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Abstract: Memory impairments constitute a significant problem worldwide, and the COVID-19
pandemic dramatically increased the prevalence of cognitive deficits. Patients with cognitive deficits,
specifically memory disturbances, have underlying comorbid conditions such as schizophrenia,
anxiety, or depression. Moreover, the available treatment options have unsatisfactory effectiveness.
Therefore, there is a need to search for novel procognitive and anti-amnesic drugs with additional
pharmacological activity. One of the important therapeutic targets involved in the modulation of
learning and memory processes are serotonin receptors, including 5-HT1A, 5-HT6, and 5-HT7, which
also play a role in the pathophysiology of depression. Therefore, this study aimed to assess the
anti-amnesic and antidepressant-like potential of JJGW08, a novel arylpiperazine alkyl derivative of
salicylamide with strong antagonistic properties at 5-HT1A and D2 receptors and weak at 5-HT2A and
5-HT7 receptors in rodents. First, we investigated the compound’s affinity for 5-HT6 receptors using
the radioligand assays. Next, we assessed the influence of the compound on long-term emotional and
recognition memory. Further, we evaluated whether the compound could protect against MK-801-
induced cognitive impairments. Finally, we determined the potential antidepressant-like activity of
the tested compound. We found that JJGW08 possessed no affinity for 5-HT6 receptors. Furthermore,
JJGW08 protected mice against MK-801-induced recognition and emotional memory deficits but
showed no antidepressant-like effects in rodents. Therefore, our preliminary study may suggest that
blocking serotonin receptors, especially 5-HT1A and 5-HT7, might be beneficial in treating cognitive
impairments, but it requires further investigation.

Keywords: anti-amnesic effect; long-term memory; cognition; antidepressant-like activity; serotonin
receptors

1. Introduction

Memory is fundamental to everyday life, and cognitive impairments significantly
deteriorate normal functioning. The World Health Organization reports that dementia, a
loss of cognitive functioning, affects more than 55 million people worldwide and constitutes
the seventh leading cause of death [1]. The prevalence of memory deficits increased due to
the COVID-19 pandemic, which elevated the number of reported problems with cognition,
including brain fog, forgetfulness, and difficulty concentrating [2–5]. Furthermore, memory
impairments can constitute a separate disorder, such as dementia or Alzheimer’s disease,
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but they can also accompany other conditions, such as depression or schizophrenia, wors-
ening their course and increasing the risk of developing resistance to the treatment [6–13].
Moreover, not all types of memory are equally impaired in the above-mentioned condi-
tions [6,14,15]; therefore, it is important to investigate the effects of novel compounds on
various types of memory. Unfortunately, the effectiveness of available treatment options,
mainly limited to acetylcholinesterase inhibitors or NMDA receptor antagonists, is disap-
pointing and insufficient [16,17]. Therefore, there is a need to look for novel procognitive
and anti-amnesic drugs with additional antidepressant-like activity.

Among various drug targets, especially 5-HT1A, 5-HT6, and 5-HT7 receptors are im-
portant for learning and memory as they are localized in brain areas involved in cognitive
processes (such as the hippocampus, prefrontal cortex, or amygdala [18–20]). Interestingly,
their role in memory depends on each other’s activity. Stimulating 5-HT7 receptors with
the subsequently reduced 5-HT1A receptor-mediated transmission facilitates emotional
memory in mice [21]. Furthermore, various research suggests that agonists and antago-
nists of 5-HT1A [22–24], 5-HT6 [25–27], and 5-HT7 receptors [28–32] are effective in the
treatment of learning and memory disorders. Both agonists and antagonists of the above
receptors showed not only procognitive [22,33,34] but also anti-amnesic properties, revers-
ing memory deficits of the glutamatergic or cholinergic origin [23,25,28,30,35]. However,
these contradictory research results may be associated with different types of memory
assessed, as well as the stage of memory formation. Nevertheless, 5-HT1A, 5-HT6, and
5-HT7 receptors and their ligands are worth studying in memory disorders with different
etiology. Moreover, ligands of these receptors also play a significant role in depression treat-
ment. Many studies confirmed the potential antidepressant-like activity of antagonists of
5-HT1A [36,37], 5-HT6 [38–40], and 5-HT7 [41–45] receptors. Therefore, it is also reasonable
to investigate their antidepressant-like properties.

