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Abstract: Morphine, one of the most efficacious analgesics, is effective in severe pain, especially
in patients with concomitant painful cancers. The clinical use of morphine may be accompanied
by increased immunosuppression, susceptibility to infection and postoperative tumor metastatic
recurrence, and the specific mechanisms and clinical strategies to alleviate this suppression remain
to be investigated. Expression of CD11b is closely associated with the macrophage phagocytosis
of xenobiotic particles, bacteria or tumor cells. Here, we find that morphine at 0.1–10 nM levels
inhibited CD11b expression and function on macrophages via a µ-opioid receptor (MOR)-dependent
mechanism, thereby reducing macrophage phagocytosis of tumor cells, a process that can be reversed
by thymopentin (TP5), a commonly used immune-enhancing adjuvant in clinical practice. By
knocking down or overexpressing MOR on macrophages and using naloxone, an antagonist of the
MOR receptor, and LA1, a molecule that promotes macrophage CD11b activation, we suggest that
morphine may regulate macrophage phagocytosis by inhibiting the surface expression and function of
macrophage CD11b through the membrane expression and activation of MOR. The CD47/SIRPα axis,
which is engaged in macrophage-tumor immune escape, was not significantly affected by morphine.
Notably, TP5, when combined with morphine, reversed the inhibition of macrophage phagocytosis
by morphine through mechanisms that promote membrane expression of CD11b and modulate its
downstream signaling (e.g., NOS2, IFNG, IL1B and TNFA, as well as AGR1, PDGFB, IL6, STAT3, and
MYC). Thus, altered membrane expression and function of CD11b may mediate the inhibition of
macrophage phagocytosis by therapeutic doses of morphine, and the reversal of this process by TP5
may provide an effective palliative option for clinical immunosuppression by morphine.

Keywords: morphine; opioid receptors; immunosuppression; macrophage phagocytosis; cd11b;
thymopentin

1. Introduction

Opioids such as morphine are widely used worldwide for clinical postoperative anal-
gesia or other causes of severe pain. Clinical studies have found that the use of opioids (e.g.,
morphine, fentanyl) causes, in addition to some common side effects such as tolerance,
addiction, respiratory depression, nausea, and constipation, an immunosuppressive effect
that increases the risk of infection [1,2]. It is known that opioid addicts are at increased
risk of infection, and the intersection between HIV infection and intravenous drug abuse
has been identified [3,4]. In vitro and in vivo experiments, as well as epidemiological and
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clinical studies on different patient populations, have also shown that opioids such as
morphine and fentanyl impair the function of macrophages, natural killer (NK) cells, and T
cells, and weaken the intestinal barrier, inducing immunosuppression of the innate and
adaptive immune systems, as well as damaging the mucosal barrier [5–7]. For example,
morphine treatment initiated a downregulation of major histocompatibility complex II
(MHC-II) expression on B cells as well as diminished antigen-presenting function, which
inhibited T cell proliferation and promoted Th2 cell differentiation [8]. It has also been
claimed that morphine inhibits macrophage chemotaxis and ROS production and inhibits
TNF-α, IL-10 and NO production by LPS-stimulated macrophages. In vitro studies have
found that morphine directly inhibits macrophage phagocytosis and reduces microbial
killing activity [9,10]. Morphine has a high affinity for µ-opioid receptor (MOR) and a
low affinity for other receptors [11]. One study found by using MOR gene-deficient mice
that macrophage phagocytosis was not inhibited by morphine in MOR knockout (KO)
mice compared to WT mice, suggesting that the specific receptor involved in immunosup-
pression is the MOR [12,13]. A dose–effect curve study using different selective receptor
agonists and antagonists found that MOR agonists inhibit phagocytosis in a dose-dependent
manner [14,15]. Despite many previous studies, the mechanism of how morphine regulates
macrophage function through MOR still needs further investigation.

CD11b is a type 1 transmembrane glycoprotein of approximately 170 kDa in size that
is highly expressed on myeloid cells (including tumor-associated macrophages, TAM) and
regulates a broad range of immune responses, such as pathogen recognition, phagocytosis,
and cell survival [16]. CD11b function is dependent on a cascade of inside-out and outside-
in activation signaling processes, particularly tyrosine kinase activation [17]. CD11b is
involved in adhesion contacts between many cells, such as monocytes, macrophages, NK
cells and granulocytes [18] and has also been shown to mediate macrophage adhesion,
migration, chemotaxis and accumulation during inflammation [19,20]. Interestingly, ac-
tivation of CD11b negatively regulates the immune response of B lymphocytes, which
suppress self-reactive B cells in systemic lupus erythematosus (SLE) [21]. CD11b also
regulates pro- and anti-inflammatory signaling in macrophages and is therefore an ideal
receptor for targeting TAMs as a means of controlling tumor growth. It has been shown
that CD11b regulates macrophage polarization through pro-inflammatory macrophage
transcription, thereby inhibiting immunosuppressive macrophage polarization and im-
proving anti-tumor immune responses in mouse and human tumor models, which in turn
improves survival [22–24]. However, it is also not very clear whether CD11b function is
regulated by opioid receptors on macrophages during the activation of morphine, leading
to weakened immunity.

Here, we propose a possible mechanism of morphine-induced immunosuppression,
namely that morphine reduces the expression and function of CD11b on macrophages
via MOR, which inhibits the phagocytosis of macrophages and thus affects tumorigenesis,
progression, and prognosis [25,26]. This aspect of the study may provide new insights into
the use of opioids such as morphine and the prognosis and treatment of tumor symptoms.
Meanwhile, thymopentin (TP5) is considered as a potential drug for the treatment of
immunodeficiency, tumors, and infections, significantly improving the cellular and humoral
immune functions of the body [27–29]. As an immune system booster, TP5 has been used in
patients with malignancies after radiation and chemotherapy, as well as in the elderly and
immunodeficient patients to reconstitute immune function [30]. Here, we also demonstrate
that TP5 could reverse the reduction of CD11b membrane expression and function on
macrophages by morphine through MOR, thereby restoring the phagocytic function of
macrophages. Here, therefore, we not only reveal a new mechanism of morphine inhibition
of macrophage CD11b but also propose a solution for clinical remission.
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2. Results
2.1. Nanomolar (nM) Morphine Directly Inhibits Macrophage Phagocytosis of Cancer Cells via
MOR but Not by Altering the CD47/SIRPα Axis

