
main groups: (non-diabetics (n = 49) and diabetics (n = 40)). The non-diabetic group
included lean, healthy subjects (control, n = 28) and obese subjects (n = 21). The diabet-
ics’ group included obese diabetics (OT2DM, n =16) and obese diabetics on metformin
(500–1500 mg/day) (OT2DMMet, n = 24) for at least six months. The participants in this
study were recruited from a primary healthcare hospital at King Abdulaziz Medical City
(Riyadh, Saudi Arabia). Our recent work [23,24] mentioned recruitment details and inclu-
sion criteria.

4.2. Ethics Statement

All procedures performed in this study involving human participants followed the
ethical standards of the Declaration of Helsinki and the Universal International Conference
on Harmonization-Good Clinical Practice (ICH-GCP) guidelines. This study was reviewed
and approved by the Institutional Review Board (IRB) at the King Abdulaziz Medical City
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Ethics Committee (Protocol # RC12/105). Written informed consent was obtained from all
participants before they participated in this study.

4.3. Anthropometric Measurements

The body mass index (BMI) for each participant was calculated as body weight (in
kilograms) divided by the square of body height (in meters). The BMI was classified into
normal (18–24.9 kg/m2), overweight (25–29.9 kg/m2), obese (30–34.9 kg/m2), and morbidly
obese (≥35 kg/m2). Obese and morbidly obese participants were included in the obese
group, while healthy BMI was included in the lean non-obese group. Since the overweight
group included a small number of participants (8 subjects-5 healthy subjects and 3 T2DM
patients), they were split as “lean” (BMI ≤ 26 kg/m2) and "obese" (BMI > 26 kg/m2).

4.4. Sample Preparation and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis

Samples were blindly randomized into eleven batches of six to nine for preparation
and LC-MS analysis. A pooled mixture containing one aliquot of each sample was prepared
for quality control (QC). Each batch of samples was prepared and analyzed along with one
experimental replicate of the QC pool to ensure experimental reproducibility and control
of potential batch effects. All samples and QC aliquots were prepared with an internal
standard mixture composed of 15 deuterated lipids (NovaMT LipidRep Internal Standard
Basic Mix for Serum/Plasma, Nova Medical Testing, Inc., Edmonton, AB, Canada), added
to the samples immediately after aliquoting to ensure control of all analytical steps. The
mixture included different concentrations of [D5]LPC 18:1, [D5]LPE 18:1, [D5]MG 18:1,
[D3]FA 16:0, [D3]ST 27:1;O ([D3]Cholesterol), [D5]PG 16:0_18:1, [D5]PS 16:0_18:1, [D5]PA
16:0_18:1, [D5]PC 16:0_18:1, [D5]PE 16:0_18:1, [D3]Cer 16:0;O2/18:1, [D5]DG 16:0_18:1,
[D5]TG 16:0_18:1_16:0, and [D3]CE 18:1. The 15 deuterated lipid standards were synthe-
sized in-house. The composition of the mixture was carefully optimized to match the
expected intensity of lipids found in human serum. Blank extractions of water instead
of the sample were performed before and after all sample extractions to control sources
of contamination.

A modified version of the classical Folch liquid-liquid extraction method with
dichloro-methane and methanol-extracted lipids was used, as previously published [55].
Briefly, aliquots of 6.0 µL of serum samples were vortexed with 6.0 µL of NovaMT
LipidRep Internal Standard Basic Mix for Serum/Plasma. Lipids were extracted with
2:1 dichloromethane/methanol, followed by a clean-up step with water (8:4:3 dichloro-
methane/methanol/water). The mixture was equilibrated at room temperature for 10 min,
followed by centrifugation for 10 min at 4 ◦C and 12,000 rpm. A fraction of the organic layer
was evaporated to dryness using a nitrogen blow-down evaporator. The dried residue
was re-suspended in 48 µL (8-fold dilution) of 10% of mobile phase B [56] and 90% of
mobile phase A [57]. The extracts were immediately transferred to inserts placed inside
autosampler vials with PTFE/silicone caps and kept at 4 ◦C until analysis. All samples
were injected between 4 h and 28 h after extraction.