Studies indicated that compounds with 2-methoxyphenylpiperazine fragments bind
to various serotonin receptors, particularly 5-HT1A and 5-HT7 [37,46,47]. Moreover, such
compounds showed a promising pharmacological profile in animals, such as anti-amnesic
and procognitive effects [48,49], as well as antidepressant-like properties [47,50,51]. Ad-
ditionally, a study by Jaśkowska et al. demonstrated that salicylamide derivatives with
arylpiperazine moiety could bind strongly with serotonin receptors, especially 5-HT1A
and 5-HT7 receptors [52]. Therefore, we hypothesized that salicylamide derivative with 2-
methoxyphenyl moiety could improve rodents’ cognition and may alleviate
depressive-like behavior.

Given the optimistic assumptions, this study aimed to assess the potential anti-amnesic
and anti-depressant-like effects of JJGW08, a novel arylpiperazine alkyl derivative of salicy-
lamide, which in our earlier studies showed strong antagonistic properties at 5-HT1A and
D2 receptors and weak at 5-HT2A and 5-HT7 receptors as well as the potential antipsychotic-
and anxiolytic-like activity in rodents [53]. We assessed whether the compound, when
given alone, affected the emotional and recognition memory using the step-through passive
avoidance and object recognition tests, respectively. Moreover, we evaluated whether the
compound reversed cognitive impairments caused by MK-801, an antagonist of NMDA
receptors. Finally, we investigated its potential antidepressant-like activity in the forced
swim and tail suspension tests in rodents.

2. Results
2.1. JJGW08 Showed No Affinity for 5-HT6 Receptors

The studied compound possessed no affinity for 5-HT6 receptors and did not bind to
the receptor at the concentration 10−5M, whereas the pKi value for methiotepin, a reference
compound, was 8.48 ± 0.04.
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2.2. JJGW08 Did Not Disturb Long-Term Memory in Naïve Mice in the Step-Through Passive
Avoidance Task

JJGW08 did not influence the latency in the acquisition trial, but it significantly in-
creased the latency in the retention trial at all tested doses compared to the acquisition
session. Statistical analysis showed significant time effect (F(1,42) = 74.30, p < 0.0001), but
no influence of the compound (F(5,42) = 0.115, p = 0.988) and no interaction (F(5,42) = 0.141,
p = 0.982) (Figure 1).
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Figure 1. The influence of JJGW08 on the latency in the step-through passive avoidance task in mice.
The experiment consisted of two sessions, i.e., the acquisition and the retention trial. In the acquisition
trial mice were placed individually in the light chamber of the apparatus, with the door opening after
30 s. When the animal crossed to the dark chamber, the door closed, and the animal was punished
with an electric shock (0.8 mA, 2 s). JJGW08 was administered intraperitoneally (ip) 30 min before
the start of the experiment. The control group received ip 0.9% NaCl solution. On the second day of
the test, mice were placed again in the light chamber, and the latency was measured for a maximum
of 300 s (without an electrical impulse). Values are expressed as means ± SD, n = 8 mice per group.
Statistical analysis: two-way ANOVA with repeated measures (Bonferroni post hoc).

2.3. JJGW08 Reversed Cognitive Disturbances after MK-801 Administration in Mice in the
Step-Through Passive Avoidance Task

The studied compound, MK-801, did not influence the latency in the acquisition trial.
JJGW08 reversed MK-801-induced memory impairments at the doses of 0.3 mg/kg and
2.5 mg/kg by increasing the latency in the retention session. Statistical analysis showed
significant time effect (F(1,48) = 53.87, p < 0.0001), significant effect of the compound
(F(6,49) = 3.435, p = 0.007) and interaction (F(6,48) = 3.514, p < 0.006) (Figure 2).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 4 of 16 
 

 