Opioid receptor agonists or antagonists affect tumor growth by modulating macrophage
function [31,32]. To further verify at the cellular level whether morphine reduces macrophage
phagocytosis of tumors at therapeutic doses, we induced THP-1 cells into phagocytic
macrophages with phorbol-12-myristate-13-acetate (PMA), followed by A549 cells labeled
with the fluorescent dye probe ProtonexTM Red 600, and co-cultured with macrophages
for 24 h. The results were obtained by fluorescence intensity recorded by fluorescence
microscopy photographs, and morphine at 10 nM significantly attenuated phagocytosis of
A549 by macrophages compared to the controls (13.1 ± 3.2% vs. 34.7 ± 4.6%, 10 nM mor-
phine vs. Ctrl, respectively, p < 0.01, n = 3, unpaired t-test, Figure 1A,B). Additionally, the
phagocytosis of A549 by macrophages was examined by flow cytometry in the concentra-
tion range of 0.001 nM~10 µM, and it was found that morphine concentration dependently
inhibited the phagocytic effect of macrophages (EC50 (concentration producing half the
efficacy) = 2.13 ± 0.16 nM, Figure 1C), which is the concentration required for morphine to
activate MOR [33], indicating that direct inhibition of tumor phagocytosis by macrophages
at nM levels of morphine is a possible phenomenon during clinical administration.
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Figure 1. Nanomolar levels of morphine inhibit phagocytosis of A549 cells by THP-1-derived mac-
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analysis of the mean fluorescence intensity signal in confocal images (B). Scale bar = 50 μm. (C) Flow 
cytometric quantification of macrophage phagocytosis under different concentrations of morphine 
culture (0, 0.001, 0.01, 0.1, 1, 10, 100, 1000 and 10,000 nM). (D–G) A549 cells and macrophages being 
labeled and analyzed for CD47- and SIRPα-expression, respectively, (D,F) by flow cytometry, and 
pooled data of cell surface markers of CD47 (E) and SIRPα (G). (H) Viability of A549 cells measured 
by MTT assay at different concentrations of morphine. (I) Macrophages viability measured by MTT 
assay at different concentrations of morphine (n = 3–4 independent experiments). All data are ex-
pressed as mean ± SEM.; ** p < 0.01 versus control, unpaired t-test (B,E,G), one-way ANOVA with 
Dunnett’s post-hoc test (H,I), (H), (F (7, 16) = 0.4882, p = 0.8295), (I), (F (7, 24) = 1.563, p = 0.1945. ns, 
not significant. 
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Figure 1. Nanomolar levels of morphine inhibit phagocytosis of A549 cells by THP-1-derived
macrophages (A,B) Representative fluorescence micrographs of phagocytic activity (A) and statistical
analysis of the mean fluorescence intensity signal in confocal images (B). Scale bar = 50 µm. (C) Flow
ytometric quantification of macrophage phagocytosis under different concentrations of morphine
culture (0, 0.001, 0.01, 0.1, 1, 10, 100, 1000 and 10,000 nM). (D–G) A549 cells and macrophages being
labeled and analyzed for CD47- and SIRPα-expression, respectively, (D,F) by flow ccytometry, and
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pooled data of cell surface markers of CD47 (E) and SIRPα (G). (H) Viability of A549 cells measured
by MTT assay at different concentrations of morphine. (I) Macrophages viability measured by MTT
assay at different concentrations of morphine (n = 3–4 independent experiments). All data are
expressed as mean ± SEM.; ** p < 0.01 versus control, unpaired t-test (B,E,G), one-way ANOVA with
Dunnett’s post-hoc test (H,I), (H), (F (7, 16) = 0.4882, p = 0.8295), (I), (F (7, 24) = 1.563, p = 0.1945. ns,
not significant.

It has been shown that CD47, which is highly expressed on cancer cells, and regulatory
protein α (SIRPα), a macrophage expressing receptor, form checkpoints for innate immunity,
inhibiting macrophage-mediated phagocytosis and leading to immune escape of tumor
cells [34]. We conjectured first whether morphine inhibits macrophage phagocytosis by
altering the CD47/SIRPα axis. Therefore, we labeled tumor cells A549 and macrophages
with APC-CD47 and PE-SIRPα flow antibodies, respectively, and their expression levels on
the membrane were detected by flow cytometry (Figure 1D–G). 10 nM Morphine did not
alter the expression of CD47 in A549 cells and SIRPα protein in macrophages (77.9 ± 0.9%
and 65.9± 9.9%, for 0 and 10 nM morphine in the surface expressions of CD47, respectively,
p > 0.05, unpaired t-test, n = 3, Figure 1D,E; 89.4 ± 0.6% and 87.7 ± 0.8% for 0 and 10 nM
morphine in the surface expressions of SIRPα, respectively, p > 0.05, n = 3, unpaired
t-test, Figure 1F,G). Moreover, treatment with 0.01 nM~10 µM morphine for 48 h did not
change the proliferation viability of macrophages and A549 cells compared with the control
group (p > 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons test,
Figure 1H,I). These results suggest that direct inhibition of cancer cells phagocytosis by
macrophages at nM levels is not attained through direct proliferation-inhibiting effects on
cancers, nor through the modulation of the macrophage-tumor immune escape pathway, at
least not primarily through the mechanisms described above.

2.2. Morphine Inhibits the Phagocytic Effect of Cancer Cells by Decreasing the Membrane
Expression of CD11b on Macrophages

CD11b mediates multiple monocyte/macrophage responses in the immune inflamma-
tory response, and it is tightly associated with phagocytosis of macrophages [35]. Therefore,
we speculated that morphine may affect the phagocytosis of macrophages by affecting
their CD11b functions. A significant decrease in CD11b mRNA expression levels was
detected by qRT-PCR in macrophages induced with morphine in the concentration range of
0.1 nM~1 µM for 48 h (p < 0.001, n = 4, one-way ANOVA followed by Dunnett’s multiple
comparisons test, Figure 2A).