Chromatography conditions for the reversed-phase LC-ESI-QToF-MS sample analysis
were MPA-10 mmol/L ammonium formate in 50:40:10 methanol/acetonitrile/water, MPB-
10 mmol/L 95:5 2-propanol/water, 250 µL/min, 42 ◦C, gradient elution (0 min—5% MPB;
10 min—40% MPB; 18.8 min—98% MPB; 20.5 min—98% MPB; 21.2 min—5% MPB) followed
by 5 min re-equilibrium, and injection volume of 3.5 µL for positive ionization and 10.0 µL
for negative ionization. LC-MS/MS data were acquired for all samples in auto-MS/MS
mode using Bruker oToF Control (cycle time of 1.2 s; MS1 acquisition rate of 1.44 Hz;
dynamic MS2 acquisition rate between 4.0 and 10.0 Hz; and collision energies between 28.0
and 42.0 eV). Each sample was injected once for positive and once for negative electrospray
ionization within m/z 150 to 1500. Additional LC-MS/MS injections were acquired with
the QC pooled mixture using different collision energies (between 5 and 80 eV), injection
volumes (2 to 5 µL for positive ionization and 8 to 12 µL for negative ionization), and
precursor mass ranges. Each randomized batch of six to nine samples was injected between
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two injection replicates of the corresponding QC experimental replicate. Multiple replicates
of the QC mixture were also prepared and injected before and after all samples to ensure
stable and reproducible analysis conditions. The acceptance criteria were to have all the QC
samples separated from the other study groups, clustered together, and use their Relative
standard deviations (RSD%) of <40%. The validity of the assay and the integrity of the
results are based on the Metabolomics Quality Assurance and Quality Control Consortium
(mQACC) recommendations. For instance, we used a system suitability solution (SSS)
for system stability and performance quality, an internal standard solution to control the
sample variation, and pooled quality control samples to control the batch variations.

4.5. Data Processing

Chromatograms acquired with positive and negative ionization were processed sep-
arately with our in-house-developed software, NovaMT LipidScreener V.1 (Nova Med-
ical Testing, Inc., Edmonton, AB, Canada). Nova Medical Testing, Inc. developed the
Python-based proprietary software package for tailored use with The Metabolomics Inno-
vation Centre’s (TMIC) Global (Untargeted) Lipidomics platform, a solution for untargeted
lipidomics of biological samples that has been applied to more than 70 projects between
2020 and 2023 [58–61]. The package includes automated mass recalibration, peak picking,
retention time correction using a set of deuterated standards added to all samples, data
alignment (based on m/z, MS/MS fragmentation patterns, and retention time), data cleans-
ing (handling of multiple adducts, in-source fragmentation, and contaminants), polarity
merging, lipid annotations, quality control, batch effect correction, normalization based on
a set of deuterated internal standards, and biostatistics. For this project, data processing
was performed with a minimum intensity cut-off of 3000 cts, a signal-to-noise ratio thresh-
old of 5, a minimum peak length of 6 spectra, a retention time tolerance of 4.0 s, a m/z
tolerance of 5.0 mDa or 20.0 ppm, and filtering by detection in at least 80% of injections
within one or more groups. Common contaminants, dimers, and multiple adducts of the
same feature were removed during data processing. Features detected for positive and
negative ionization were merged into a unique peak list using a neutral mass tolerance of
20 ppm and a retention time tolerance of 20.0 s, i.e., only the most intense feature was kept
when ions were detected for positive and negative ionization within the tolerance limits.