✱✱✱

✱

✱✱
✱

 
Figure 2. The influence of JJGW08 on the latency after the MK-801 administration in the 
step-through passive avoidance task in mice. The experiment consisted of two sessions, i.e., the 
acquisition and retention trial. In the acquisition trial, mice were placed individually in the light 
chamber of the apparatus, with the door opening after 30 s. When the animal crossed to the dark 
chamber, the door closed, and the animal was punished with an electric shock (0.8 mA, 2 s). 
JJGW08 was administered intraperitoneally (ip) 30 min before the test, while MK-801 (0.125 mg/kg) 
was administered ip 15 min before the start of the experiment to induce memory impairments. The 
control group received ip 0.9% NaCl solution in two injections or 0.9% NaCl solution and MK-801 
(0.125 mg/kg; ip). On the second day of the test, mice were placed again in the light chamber, and 
the latency was measured for a maximum of 300 s (without electrical impulse). Values are ex-
pressed as means ± SD, n = 8 mice per group. Statistical analysis: two-way ANOVA with repeated 
measures (Bonferroni post hoc) * p < 0.05, ** p < 0.01, *** p < 0.001. 

2.4. JJGW08 Did Not Disturb Long-Term Memory in Naïve Mice in the Object Recognition Test 
JJGW08 at the doses 0.15, 0.3, and 0.625 mg/kg increased the exploration of the novel 

object, and the exploration time was significantly higher than the chance level of 10 s (Figure 
3). 

✱ ✱ ✱ ✱✱

 
Figure 3. The influence of JJGW08 on the novel object exploration time in mice. The experiment 
consisted of two sessions. On the first day, mice were placed and left in cages until they reached a 
total exploration time of 20 s for both identical objects, but no longer than 10 min. JJGW08 was 
administered ip 30 min before the start of the experiment. The control group received ip 0.9% NaCl 

Figure 2. The influence of JJGW08 on the latency after the MK-801 administration in the step-through
passive avoidance task in mice. The experiment consisted of two sessions, i.e., the acquisition and
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retention trial. In the acquisition trial, mice were placed individually in the light chamber of the
apparatus, with the door opening after 30 s. When the animal crossed to the dark chamber, the door
closed, and the animal was punished with an electric shock (0.8 mA, 2 s). JJGW08 was administered
intraperitoneally (ip) 30 min before the test, while MK-801 (0.125 mg/kg) was administered ip 15 min
before the start of the experiment to induce memory impairments. The control group received ip 0.9%
NaCl solution in two injections or 0.9% NaCl solution and MK-801 (0.125 mg/kg; ip). On the second
day of the test, mice were placed again in the light chamber, and the latency was measured for a
maximum of 300 s (without electrical impulse). Values are expressed as means ± SD, n = 8 mice per
group. Statistical analysis: two-way ANOVA with repeated measures (Bonferroni post hoc) * p < 0.05,
** p < 0.01, *** p < 0.001.

2.4. JJGW08 Did Not Disturb Long-Term Memory in Naïve Mice in the Object Recognition Test

JJGW08 at the doses 0.15, 0.3, and 0.625 mg/kg increased the exploration of the novel
object, and the exploration time was significantly higher than the chance level of 10 s
(Figure 3).
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Figure 3. The influence of JJGW08 on the novel object exploration time in mice. The experiment
consisted of two sessions. On the first day, mice were placed and left in cages until they reached
a total exploration time of 20 s for both identical objects, but no longer than 10 min. JJGW08 was
administered ip 30 min before the start of the experiment. The control group received ip 0.9% NaCl
solution. On the second day, mice were placed again in cages, where one object was changed to a
new one. The mice remained in the cage until they reached a total exploration time of 20 s for both
objects, but no longer than 10 min. Values are expressed as means ± SD, n = 8–10 mice per group.
Statistical analysis: one-sample t-test * p < 0.05, ** p < 0.01 vs. chance level = 10 s.

2.5. JJGW08 Reversed Cognitive Disturbances after the MK-801 Administration in Mice in the
Object Recognition Test

In mice administered with MK-801 alone, the novel object exploration time did not
differ significantly from the chance level. JJGW08 at the dose of 0.15 mg/kg significantly
increased the exploration of the novel object compared to the chance level of 10 s (Figure 4).
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Figure 4. The influence of JJGW08 on the novel object exploration time after the MK-801 administra-
tion in mice. The experiment consisted of two sessions. On the first day, mice were placed and left in
cages until they reached a total exploration time of 20 s for both identical objects, but no longer than
10 min. The tested compound was administered intraperitoneally (ip) 30 min before, while MK-801
(0.125 mg/kg) was administered ip 15 min before the start of the experiment to induce memory
impairments. The control group received 0.9% NaCl solution ip in two injections or 0.9% NaCl
solution ip and MK-801 (0.125 mg/kg; ip). On the second day, mice were placed again in cages, where
one object was changed to a new one. The mice remained in the cage until they reached a total explo-
ration time of 20 s for both objects, but no longer than 10 min. Values are expressed as means ± SD,
n = 8–10 mice per group. Statistical analysis: one-sample t-test ** p < 0.01 vs. chance level = 10.