To further verify the effect of morphine on macrophage CD11b membrane expression,
we labeled macrophages with APC-CD11b antibody. Morphine significantly decreased the
expression level of CD11b protein on macrophage membranes in the concentration range
of 0.1~100 nM (46.0 ± 3.4%, 44.2 ± 6.3%, 36.2 ± 8.0%, 24.1 ± 3.3% and 23.0 ± 2.7%, for 0,
0.1, 1, 10, and 100 nM Morphine, respectively, p < 0.01, n = 3, one-way ANOVA followed
by Dunnett’s multiple comparisons test; Figure 2C,D). Therefore, morphine inhibited the
phagocytosis of A549 cells by macrophages, probably because it suppressed the expression
of macrophage CD11b. Furthermore, the inhibition efficiency (EC50 = 2.13 ± 0.16 nM) of
phagocytosis was comparable to the inhibitory potency of morphine on CD11b expression
(EC50 = 1.44 ± 0.39 nM, Figure 2E).

2.3. Leukadherin-1 (LA1) Promotes Macrophage CD11b Activation to Alleviate the Inhibitory
Effect of Morphine on Macrophage Phagocytosis

LA1 is a small molecule agonist of CD11b that enhances the innate immune response,
and in vivo targeting of CD11b activation repolarizes TAMs and inhibits tumor growth by
enhancing the pro-inflammatory immune response to tumors [23,36]. To verify whether
LA1 could affect the inhibition of morphine on macrophage phagocytosis by regulating
CD11b expression or function, we first examined the expression of genes related to the
downstream signaling of macrophage CD11b activation and found that morphine inhibited
the expression of macrophage immune activation genes, such as NOS2, IFNG, and IL1B,
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and TNFA mRNA expression was decreased (p < 0.05, n = 3, one-way ANOVA followed by
Dunnett’s multiple comparisons test, Figure 3B). The expression of immunosuppressive
genes such as AGR1, PDGFB, IL6, STAT3 and MYC was also elevated after morphine ad-
ministration (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons
test, Figure 3A). Interestingly, the combination of LA1 and morphine reversed and restored
the downstream signaling of macrophage CD11b activation compared to the morphine
alone group (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons
test, Figure 3A,B).
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Figure 2. Morphine reduces the gene expression of CD11b and µ-opioid receptor (MOR) on
macrophages. (A,B) RT-qPCR analysis of relative mRNA expression of CD11b (A) and OPRM
(B) in macrophages. (C–E) Macrophages being labeled and analyzed for CD11b-expression (C) by
flow cytometry, and pooled data of cell surface marker CD11b (D,E) (n = 3 independent experiments,
and the solid line is fitted to hill 1 equation). All data are expressed as mean ± SEM.; ** p < 0.01 and
*** p < 0.001 versus control, one-way ANOVA with Dunnett’s post-hoc test, (A), (F (5, 18) = 17.83,
p < 0.0001), (B), (F (5, 18) = 9.865, p = 0.0001), (D), (F (4, 10) = 13.14, p = 0.0005); ns, not significant.
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Figure 3. Leukadherin-1 (LA1) promotes the activation of CD11b on macrophages and alleviates the
inhibitory effect of morphine on macrophage phagocytosis. (A,B) RT-qPCR analysis of relative mRNA
expression of anti-inflammatory and pro-inflammatory factors ARG1, PDGFB, IL6, STAT3 and MYC
(A), as well as NOS2, IFNG, IL1B and TNFA (B) in macrophages. (C,D) Flow cytometry analysis
of CD11b surface expression on macrophages (C), and pooled data of cell surface marker CD11b
(D). (E,F) Representative fluorescence photomicrographs of the phagocytic activity (E) and statistical
analysis of the mean fluorescence intensity signal in confocal images (F). Scale bar = 50 µm. (G,H)
Quantitative flow cytometry analysis of macrophage phagocytosis after incubation with different
concentrations of LA1 (4 and 8 µM) and morphine (10 nM) (n = 3 independent experiments). All
data are expressed as mean ± SEM.; * p < 0.05, ** p < 0.01 and *** p < 0.001 versus control, one-way
ANOVA with Dunnett’s post-hoc test, (D), (F (5, 12) = 42.96, p < 0.05), (F), (F (3, 8) = 20.34, p = 0.0004),
(H), (F (3, 12) = 39.07, p < 0.001); # p < 0.05 and ### p < 0.001 versus control; ns, not significant.

Next, the expression of CD11b on the membrane of LA1 and morphine co-administered
macrophages was examined 48 h later. Compared with the control group, administra-
tion of 4 µM and 8 µM LA1 alone did not change the proportion of CD11b positive
cells (41.1 ± 2.0% (4 µM LA1), 41.3 ± 1.9% (8 µM LA1) vs. 38.8 ± 2.4% (Ctrl), respec-
tively, p > 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons test,
Figure 3C,D), whereas the proportion of CD11b+ positive cells was somewhat restored
by the combined administration of LA1 and morphine (28.7± 3.8% (4 µM LA1 + 10 nM
morphine), 27.0 ± 1.7% (8 µM LA1 + 10 nM morphine) vs. 20.1 ± 1.4% (10 nM morphine),
respectively, p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons
test, Figure 3C,D).

To further determine whether LA1 affects the phagocytosis of tumor cells by macrophages,
we labeled cancer cells A549 with the fluorescent dye probe ProtonexTM Red 600 and co-
cultured them with macrophages for 24 h. Macrophages pretreated with LA1 significantly
restored phagocytosis of A549 cells compared with the morphine administration group alone
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(31.2 ± 4.1% (4 µM LA1 + 10 nM morphine) and 32.7 ± 4.7% (8 µM LA1 + 10 nM mor-
phine) vs. 14.4 ± 3.7% (10 nM morphine), respectively, p < 0.01, n = 3, one-way ANOVA
followed by Dunnett’s multiple comparisons test, Figure 3E,F). Meanwhile, the proportion
of macrophages that phagocytosed A549 with the combination of LA1 and morphine were
detected by flow cytometry and we found that inhibition could also be restored (24.9 ± 1.3%
(4 µM LA1 + 10 nM morphine), 27.3 ± 1.7% (8 µM LA1 + 10 nM morphine), vs. 15.2 ± 2.0%
(10 nM morphine), respectively, p < 0.01, n = 3, one-way ANOVA followed by Dunnett’s
multiple comparisons test, Figure 3G,H).