The detected features were putatively annotated by a three-tier annotation approach
based on tandem-MS spectral similarity (Tiers 1 and 2 annotations based on structural
information) or mass-matches (Tier 3 annotations) using NovaMT LipidScreener (Nova
Medical Testing, Inc., Edmonton, AB, Canada). First, features were annotated based on
MS/MS spectral similarity in Tier 1 (MS/MS similarity score≥ 500, precursor m/z tolerance
of 20.0 ppm and 5.0 mDa, and fragment m/z tolerance of 25.0 ppm and 10.0 mDa) or Tier 2
(MS/MS similarity score < 500, precursor m/z tolerance of 20.0 ppm and 5.0 mDa, and
fragment m/z tolerance of 25.0 ppm and 10.0 mDa). We performed MS/MS annotations
with the MS-Dial LipidBlast MS/MS library, Bruker Human Metabolome Database (HMDB)
Metabolite Library 2.0, and MassBank of North America [62] LC-MS/MS libraries (updated
in August 2022) [63,64]. The employed MS/MS search procedure required matching
at least 15% of fragments detected in the sample spectrum or the matched library to
calculate similarity scores. For example, if twenty fragments were detected for a feature, a
minimum of precursor plus three fragments had to match a library spectrum to calculate
an MS/MS similarity score. A restriction of at least one matched fragment was applied
for lipids with a small number of fragments (less than 7). Lipids that did not reach the
minimum requirement of matched fragments were excluded. Unannotated features were
mass-matched to a curated database of lipids in Tier 3 (m/z tolerance of 20.0 ppm and
5.0 mDa).

Lipids can have many isomeric forms with identical chemical formulas, masses, and
MS/MS fragmentation patterns. The compounds may differ only in the position of double
bonds, functional groups, or stereochemistry. Although powerful, the untargeted LC-
MS/MS approach cannot distinguish these lipids. Definitive identification of lipids requires
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the determination of such factors and comparison to identical standards, which was not
performed in this study. Multiple peaks are often annotated as the same lipid at the
molecular species level (most annotations for Tiers 1 and 2) or the species level (Tier 3),
corresponding to similar compounds with minor differences in their structures (positions
of double bonds, positions of modifications, stereochemistry, etc.). A ten-tier filtering and
scoring approach embedded in NovaMT LipidScreener was employed to calculate MS/MS
match scores (Tiers 1 and 2), restrict the number of possible matches, and select the best
identification for isomeric and isobaric species, viz.: MS/MS spectral similarity (Tiers 1
and 2), expected retention time range for each lipid class and length of fatty acyl residues,
expected adducts for each lipid class, m/z error, carbon to double bond equivalent ratio,
odd/even number of carbons in fatty acyl residues, presence of unexpected modifications,
presence of vinyl-ether bonds (plasmalogens), expected method and sample sensitivity
for each lipid subclass (including the expected presence of each lipid class in biological
samples), and library source (e.g., libraries containing lipids previously found in biological
samples versus computationally-generated libraries). Matches with unexpected retention
times, adducts, and m/z errors above 5.0 mDa or 20.0 ppm were excluded.

Abbreviations for lipid classes and nomenclature followed the LipidMaps database
(https://www.lipidmaps.org), the MS-DIAL LipidBlast spectral library (http://prime.
psc.riken.jp/Metabolomics_Software/MS-DIAL/index5.html), and the Lipidomics Stan-
dard Initiative (https://lipidomics-standards-initiative.org, accessed on 25 July, 2023)
(Supplementary Table S1). This work did not determine the position of double bonds or
the stereochemistry of compounds. Tiers 1 and 2 annotations (MS/MS matches) were
determined at the species or molecular species level, i.e., the definition of lipid classes, the
composition of fatty acyl/alkyl residues (or summed composition if individual residues
are not specified in the source database), and functional groups. When provided, common
names were attributed based on biological intelligence, i.e., the most usual form of the
molecule found in nature, rather than analytical evidence. Tier 3 annotations were defined
at the species level, i.e., lipid class and subclass, total number of carbon atoms, double bond
equivalents, and additional oxygen or other atoms [65,66].