2.6. JJGW08 Did Not Decrease the Immobility Time in the Forced Swim and Tail Suspension Tests
in Mice

JJGW08 increased the immobility time at the doses 1.25 mg/kg and 2.5 mg/kg
(H(6,48) = 22.56, p = 0.0004) and decreased the swimming time (F(6,48) = 5.705, p = 0.0015)
without affecting climbing time (F(5,42) = 3.174, p = 0.0161) in the forced swim test in mice
(Figure 5).
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Figure 5. The effect of JJGW08 on the immobility, climbing, and swimming time in the forced swim
test in mice. Mice were placed in water tanks, and the immobility time, as well as swimming and
climbing time, were measured for 4 min (after a 2-min adaptation period). JJGW08 was administered
intraperitoneally (ip) 30 min before the test. The control group received an injection of 0.9% NaCl
(ip). Values are expressed as means ± SD in case of one-way ANOVA (climbing and swimming) or
medians with interquartile range in case of Kruskal–Wallis test (immobility), n = 8–10 mice per group.
Statistical analysis: one-way ANOVA (Newman–Keuls post hoc) or Kruskal–Wallis (Dunn’s post hoc),
* p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group.
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Moreover, JJGW08 increased the immobility time in the tail suspension test at the doses
1.25, and 2.5 mg/kg by 70 and 87%, respectively (H(6,59) = 39.02, p < 0.0001) (Figure 6).
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Figure 6. The effect of JJGW08 on the immobility time in the tail suspension test in mice. Mice were
suspended by the tail (50 cm above the ground) with adhesive tape (1 cm wide), and the immobility
time was measured for 6 min. JJGW08 was administered intraperitoneally (ip) 30 min before the
test. The control group received an injection of 0.9% NaCl (ip). Values are expressed as medians
with interquartile range, n = 10 mice per group. Statistical analysis: Kruskal–Wallis (Dunn’s post hoc),
* p < 0.05, ** p < 0.01 vs. control group.

2.7. JJGW08 Decreased the Locomotor Activity in Mice

JJGW08 decreased the locomotor activity in mice at the dose 2.5 mg/kg in the 6-min
session (F(5,44) = 5.298, p = 0.0007), and 4-min session (F(5,44) = 5.654, p = 0.0004) (Table 1).

Table 1. The influence of JJGW08 on locomotor activity in mice.

Treatment Dose (mg/kg)
Number of Crossings ± SD

0–6 min 2–6 min

Saline - 282 ± 91 196 ± 68
0.15 164 ± 130 150 ± 61
0.3 326 ± 85 214 ± 55

JJGW08 0.625 191 ± 81 131 ± 53
1.25 155 ± 90 121 ± 50
2.5 108 ** ± 136 70 ** ± 86

Locomotor activity was recorded separately for each mouse in actometers. After the 30-min adaptation period, the
number of photobeams crossings was measured at the appropriate time intervals, i.e., 6 min for the tail suspension
test and 4 min for the forced swim test. JJGW08 was administered intraperitoneally (ip) 30 min before the test. The
control group received an injection of 0.9% NaCl (ip). Values are expressed as means ± SD, n = 8–10 mice per
group. Statistical analysis: one-way ANOVA (Newman–Keuls post hoc), ** p < 0.01.

3. Discussion

In this study, we found that JJGW08, which is a novel arylpiperazine alkyl derivative
of salicylamide, with strong antagonistic properties at the 5-HT1A and D2 receptors and
weak at the 5-HT2A and 5-HT7 receptors, as well as the antipsychotic- and anxiolytic-like
activity, possessed no affinity towards 5-HT6 receptors. Furthermore, behavioral studies
demonstrated that JJGW08 did not impair long-term emotional or recognition memory
acquisition in mice. Notably, the compound protected mice against MK-801-induced
recognition and emotional memory deficits. Finally, the tested compound did not show
antidepressant-like effects in mice.