These results confirm that LA1 promotes macrophage CD11b activation and reverses
morphine-mediated inhibition of macrophage phagocytosis.

2.4. Nanomolar Morphine Inhibits Phagocytosis of Cancer Cells by Decreasing the Surface
Expression of MOR and CD11b on Macrophage Membranes

Morphine at sub-nM to nM levels alone modulates macrophage CD11b function
and reduces phagocytosis, while MOR is also expressed in macrophages, suggesting that
morphine-mediated immunomodulation may be mediated through direct interaction with
MOR on immune cells [37]. First, 48 h action of morphine on induced macrophages
with a concentration range of 0.1 nM~1 µM morphine revealed a significant decrease in
mRNA accompanying the CD11b gene and a significant decrease in the OPRM (MOR)
gene (p < 0.001, n = 4, one-way ANOVA followed by Dunnett’s multiple comparisons test,
Figure 2B).

Then, morphine at concentrations of 0.01 nM~10 µM was applied to PMA-induced
macrophages labeled with Anti-MOR antibody and FITC-anti-mouse IgG1 antibody, and
flow cytometric results showed that morphine also significantly reduced the expression
level of MOR on macrophage membranes (EC50 = 5.53 ± 3.70 nM, Figure 4A). We then
synthesized small interfering RNA (siRNA for MOR) and detected the transient knockdown
efficiency by transient transfection of induced macrophages by qRT-PCR. The knockdown
efficiency of the MOR siRNA group was above 85% compared with the control siRNA
(p < 0.001, n = 3, unpaired t-test, Figure 4B, left). Knockdown of the OPRM gene significantly
reduced the expression level of CD11b (p < 0.001, n = 3, unpaired t-test, Figure 4B, right).

Next, the surface expression of CD11b on macrophages after transient knockdown of
OPRM gene was examined and the results showed that knockdown of the OPRM gene
could significantly inhibit CD11b expression on the macrophage membrane compared with
the control group (25.5 ± 4.6% vs. 42.2 ± 0.8%, MOR siRNA vs. Ctrl siRNA, respectively,
p < 0.01, n = 3, unpaired t-test, Figure 4C,D).

Moreover, by overexpressing hMOR-WT after macrophages for 48 h, OPRM mRNA
expression (p < 0.001, n = 4, unpaired t-test, Figure 4E) was found to be significantly elevated
along with CD11b gene mRNA expression (p < 0.05, n = 3, unpaired t-test, Figure 4E).
Moreover, further flow cytometric analysis showed that the overexpression of MOR also
significantly increased the expression level of membrane protein of CD11b on macrophages
(62.0 ± 3.4% vs. 39.5 ± 2.7%, hMOR-OE vs. NC, respectively, p < 0.001, n = 3, one-way
ANOVA followed by Dunnett’s multiple comparisons test, Figure 4F,G). Similarly, the
proportion of CD11b+ positive cells was significantly restored by combined morphine and
MOR overexpression (55.1 ± 3.0% (hMOR-OE + 10 nM morphine) vs. 20.8 ± 2.9% (10 nM
morphine), respectively, p < 0.001, n = 3, one-way ANOVA followed by Dunnett’s multiple
comparisons test, Figure 4F,G).

These results suggest that morphine may contribute to its inhibition of macrophage
phagocytosis by reducing the co-distribution of MOR and CD11b across the macrophage
membrane.
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etry analysis of MOR surface expression on macrophages after cells were incubated with different
concentrations of morphine (the solid line is fitted to hill 1 equation). (B) RT-qPCR analysis of
relative mRNA expressions of CD11b and OPRM in macrophages. In transfected THP-1-derived
macrophages, siRNA-mediated knockdown of OPRM also decreased the gene expression of both
CD11b. (C,D) Flow cytometric analysis of siRNA-mediated alterations in CD11b expression on the
surface of macrophages (C) and pooled data of cell surface marker CD11b (D). (E) Plasmid-mediated
overexpression of OPRM in transfected THP-1-derived macrophages. (F,G) Flow cytometric analysis
of the effect of morphine on CD11b surface expression in OPRM-overexpressing macrophages (F),
and pooled data for the cell surface marker CD11b (G) (n = 3–4 independent experiments). All data
are expressed as mean ± SEM.; * p < 0.05, ** p < 0.01, and *** p < 0.001 versus control, unpaired t-test
(B,D,E), one-way ANOVA with Dunnett’s post-hoc test (G), (F (3, 8) = 110.1, p < 0.001); ### p < 0.001
versus control; ns, not significant.

2.5. The MOR Inhibitor Naloxone Reverses the Inhibitory Effect of Morphine on Macrophage
CD11b and Rescues the Phagocytic Function of Macrophages

To further verify the relationship between opioid receptor activation and morphine
inhibition of macrophage CD11b membrane expression and thus the restoration of its
phagocytosis, we have chosen the opioid receptor antagonist, naloxone (NLX), for vali-
dation [38]. After pretreatment of macrophages with 10 µM NLX for 30 min followed by
morphine at a final concentration of 10 nM for 48 h, NLX significantly increased membrane
CD11b expression (34.4 ± 3.5%) compared with morphine at 10 nM alone (19.8 ± 3.8%)
(p < 0.05, n = 4, t-test, Figure 5A,B).