A batch-effect correction was performed by linear interpolation of detected peak
intensities with the QC aliquots injected immediately before and after the sample batch.
We adopted a well-known approach for the normalization of lipidomics data to correct ion
suppression and ion transmission effects, as well as small variations that may occur during
sample handling, by using a mixture of 15 deuterated lipid standards that belonged to
different lipid classes (NovaMT LipidRep Internal Standard Basic Mix for Serum/Plasma).
The concentration of each standard was carefully optimized to ensure similar intensities for
serum samples within the same retention time range for control of ion suppression. All
annotated species were matched to the most similar internal standard based on lipid class
similarity and retention time ranges. Intensity ratios were calculated, i.e., the intensity of
the detected lipid was divided by the intensity of the most similar standard. The internal
standard-normalized intensity ratios were further normalized to the median intensity
within each sample and filtered by a relative standard deviation (RSD) smaller than 30%
for QC replicates to remove features with low experimental reproducibility.

4.6. Statistical Analysis

Statistical analysis was performed using NovaMT LipidScreener and MetaboAnalyst
5.0 (http://metaboanalyst.ca). Only normalized peak intensity ratios for annotated com-
pounds with an RSD smaller than 30% for QC replicates were employed. Non-informative
features (i.e., internal standards, common contaminants, and features with low experimen-
tal reproducibility) were filtered out during data processing.

For univariate statistics, no extra filtering or data scaling methods were applied.
Volcano plots (Mann–Whitney test for unequal variances, cut-off: FDR p-value ≤ 0.05, and
FC 1.5) were used to select significantly altered lipids.

https://www.lipidmaps.org
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/index5.html
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/index5.html
https://lipidomics-standards-initiative.org
http://metaboanalyst.ca
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For multivariate statistics, features with near-constant values were filtered out (i.e., fea-
tures related to homeostasis or unaffected by the studied conditions). The dataset were
also auto-scaled and presented in principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA). OPLS-DA models were validated through 10-fold
cross-validation by calculation of regression (R2, the explained variation, i.e., the “goodness
of fit” between samples and their assigned groups) and prediction coefficients (Q2, the
predictive relevance, i.e., a measure of the model’s ability to predict the group of new
samples). Permutation tests were also performed to evaluate classification significance
through p-values (100 permutations) [67].

Venn diagram analysis and a two-way ANOVA with an FDR corrected p-value (FDRp)
cut-off = 0.05 were used to exclude the effect of confounding factors, including age and
gender, on the overall data set. The gender- and age-independent lipid molecules were
extracted sequentially after applying a two-way ANOVA analysis.

5. Conclusions

In summary, the current study provides new insight into our understanding of the
lipidomics alterations associated with obesity, T2DM, and metformin. Also, it gives us a bet-
ter understanding of the progression of diabetes from the perspective of lipid metabolism.
Since the regulation of the annotated lipid molecules is disrupted, they could be used as
biomarkers for assessing T2DM progression and treatment response, particularly after
metformin administration. Lipidomic changes have yet to be widely implemented as an
indicator of DM in clinical practice. Elevated body mass index (BMI), which is an obesity
indicator, has been used as a clinical metric despite its limitations. There has been no
current consensus regarding the use and application of lipid molecules as validated clinical
prognostic or treatment response biomarkers of DM in the case of obesity. The significantly
annotated dysregulated lipids as an effect of DM, obesity, and metformin use would be
potential biomarkers. However, the findings of this study were based on single-center data,
which might not sufficiently consider the multiple potential confounding factors such as
ethnicity and region. Therefore, validating annotated potential lipid molecule biomark-
ers and their clinical utility are required in large-scale multicenter studies considering
different cohorts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16121717/s1. Table S1: Abbreviations employed for lipid classes;
Table S2: List of identified and normalized features from in-depth global lipidomics analysis employed
for statistics; Table S3: List of gender- and age-independent lipid molecules; Table S4: Lipidomic
profile of obese versus lean subjects; Table S5: Lipidomic profile of obese diabetic versus obese
non-diabetic; and Table S6: Lipidomic profile of obese diabetic with metformin versus obese diabetic.
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