Serotonergic neurons are widely distributed in the brain with high density in the
hippocampus and prefrontal cortex, areas strongly associated with cognition [54–56] and
depression [57]. Thus, it is unsurprising that serotonin and its receptors play a significant
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role in learning and memory processes, as well as mood regulation. Interestingly, among
serotonin receptors, the 5-HT1A, 5-HT6, and 5-HT7 subtypes are of particular interest as
targets for the treatment of memory deficits (reviewed in [58] and [59]) and depressive
states [60]. Our previous studies revealed that JJGW08 was a potent antagonist of 5-HT1A
and D2 receptors and a weak antagonist of 5-HT2A and 5-HT7 receptors [53]. Considering
the pivotal role of the serotonin 5-HT6 receptor modulation in cognitive processes [61–65],
we first investigated the compound’s affinity for the 5-HT6 receptors using radioligand
binding studies. We showed that JJGW08 did not demonstrate any affinity for the 5-HT6
receptors. Nevertheless, since JJGW08 targets other serotonin receptors, it encouraged
us for further investigation. Studies indicated that the blockade of 5-HT1A and 5-HT7
receptors resulted in anti-amnesic effects in rodents [32,48,66,67] as well as antidepressant-
like activity in animals (reviewed in [60]). Thus, the blockade of both these receptors
might be beneficial in restoring normal cognitive processes and alleviating depressive-like
symptoms in rodents.

Bearing that in mind, we examined the effects of JJGW08 on the acquisition phase
of long-term emotional memory in the step-through passive avoidance test in mice. This
test involves analysis of conflict behavior, such as avoidance of aversive stimuli, i.e.,
electric shock. The animal must inhibit its natural preference for the dark compartment,
where it receives an electric shock during the familiarization phase and stays in the bright
chamber [68]. The results indicate that JJGW08 significantly increased the latency to enter
the dark compartment, which suggests that it did not negatively influence long-term
emotional memory acquisition. Next, we used the same behavioral assay to investigate
whether JJGW08 would protect against MK-801-induced emotional memory impairment.
We used MK-801, an NMDA antagonist, to impair memory, as the NMDA receptors are
involved with cognitive processes, especially the long-term potentiation [69]. Our results
demonstrated that the administration of MK-801 in the step-through passive avoidance test
caused a significant decrease in the latency to enter the dark compartment. However, the
pretreatment with JJGW08 showed a potential anti-amnesic effect by increasing the time
to enter the dark chamber. Interestingly, we observed a U-shaped dose effect (the highest
dose of 2.5 mg/kg and the dose of 0.3 mg/kg were effective). Such an effect is a common
phenomenon in studies on cognition and is probably multifactorial. In the case of JJGW08,
it might be due to the interaction with other, not yet tested biological targets, which might
influence the overall effect of the compound on emotional memory.

Knowing the positive influence on emotional memory impairments, we assessed
the effect of JJGW08 on recognition memory using the object recognition test in mice.
This behavioral test is based on rodents’ tendency to explore a novel object longer than
a familiar one [70]. The results showed that JJGW08 impaired memory at higher doses,
whereas lower doses did not affect recognition memory acquisition. Thus, for studies
with MK-801, we chose lower doses of the compound. An antagonist of NMDA receptors
induced recognition memory deficits, decreasing the exploration time of the new object.
Interestingly, JJGW08 protected from recognition memory deficits only at the lowest dose
tested (i.e., 0.15 mg/kg). As mentioned earlier, this effect is a common phenomenon in
neuropharmacological research, especially for multimodal compounds, probably due to
varying receptor occupancy at various doses or dose-dependent optimal receptor saturation.
Our study suggests that at lower doses, JJGW08 shows potential anti-amnesic properties,
but further studies are necessary to confirm our speculations.