Similarly, we tested whether NLX could also restore the morphine-induced decrease in
phagocytic activity of macrophages at nM levels. The results of co-culture with macrophages
and cancer cells A549 showed a significant increase in fluorescence intensity and phago-
cytosis ratio of macrophages towards cancer cell phagocytosis in response to NLX at
10 µM (38.9 ± 2.9%), and 20 µM (41.7 ± 1.1%) compared to morphine administration alone
(16.6% ± 4.3%) and control (42.1 ± 2.3%) (p < 0.001, NLX + morphine vs. morphine alone,
n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons. test, Figure 5C,D).
Meanwhile, we examined the proportion of macrophages that phagocytosed A549 with
the combination of NLX and morphine and found that inhibition could also be restored
(28.2 ± 2.8% (10 µM NLX + 10 nM morphine), 29.6 ± 2.6% (20 µM NLX + 10 nM mor-
phine), vs. 15.5 ± 1.5% (10 nM morphine), respectively, p < 0.01, n = 4, one-way ANOVA
followed by Dunnett’s multiple comparisons test, Figure 5E,F), suggesting that NLX almost
completely reversed the immunosuppression of macrophages by morphine.
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At the same time, co-administration of NLX and morphine suppressed the expression
of CD11b immunosuppression-related genes AGR1, PDGFB, IL6, STAT3, and MYC (p < 0.05,
n = 3, one-way ANOVA followed by Dunnett’s multiple comparisons test, Figure 5G), and
significantly increased the expression levels of NOS2, IFNG, IL1B, and TNFA, which
stimulate immune activation (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s
multiple comparisons test, Figure 5H).

These results suggest that the opioid receptor inhibitor naloxone can reverse the
morphine-induced decrease in macrophage CD11b expression and restore the phago-
cytic effect of macrophages. Thus, morphine could reduce macrophage CD11b surface
expression by activating MOR, which is another explanation for its inhibitory effect on
macrophage phagocytosis. It is also possible that the decrease in membrane expression of
MOR (endocytosis) is due to the sustained activation of MOR [39].

2.6. Thymopentin (TP5) Reverses the Inhibitory Effect of Morphine on Macrophage Phagocytosis
by Promoting the Surface Expression and Function of CD11b

It is also not well understood how morphine-mediated immunosuppression can be
restored by combining it with other clinically used drugs. TP5 has very strong immunomod-
ulatory activity and can significantly improve the cellular and humoral immune functions
of the body, thus making it a potential drug for the treatment of primary or secondary
immunodeficiency, tumors, and severe infections [28,30]. At the same time, TP5, as an
immune booster for tumor treatment, can restore the immune system of tumor patients, and
in combination with chemotherapy, it can likewise prevent immunosuppression caused by
chemotherapy drugs.



Pharmaceuticals 2023, 16, 282 10 of 18

Indeed, TP5 administration alone significantly increased the mRNA expression of
OPRM at concentrations of 50, 100 and 200 µM (p < 0.05, n = 3, one-way ANOVA followed
by Dunnett’s multiple comparisons test, Figure 6A) and CD11b (p < 0.05, n = 4, one-way
ANOVA followed by Dunnett’s multiple comparisons test, Figure 6B).
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qPCR analysis of relative mRNA expression of OPRM (A) and CD11b (B) in macrophages incubated
with different treatments of TP5 (0, 50, 100 and 200 µM). (C,D) Macrophages labeled and analyzed
for CD11b-expression (C) by flow cytometry, as well as pooled data for the cell surface marker CD11b
(D). (E,F) Quantitative flow cytometry analysis (E) of macrophages phagocytosis after incubation
with different treatments of TP5 (50, 100, 200 µM) and morphine (10 nM), as well as the pooled
data (F). (G,H) Flow cytometry analysis (G) and pooled data (H) of CD11b surface expression in
macrophages incubated with different treatments of TP5 (50, 100, 200 µM) and morphine (10 nM). (I,J)
RT-qPCR analysis of relative mRNA expression of OPRM (I) and CD11b (J) in macrophages. (K,L)
RT-qPCR analysis of relative mRNA expression of anti-inflammatory factors ARG1, PDGFB, IL6,
STAT3 and MYC (K), and pro- inflammatory factors NOS2, IFNG, IL1B and TNFA (L) in macrophages
(n = 3–5 independent experiments). All data are expressed as mean ± SEM.; * p < 0.05, ** p < 0.01
and *** p < 0.001 versus control, one-way ANOVA with Dunnett’s post-hoc test, (A), (F (2, 6) = 5.212,
p = 0.0487), (B), (F (2, 9) = 20.07, p = 0.0005), (D), (F (3, 8) = 7.761, p = 0.0094), (F), (F (2, 9) = 14.65,
p = 0.0015), (H), (F (4, 10) = 14.49, p = 0.0004), (I), (F (3, 12) = 29.04, p < 0.0001), (J), (F (3, 16) = 11.11,
p = 0.0003); # p < 0.05, ## p < 0.01 and ### p < 0.001 versus control; ns, not significant.

Next, TP5 significantly increased the expression level of CD11b protein on macrophage
membranes at concentrations of 50 (42.9± 1.5%), 100 (49.2± 3.0%) and 200 µM (53.0± 5.3%)
compared to control (41.6 ± 2.5%) (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s
multiple comparisons test, Figure 6C,D). Meanwhile, we examined the proportion of
macrophages that phagocytosed A549 with TP5 administration alone and found that
phagocytosis intensity was increased (28.0 ± 1.8% (100 µM TP5), 31.6 ± 1.3% (200 µM TP5)
vs. 23.7 ± 2.8% (Ctrl), respectively, p < 0.01, n = 3, one-way ANOVA followed by Dunnett’s
multiple comparisons test, Figure 6E,F).
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Moreover, compared with the morphine alone group (25.2 ± 1.9%), the coadministra-
tion of 50 µM, 100 µM or 200 µM TP5 and 10 nM morphine for 48 h significantly increased
the expression of CD11b on macrophage membranes at 100 (32.4 ± 3.3%), and 200 µM
(36.0 ± 3.9%) (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s multiple compar-
isons test, Figure 6G,H), although 50 µM TP5 (27.0 ± 2.3%) did not alter the expression
of CD11b-positive cells on macrophage membranes (p > 0.05, n = 3, one-way ANOVA
followed by Dunnett’s multiple comparisons test, Figure 6G,H).

Similarly, qRT-PCR results showed that the combination of TP5 and morphine also in-
creased the expression levels of two genes, CD11b and OPRM (Figure 6I,J). Pre-administration
of TP5 also decreased the expression of CD11b immunosuppression-related genes AGR1,
PDGFB, IL6, STAT3, and MYC (p < 0.05, n = 3, one-way ANOVA followed by Dunnett’s multi-
ple comparisons test, Figure 6K) and significantly increased the expression levels of NOS2,
IFNG, IL1B, and TNFA, genes that stimulate immune activation (p < 0.05, n = 3, one-way
ANOVA followed by Dunnett’s multiple comparisons test, Figure 6L).