Since the serotonin receptors also play a significant role in depression, in the fi-
nal step of our study, we evaluated the antidepressant-like effects of JJGW08 using the
forced swim and tail suspension tests in mice, which are the most commonly used tests
to evaluate antidepressant-like effects of new compounds [71]. JJGW08 demonstrated
no antidepressant-like properties in both tests, and conversely, at two doses (1.25 and
2.5 mg/kg), it increased the immobility time of mice. These results might be due to the
sedative properties of JJGW08, as at the highest dose tested (2.5 mg/kg), the compound
reduced the locomotor activity of animals. Sedation is a common side effect of various
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drugs acting in the central nervous system, for example, blocking H1 or α1 receptors or
activating µ-opioid receptors [72–75]. Therefore, we might suspect that JJGW08 at the
highest tested doses may bind to other types of receptors responsible for this undesirable
effect. Nevertheless, this issue requires further studies to explain the observed effects.

Our results align with the findings of other research groups, in which either the 5-HT1A
and/or 5-HT7 antagonists show anti-amnesic properties (reviewed in [76] and [77]). Much
evidence indicates the interaction between serotoninergic and glutamatergic neurotransmis-
sion in learning and memory processes [78]. Studies showed the improvement of memory
deficits due to the blockade of NMDA receptors or glutamatergic lesions after the treatment
with serotonin 5-HT7 antagonists [79,80] as well as 5-HT1A [81–83] and 5-HT6 [25] ago- or
antagonists in behavioral tests in animals. For example, Bonaventure et al. demonstrated
that SB-269970, a selective 5-HT7 antagonist, reversed memory deficits due to NMDA recep-
tor hypofunction by the selective normalization of glutamatergic neurotransmission [84].
Similarly, Harder and Ridley showed that WAY 100 635 (a 5-HT1A receptor antagonist)
alleviated cognitive impairment induced by MK-801 in monkeys [85]. Since JJGW08 is an
antagonist of 5-HT1A and 5-HT7 receptors, we can speculate that the observed protection
against MK-801-induced memory deficits may be due to the blockade of these receptors.
Nevertheless, further studies are required to confirm this assumption.

Altogether, our study suggests that dual 5-HT1A and 5-HT7 antagonists might help
treat memory deficits. However, we need to emphasize that JJGW08 antagonized the
5-HT1A more strongly than the 5-HT7 receptor, which suggests that the 5-HT1A receptor
may play a leading role in the potential anti-amnesic effect. Nevertheless, further studies
are necessary to determine the full potential of this compound group.

Our study has some limitations. First, we should evaluate the effect of JJGW08 on
learning and memory after repeated administration. Moreover, we should also investigate
the influence of JJGW08 on other types of memory. Finally, it is also necessary to determine
the pharmacokinetic profile of JJGW08 and verify its ability to cross the blood–brain barrier.

4. Materials and Methods
4.1. Drugs

The studied compound 2-{5-[4-(2-methoxyphenyl)piperazin-1-yl]pentoxy}benzamide
hydrochloride (JJGW08) was synthesized in the Department of Organic Chemistry and
Technology, Faculty of Chemical and Engineering and Technology, Cracow University
of Technology. The synthesis and biological properties of the compound were described
earlier [52].

JJGW08 was dissolved in saline (0.9 % NaCl, Polpharma, Starogard Gdańsk, Poland)
and administered intraperitoneally (ip) 30 min before each behavioral test. The chemicals
used in radioligand studies, i.e., methiothepin (Sigma-Aldrich, Darmstadt, Germany),
were dissolved in saline. MK-801 (Sigma-Aldrich, Darmstadt, Germany) was dissolved
in saline and administered ip 15 min before experiments. The control groups received
0.9% NaCl solution ip 30 min prior to testing. The studied compound was tested in
in vivo experiments at the dose range of 0.625–2.5 mg/kg, which was selected based on
our previous experiments [53]. If the effect of the lowest dose, i.e., 0.625 mg/kg, was still
statistically significant, we reduced the dose by half until the observed activity disappeared.

4.2. Animals

All experiments were performed on adult male CD-1 mice weighing 18–21 g, ob-
tained from an accredited house at the Faculty of Pharmacy, Jagiellonian University
Medical College, Krakow, Poland. Mice were kept in groups of 10 in plastic cages
(37 cm × 21 cm × 15 cm) in a controlled environment (i.e., constant room temperature
(22 ± 2 ◦C), adequate humidity (40–60%), 12 h light/dark cycle) with ad libitum access to
standard pellet food and filtered tap water.

All experimental procedures were performed between 8 a.m. and 4 p.m. Animals
were selected randomly for treatment groups and each group consisted of 8–10 mice. All
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injections were administered in a volume of 10 mL/kg. The animals were used only once
in each test, and immediately after each experiment, they were euthanized.

Procedures involving animals were conducted according to current European Com-
munity and Polish legislation on animal experimentation and were approved by the Local
Ethical Committee for Animal Experiments at the Jagiellonian University in Krakow (ap-
proval codes: 102/2016 and 170/2018).

4.3. Radioligand Binding Assays

Radioligand binding assays were performed using membranes from CHO-K1 cells,
which were stably transfected with the human 5-HT6 receptor. The assay procedures
were conducted according to the slightly modified method described by Sałaciak and
colleagues [37].

Binding experiments were performed in 96-well microplates, and the reaction mix
included a solution of the tested compound, radioligand, and diluted membranes or the
tissue suspension. Specific assay conditions for each target are shown in Table 2. The
reaction was discontinued by the rapid filtration through GF/B or GF/C filter mate using
an automated harvester system FilterMate Harvester (PerkinElmer, Boston, MA, USA). The
filter mates were dried at 37 ◦C in a forced air fan incubator, and then solid scintillator
MeltiLex was melted on filter mates at 90 ◦C for 5 min. Radioactivity was counted in the
MicroBeta2 scintillation counter (PerkinElmer, Boston, MA, USA) at approximately 30%
efficiency. The concentrations of the analyzed compound ranged from 10–10 to 10–5 M. The
inhibitory constant (Ki) was estimated using GraphPad Prism 5.0 (GraphPad Software, San
Diego, CA, USA). A single assay was performed with each compound concentration in
duplicate, and the whole assay was repeated in three independent experiments. Inhibition
constants (Ki) were calculated according to the equation of Cheng and Prusoff [86].

Table 2. Radioligand binding assay conditions.

Receptor Radioligand/
Final Concentration

Blank
(Non-Specific) Buffer Incubation Conditions

5-HT6
[3H]-LSD

2 nM
10 µM

methiothepin
50 mM Tris–HCl pH 7.4

0.5 mM EDTA, 4 mM MgCl2
60 min, 37 ◦C

4.4. Step-Through Passive Avoidance Task

The step-through passive avoidance task was performed according to the method
previously described [36,68]. The apparatus for the step-through passive avoidance task
consisted of two compartments (i.e., bright, and dark), separated by an automated sliding
door (LE872, Bioseb, Vitrolles, France). For the acquisition session, mice were placed
individually in a bright compartment (20 cm × 21 cm × 20 cm, 1000 lx) with a closed door
to a smaller, dark compartment (7.3 cm × 7.5 cm × 14 cm, 10 lx) equipped with an electric
grid floor. A total of 30 s after placing the animal in the bright compartment, the door to
the dark compartment was opening. If the mouse entered the dark compartment, the door
closed immediately, and the rodent was punished by an electric foot shock (0.8 mA for 2 s).
The mice that did not enter the dark compartment within the next 50 s were excluded
from the study. On the following day (24 h later), animals were placed again in the bright
compartment for 300 s (retention session) with the difference that after entering the dark
compartment mice were not receiving the electric shock. The latency to enter the dark
compartment was measured. The tested compound was administered ip 30 min before the
acquisition trial. To induce memory impairments, MK-801 (0.125 mg/kg) was administered
ip 15 min before the experiment. Control groups were injected ip with saline or with saline
and MK-801.
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4.5. Object Recognition Test

The test was performed according to the method described earlier [87,88] and consisted
of a familiarization and test session. In the familiarization session, mice were placed
individually in the cage (35 cm × 35 cm × 35 cm) and remained there until the total
exploration time of both identical objects (2 towers of Lego bricks or 2 bottles filled with
sand) was 20 s or 10 min has passed. Animals that did not meet the criteria were eliminated
from further study. After 24 h, mice were placed again in the cage, with the difference
that one object was replaced with the new one. As before, mice remained in the cage until
the total exploration time of 20 s, but not longer than 10 min. We recorded the time of
exploration of both new and old objects. However, for further analysis, we used only the
exploration time of the new object. The tested compound was administered ip 30 min before
the familiarization phase to assess its influence on recognition memory. To induce memory
disturbances, MK-801 (0.125 mg/kg) was administered ip 15 min before the experiment.
Control groups were injected ip with saline or with saline and MK-801.