Further macrophage phagocytosis assays showed that although TP5 at 50 µM concen-
trations were not significant, the combination of 100 µM or 200 µM and 10 nM morphine
revealed a concentration-dependent enhancement of macrophage phagocytosis by TP5
(22.6± 3.8% (100 µM TP5 + 10 nM morphine), 38.3± 8.0% (200 µM TP5 + 10 nM morphine),
vs. 9.6 ± 1.4% (10 nM morphine alone), respectively, p < 0.01, n = 3, one-way ANOVA
followed by Dunnett’s multiple comparisons test, Figure 7A,B). Notably, compared with
the morphine administration group alone, TP5 at 200 µM almost completely restored
macrophage phagocytosis intensity to the pre-morphine administration level (38.3 ± 8.0%
vs. 39.4 ± 5.7%, 200 µM TP5 + 10 nM morphine vs. Ctrl, respectively, p > 0.05, n = 3, one-
way ANOVA followed by Dunnett’s multiple comparisons test, Figure 7A,B). Meanwhile,
the phagocytosis of A549 by macrophages was examined by flow cytometry, and it was
found that TP5 could completely reverse the inhibition of function on macrophages by
morphine (p > 0.05, n = 4, one-way ANOVA followed by Dunnett’s multiple comparisons
test, Figure 7C,D).
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cytometric analysis (C) of macrophage phagocytosis incubated with morphine (10 nM) and TP5
(200 µM), as well as pooled data (D). (E,F) Flow cytometry analysis (E) of CD11b surface expres-
sion and pooled date (F) on macrophages treated with morphine (10 nM) and TP5 (200 µM) or
in combination with the AchR inhibitor D-Tubocurarine chloride pentahydrate (TUB, 150 and
200 µg/mL) (n = 3–4 independent experiments). All data are expressed as mean ± SEM.; ** p < 0.01
and *** p < 0.001 vs. control, one-way ANOVA with Dunnett’s post-hoc test, (B), (F (4, 10) = 27.15,
p < 0.0001), (D), (F (2, 9) = 27.44, p = 0.0001), (F), (F (4, 10) = 61.76, p < 0.01); # p < 0.05 and ### p < 0.001
versus control; ns, not significant.

Our previous study showed that TP5 can inhibit the stemness of colorectal cancer stem
cells via nicotinic acetylcholine receptors (nAchRs) [40], and the TP5-mediated changes
in macrophage function were further verified here also by the acetylcholine receptor
antagonist D-Tubocurarine chloride pentahydrate (TUB). Pretreatment with 150 µg/mL
(24.0 ± 1.8%) or 200 µg/mL (22.1 ± 2.9%) of TUB significantly attenuated the reversal
of morphine-induced CD11b surface expression decrease by TP5′s treatments (p < 0.01,
vs. 200 µM TP5 + 10 nM morphine (34.0 ± 1.1%), n = 3, one-way ANOVA followed by
Dunnett’s multiple comparisons test, Figure 7E,F).

Together, these results suggest that TP5 reversed the inhibitory effect of morphine
on macrophage phagocytosis, mainly by promoting membrane expression of CD11b and
regulation of downstream signaling, a process in which nAchRs are also partially involved.

3. Discussion

Here, we find that morphine inhibited the phagocytic effect of macrophages on tumor
cells in a system of macrophage and tumor cell co-culture, and that this inhibition was
somewhat morphine concentration dependent (at nanomolar level). This inhibition of
phagocytosis was not achieved by inhibiting the proliferative activity of macrophages as
well as cancer cells A549, or the innate immunity CD47/SIRPα axis. Our results suggest
that the inhibition of phagocytosis by morphine is due to its suppression of macrophage
CD11b expression and function, and that the reduced phagocytic effect is consistent with a
potency to suppress CD11b expression. In addition, LA1 can promote CD11b activation
downstream to stimulate the expression of immune activation-related genes and inhibit
immune suppression-related genes, thus reversing the immunosuppressive effects of mor-
phine. Further studies with knockdown, antagonist inhibitors, and overexpression of MOR
on macrophages suggest that morphine may inhibit phagocytosis of macrophages by reduc-
ing macrophage CD11b expression through MOR’s surface expression and activation. We
found that in combination with morphine, TPF, which is an immune-enhancing adjuvant,
reversed the inhibitory effect of morphine on macrophage phagocytosis and restored the
macrophage phagocytic effect, mainly by promoting CD11b expression and activation of
downstream signaling. Thus, CD11b and MOR jointly contribute to the immunosuppres-
sive effects of morphine, with an association between them, and TP5 can regulate both,
thereby reversing the immunosuppression of morphine.

We suggest a possible mechanism for morphine-induced immunosuppression and
decreased function, namely that morphine inhibits CD11b expression and function on
macrophages via MOR activation, thereby suppressing macrophage phagocytosis. How-
ever, we do not know whether morphine only affects changes in CD11b expression dur-
ing monocyte-to-macrophage conversion or also directly affects CD11b as a membrane
receptor-mediated downstream immune-related signaling, which our current findings
cannot distinguish. Additionally, whether there is a strong association between decreased
membrane expression of MOR and decreased membrane expression of CD11b, and whether
there is a direct interaction between the two, remains to be further investigated. The de-
crease in macrophage phagocytosis induced by nM levels of morphine may be due to two
mechanisms: decreased expression of MOR and CD11b in the membrane, and activation
of MOR receptors; it remains to be confirmed whether these two mechanisms interact or
are causal. It is also not very clear whether the decreased membrane expression of MOR is
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caused by the sustained activation of MOR, which leads to a decreased surface expression
of CD11b, or whether other factors mediate this process. Considering that the effect of
LA1 activation does not fully restore morphine-suppressed CD11b surface expression, we
speculate that there may be other mechanisms mediating this effect, which also need further
investigation. This mode of action might not depend primarily on G-protein downstream
signaling from the MOR receptors and could serve to modulate the immunosuppressive
effects of morphine without affecting its analgesic effects.