4.6. Forced Swim Test

The experiment was performed on mice according to the method described by Porsolt
et al. and as previously described [36,89]. Mice were placed individually in glass cylinders
(height 25 cm, diameter 10 cm) filled with water at 24 ± 1 ◦C to a depth of 10 cm and left
there for 6 min. Following a 2 min habituation period, the total time spent immobile was
recorded during the next 4 min. The animal was regarded as immobile when it remained
floating passively in the water, making only small movements to keep its head above the
water. The experiments were video-recorded and scored using elevenmaze.com software
(Eleven Products Sp. z o.o., Krakow, Poland) by a trained observer blind to the treatment.

4.7. Tail Suspension Test

The experiment was carried out on mice according to the method described by Steru
et al. and as previously described [90,91]. The mice were suspended by their tails using
a medical adhesive tape at a height of 50 cm above a flat surface, in such a position that
they cannot escape or hold on to the nearby surfaces. The total time of immobility was
measured during the 6-min test period. Immobility was defined as the animal hanging
passively without limb movement. The experiments were performed by a trained observer
blind to the treatment.

4.8. Spontaneous Locomotor Activity in Mice

The locomotor activity of mice was measured as previously described [47], using
actometers, i.e., plastic Opto M3 cages (22 cm × 12 cm × 13 cm) connected to a computer
with MultiDevice Software v.1.30 (Columbus Instruments, Columbus, OH, USA). The
experimental cages were equipped with infrared sources on one side and sensors receiving
the emitted rays on the other side of the cage. The crossing of each beam of infrared
rays was classified as motor activity. Each mouse was placed individually in a cage for
30 min habituation period (directly after administration of the studied compound), and
then the number of photobeam crossings was recorded (ambulation). Locomotor activity
was evaluated every 1 min for 6 min (6 min observation for the tail suspension test, and
4 min observation for the forced swim test). The cages were disinfected with an odorless
disinfection solution after each mouse.

4.9. Data Analysis

The results are presented as means ± SD (standard deviation) or medians ± interquar-
tile range (non-parametric analysis). The normality of data sets and their homogeneity
were determined using D’Agostino and Pearson and Brown–Forsythe tests, respectively.
The comparisons between experimental and control groups were performed by one-way
ANOVA followed by Newman–Keuls post hoc or two-way ANOVA with repeated measures
followed by Bonferroni post hoc test. One-sample t-test was used to analyze the results of
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the object recognition task. In cases when assumptions for normal distribution of data was
not fulfilled, we used Kruskal–Wallis with Dunn’s post hoc test. A value of p < 0.05 was
considered to be significant.

5. Conclusions

In this study, we found that JJGW08, a novel arylpiperazine alkyl derivative of salicy-
lamide, which is a strong antagonist of 5-HT1A and D2 receptors and weak antagonist of
5-HT2A and 5-HT7 receptors with the potential antipsychotic- and anxiolytic-like activity,
possessed no affinity for 5-HT6 receptors, and no antidepressant-like activity in rodents.
Furthermore, the compound did not impair mice’s long-term emotional or recognition
memory acquisition and protected mice against the MK-801-induced recognition and emo-
tional memory deficits. Therefore, our preliminary study may suggest that a blockade of
serotonin receptors, especially 5-HT1A and 5-HT7 receptors might be beneficial in treating
cognitive impairments.
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41. Pytka, K.; Głuch-Lutwin, M.; Kotańska, M.; Waszkielewicz, A.; Kij, A.; Walczak, M. Single Administration of HBK-15-a Triple
5-HT 1A, 5-HT 7, and 5-HT 3 Receptor Antagonist-Reverses Depressive-Like Behaviors in Mouse Model of Depression Induced
by Corticosterone. Mol. Neurobiol. 2018, 55, 3931–3945. [CrossRef]

42. Wesołowska, A.; Nikiforuk, A.; Stachowicz, K. Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor
antagonist SB 269970 after intrahippocampal administration to rats. Eur. J. Pharmacol. 2006, 553, 185–190. [CrossRef] [PubMed]
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