The relationship between prolonged opioid intake and tumor development in non-
cancer chronic pain medication is not well understood, and there is growing evidence
that patients in these settings are at risk for cancer [15]. The common dose of clinical
postoperative morphine administered subcutaneously is 5–10 mg/dose and 10–40 mg/day
in adults (up to 60 mg or more depending on the severity of cancer pain), and the blood
concentration of morphine in vivo is ~50–100 nM [41]; when administered intravenously,
the common dose in adults for analgesia is 1–10 mg. Studies have shown that an intravenous
infusion of morphine 10 mg has an initial blood concentration of 100–200 ng/mL, which
converts to approximately 350–700 nM; the lowest effective analgesic blood concentration
of morphine in vivo is 10–50 ng/mL, which converts to approximately 35–175 nM; blood
concentrations in the range 1.8–38 nM were detected 1 h after oral administration of 10 mg
morphine, with a mean blood concentration of 5.8 nM [42,43], peak serum concentrations of
morphine reached 70 to 80 ng/mL within 10 to 20 min after intramuscular administration
of 10 mg [44]. These concentrations of clinical use of morphine are within the range of
the present study, which validates our hypothesis of clinical immunosuppression caused
by morphine, of which immunosuppression of macrophages is one of the causes. In
clinical practice, TP5 might be considered in combination with morphine, which can
effectively circumvent the risk of reduced immune function due to long-term morphine
use in oncology patients.

Another point is that immune cells have been shown to secrete acetylcholine, dopamine,
and gamma-aminobutyric acid (GABA), which mediate immune signaling and play impor-
tant immunomodulatory roles [45–48]. In this study, pretreatment with TUB significantly
attenuated the reversal of morphine-induced CD11b surface expression decrease by TP5’s
treatments (Figure 7), suggesting a process in which nAchRs are also partially involved.

Another interesting question is whether the current results have the potential to be
applied clinically to retain the analgesic effect of morphine while reducing its effect on
immunosuppression. We have confirmed that there are no reports of TP5 affecting the
clinical application of morphine analgesia. Only one study in an animal model found that
TP5 treatment resulted in a slight decrease in sensitivity to painful stimuli in rats. TP5
enabled tumor-bearing animals to recover diminished behavioral activity and increased
resistance to stressful stimuli and pain [49], suggesting that TP5 can exhibit a slight analgesic
effect. Furthermore, the advantage of TP5 over naloxone is that it may only improve the
immunosuppressive effects of morphine without affecting the analgesic effects of morphine.

Finally, for the clinical use of TP5, clinical administration is mainly intramuscular
or subcutaneous and can be 50 mg per day [50]. A study evaluated the clinical efficacy
and tolerability of high-dose intravenous TP5 in 16 patients with melanoma [51]. Patients
received 1 g of TP5 intravenously every two days (approximately 300–800 micromolar
blood levels) and then underwent a 5-week follow-up for evaluation. In this study, high-
dose intravenous TP5 administered three times a week enhanced immune function in
patients with cutaneous and subcutaneous metastases from melanoma, with no associated
side effects. Therefore, TP5 may reach relatively high concentrations at local administration
sites, but concentrations in whole blood throughout the day in the average patient may
be lower than those used in our tests. Relatively high doses of TP5 may be used as an
immune-enhancing adjuvant to enhance the immune function of patients. Thus, although
TP5 is also relatively safe at high concentrations, clinical applications to alleviate the
immunosuppressive effects of morphine requires a reasonable dose and frequency of
treatment to be attempted in a clinical setting.
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4. Materials and Methods
4.1. Plasmids and siRNAs

The plasmid of pcDNA3.1-hMOR-WT was kindly gifted from Dr. Rui Wang. The
siRNAs used in this study were purchased from Shanghai GenePharma (Shanghai, China).

4.2. Chemicals and Cell Culture

TP5 was purchased from ChemBest Research Laboratories Ltd. (Shanghai, China).
Leukadherin-1 (LA1) and D-Tubocurarine chloride pentahydrate (TUB) were purchased
from MedChemExpress (South Brunswick Township, NJ, USA). Other compounds were
purchased from Sigma. THP-1 cells were cultured in RPMI-1640 medium (C22400500BT,
Gibco, NY, USA) supplemented with 20% fetal bovine serum (10099-141, Gibco, NY, USA),
penicillin (100 IU/mL) and streptomycin (100 µg/mL, C0222, Beyotime, Shanghai, China).
A549 cells were cultured in RPMI-1640 medium (C22400500BT, Gibco, NY, USA) supple-
mented with 10% fetal bovine serum (10099-141, Gibco, NY, USA), penicillin (100 IU/mL)
and streptomycin (100 µg/mL, C0222, Beyotime, Shanghai, China). Cells were incubated
in a humidified incubator containing 5% CO2 at 37 ◦C.

4.3. SiRNA Mediated Knockdown

THP-1-differentiated macrophages were transfected (Lipofectamine TM RNAiMAX,
13778075, Invitrogen, CA, USA) using 100 nM of siRNA against MOR (MOR siRNA) or
non-silencing siRNA (Ctrl siRNA) [52]. The medium was changed after 6 h of transfection
and the culture was continued for 48 h. The OPRM knockdown efficiency of each oligomer
was confirmed by RT-qPCR assay.

4.4. Other Plasmids Transfection

THP1-differentiated macrophages were placed in 12-well plates and transfected with
1 µg pcDNA3.1-hMOR-WT or pcDNA3.1 (Lipofectamine 3000, L3000015, Invitrogen, CA,
USA) [53]. The medium was changed after 6 h of transfection and incubation was continued
for 48 h. The efficiency of overexpression was confirmed by RT-qPCR assay.

4.5. Flow Cytometry

THP-1 cells (5 × 105 cells/well) were seeded in 12-well plates and cultured with
200 ng/mL of phorbol-12-myristate-13-acetate (PMA, HY-18739 MedChemExpress, South
Brunswick Township, NJ, USA) for 48 h to differentiate into macrophages [54]. THP-1-
derived macrophages were exposed to different concentrations of morphine for 48 h. The
supernatant was then removed and the cells were digested with 0.25% trypsin (25200-072,
Gibco, NY, USA). After washing, the cells were resuspended in 100 µL of PBS (ST476,
Beyotime, Shanghai, China). For surface staining, cells were labeled with APC-CD11b
(101212, Biolegend, CA, USA), PE-SIRPα (372103, Biolegend, CA, USA), and APC-CD47
(17-0479-42, eBiosciences, CA, USA). Cell suspensions were incubated with appropriate an-
tibodies for 30 min at room temperature in the dark, followed by a washing step to remove
unlabeled antibodies. Flow cytometry analysis was performed using BD LSRFortessa™
(BD Biosciences, Franklin Lakes, NJ, USA) and analyzed by FlowJo 10.6 software.

4.6. In Vitro Phagocytosis Assays

In vitro phagocytosis was performed using THP-1 cells, and these cells differentiated
into macrophages by incubation with PMA for 48 h. THP-1 cells (2 × 105 cells/well) were
seeded in 24-well plates and treated with morphine for 48 h. A549 cells were labeled with
fluorescent dye probe ProtonexTM Red 600 (21207, AAT Bioquest, Pleasanton, CA, USA)
in the dark for 30 min. The fluorescence of Protonex™ Red dye increases sharply as the
pH decreases from neutral to acidic according to the manufacturer’s protocol [55]. Then,
2 × 105 pHrodo-red-labelled target A549 cells were added to the macrophages for 24 h at
37 ◦C. Co-cultured cells were collected and washed with 0.5% BSA-PBS. High-resolution
images were taken on an inverted fluorescence microscope (DMI3000 B, Leica, Wetzlar,
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Germany) and processed in ImageJ. Phagocytic activity was analyzed by flow cytometry
(BD LSRFortessa™, BD Biosciences, Franklin Lakes, NJ, USA) and analyzed by FlowJo
10.6 software.

4.7. RT-qPCR Assay

Total RNA was isolated and reverse transcribed using the EZ-press RNA purification
kit (B0004-plus, EZBioscience, New York, NY, USA) and PrimeScript RT kit (RR047A,
TaKaRa, Tokyo, Japan), respectively, according to the manufacturer’s instructions, and
qPCR was performed using TB Green Premix Ex Taq (RR420A. TaKaRa, Tokyo, Japan) [56].
Relative changes in gene expression were determined using the 2-∆∆Ct method and
the relative mRNA expression was normalized to GAPDH. The following primer sets
were used to analyze the expression of specific genes, including CD11b, forward: 5′-
ACTTGCAGTGAGAACACGTATG-3′ and reverse: 5′-TCATCCGCCGAAAGTCATGTG-3′;
OPRM, forward: 5′-GCCCTTCCAGAGTGTGAATTAC-3′, and reverse: 5′-GTGCAGAGGG-
TGAATATGCTG-3′; IL-6, forward: 5′-ACTCACCTCTTCAGAACGAATTG-3′ and reverse:
5′-CCATCTTTGGAAGGTTCAGGTTG-3′; STAT3, forward: 5′-ACCAGCAGTATAG-
CCGCTTC-3′, and reverse: 5′-GCCACAATCCGGGCAATCT-3′; PDGFB, forward: 5′-
CTCGATCCGCTCCTTTGATGA-3′, and reverse: 5′-CGTTGGTGCGGTCTATGAG-3′; MYC,
forward: 5′-GGCTCCTGGCAAAAGGTCA-3′, and reverse: 5′-CTGCGTAGTTGTGCTGA-
TGT-3′; ARG1, forward: 5′-TGGACAGACTAGGAATTGGCA-3′, and reverse: 5′-CCAGT-
CCGTCAACATCAAAACT-3′; IL1B, forward: 5′-ATGATGGCTTATTACAGTGGCAA-3′,
and reverse: 5′-GTCGGAGATTCGTAGCTGGA-3′; NOS2, forward: 5′-TTCAGTATCAC-
AACCTCAGCAAG-3′, and reverse: 5′-TGGACCTGCAAGTTAAAATCCC-3′; IFNG, for-
ward: 5′-TCGGTAACTGACTTGAATGTCCA-3′, and reverse: 5′-TCGCTTCCCTGTTTT-
AGCTGC-3′; TNFA, forward: 5′-GGCGTGGAGCTGAGAGATAA-3′, and reverse: 5′-
TTGATGGCAGAGAGGAGGTT-3′; GAPDH, forward: 5′-TTGGTATCGTGGAAGGACT-3′,
and reverse: 5′-GGATGATGTTCTGGAGAGC-3′.

4.8. Cell Viability Assay

Cell viability was evaluated using the MTT assay kit (C0009, Beyotime, Shanghai,
China) according to the manufacturer’s protocol [57]. A549 cells were seeded in 96-well
plates at a density of 1 × 104 cells/well. THP-1 cells were seeded in 96-well plates at a
density of 5 × 104 cells/well and differentiated in macrophages as described. Cells were
incubated overnight at 37 ◦C. Next, cells were treated with morphine and incubated for
48 h. Then 10 µL of MTT was added to each well and incubated for 4 h. The absorbance
was measured at 570 nm using a microplate reader (VarioskanTM LUX, Thermo, Waltham,
MA, USA). Cell viability was estimated by comparing the relative absorbance values with
those of the untreated samples.

4.9. Statistical Analysis

Data are expressed as mean± SEM. All experiments were performed independently, at
least 3 times. Statistical analyses were performed as described in each corresponding legend.
Differences between two groups were assessed by unpaired two-sided Student’s t-test, and
differences between multiple groups were assessed by one-way ANOVA and Dunnett’s post
hoc test. p less than 0.05 was considered statistically significant. Concentration-response
relationships of CD11b and MOR were obtained by measuring fluorescence intensity in
response to different concentrations of morphine, and all results that were used to generate
a concentration-response relationship were from the same group. The data were fit to the
Hill1 equation: I/I max = 1/[1 + (EC50/morphine) n], where I is the normalized fluorescence
intensity at a given concentration of ligands, I max is the maximum normalized fluorescence
intensity, EC50 is the morphine concentration producing half of the maximum fluorescence
intensity, and n is the Hill1 coefficient.
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