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Abstract: Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute
the largest class of natural compounds, which have valuable biological activities and are promising
therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to
produce various terpene derivatives; reports the main methodological approaches to searching for
new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes;
and describes the chemical diversity and biological properties of the obtained compounds. Among
terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral,
antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids
and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics
effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are
produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis
by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora,
Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified
actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing produc-
tivity of terpene biosynthesis in comparison with native producers. The review includes research
articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this
area shows current trends and actual research directions in this field.

Keywords: terpenes; terpenoids; meroterpenoids; actinomycetes; biosynthesis; terpene synthase;
biologically active compounds; genome mining

1. Introduction

Terpenes and their O-containing derivatives (terpenoids) are the largest (more than
80,000 compounds) and structurally most diverse group of secondary metabolites derived
from natural sources. Based on the number of isoprene units, terpene derivatives are
classified into mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri- (C30), sesquar- (C35),
and tetra- (C40) terpenes. Terpene derivatives are widely used in the food, cosmetics,
and fragrance industries [1]. They exhibit various biological activities (antitumor, anti-
inflammatory, antimicrobial, antiviral, immunomodulatory, antioxidant, antifungal, etc.)
and are promising therapeutic agents [2]. Production of terpene derivatives from natural
sources (plants, fungi, and marine organisms) does not meet industrial needs, while
chemical synthesis is often a multi-stage and low selective process.

In the last 15–20 years, it has become obvious that bacteria also produce terpenes and
terpenoids and that most of the produced metabolites are represented by new compounds.
Currently, the search for microorganisms synthesizing terpene derivatives is underway and
microbial biosynthetic platforms are developed using such microorganisms [3]. Microbial
biosynthesis has advantages over traditional methods of obtaining terpenoids: a short life
cycle of microorganisms, which reduces the production time of compounds to several days,
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high productivity throughout the fermentation process, and the use of cheap renewable
resources to produce target products [4]. The ability for terpene biosynthesis has been
described for actino-, proteo-, and cyanobacteria [5–7].

Actinomycetes are one of the largest, most diverse and well-studied group of bacteria
represented by the genera such as Mycobacterium, Nocardia, Rhodococcus, Streptomyces,
Arthrobacter, Actinomyces, Corynebacterium, Micrococcus, Frankia, Micromonospora. They are
characterized by a wide range of genetic, morphological, and physiological characteristics,
as well as metabolic capabilities [8]. Actinomycetes are well-known producers of secondary
metabolites (polyketides, antibiotics, siderophores, biosurfactants, etc.) and enzymes
(amylase, lipase, cellulase, protease), which can be used in pharmaceutical, agricultural,
food, pulp and paper, and other industries [9–19]. Of 23,000 bioactive microbial metabolites,
about 10,000 metabolites were isolated from actinomycetes [15], among which compounds
with herbicidal [20], antitumor [21], antifungal [22], immunomodulating [23–25], and other
activities were found. Most of the known antimicrobials (streptomycin, streptothricin,
actinomycin, etc.) were originally produced by actinomycetes, especially by the genus
Streptomyces [26]. Secondary metabolites of actinomycetes are widely used in various
human activities and their use will rise in the future (Table 1).

Table 1. Potential applications of secondary metabolites produced by actinomycetes in various fields
of human activities.

Application Area Review, Book
Chapter

Agriculture

Plant growth promoting [27]
Phytopathogen control [28]

Bioherbicides [20]
Biopesticides [29]

Bioinsecticides Against insects, mites [30]

Medicine
Antibiotics [26,31,32]

Pharmaceuticals (antitumor, anti-inflammatory, antifungals, antihelminthics, etc.) [33–37]
Probiotics [38,39]

Industry Detergents (Surfactants) [40]
Biofuel [8]

The high biotechnological potential of this group of microorganisms was confirmed by
patent analysis (Figure 1), with the largest number of valid patents using actinomycete gen-
era such as Streptomyces, Mycobacterium, Corynebacterium, Bifidobacterium, and Rhodococcus.

Terpene biosynthesis by actinomycetes is an actual research area discussed in research
and review publications. However, the specialized reviews are focused on certain genera of
actinomycetes and/or groups of terpene derivatives [41,42], bacterial terpenome [43], and
evolution and ecology of microbial terpenoids [44]. The present review aims at assessing
the biosynthetic potential (via the patent analysis in particular) of various representatives
of Actinomycetes as producers of a wide range of biologically active terpenoids, including
hybrid metabolites (meroterpenoids). The data can be used to create technologies for the
biocatalytic production of practically valuable terpene derivatives using actinomycetes.

In writing this review, various databases were used: scientific articles and reviews
were searched through platforms such as Web of Science, Scopus, and NCBI, and WIPO
(World Intellectual Property Organization, https://patentscope.wipo.int/, accessed on
25 March 2022) was used to search for patents. To fully cover the topic, the review includes
patents and articles (from 2000 to 2022) dedicated to terpene biosynthesis by representatives
of Actinomycetes (according to the modern classification).

https://patentscope.wipo.int/
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2. Terpene Biosynthesis by Actinomycetes

Terpene biosynthesis is one of the secondary metabolic pathways in actinomycetes,
regulated by biosynthetic gene clusters (BGCs). BGCs include promoters, genes encoding
carbon skeleton formation enzymes and post-modification enzymes, and regulatory genes.
All terpenes are synthesized from the C5 isoprenoid precursors, namely isopentenyl diphos-
phate (IPP) and dimethylallyl diphosphate (DMAPP), which are converted to isoprenyl
diphosphates of varying lengths by isoprenyl transferases (Figure 2). Further formation
of terpenes is catalyzed by a group of enzymes, namely terpene synthases (cyclases) (TSs)
catalyzing the cyclization of geranyl (GPP), farnesyl (FPP), geranylgeranyl (GGPP), and
geranylfarnesyl (GFPP) diphosphates to yield mono-, sesqui-, di-, sester-, and triterpenes.
Unlike the basic biosynthetic enzymes, bacterial TSs have low homology of conserved
sequences, providing an extremely diverse group. The main feature of TSs is that one
enzyme can produce dozens of hydrocarbon skeletons significantly different from each
other. A number of remarkable reviews have been devoted to bacterial and plant terpene
synthases [5,6,45,46]. Modification of the terpene skeleton is achieved through the addition
of various functional groups mediated by specialized enzymes, mainly those from the
cytochrome (P450s) family.

A variety of methods (bioinformatics, genetic, analytical, biochemical, molecular) are
employed to study terpene biosynthesis by actinomycetes. Direct screening of compounds
from the microbial cultivation medium and their subsequent identification is a basic method
of searching for new terpene derivatives; however, it is labor- and time-consuming. Cur-
rently, recently developed “genome mining” methods, namely a bioinformatics search for
TS genes using the BLAST program and web-based tools such as ClustSCAN, NP.searcher,
GNP/PRISM, and antiSMASH, are used to search for actinomycetes capable of produc-
ing terpene derivatives. Simultaneous discovery of new compounds and biosynthetic
genes and enzymes is one of the most important advantages of the coordinated use of
genome analysis and direct analysis of the metabolites. Using this approach, a few dozen
terpenes (many of which are unique), several new cyclization mechanisms, and more than
120 putative genes of bacterial terpene synthases have been discovered [47].

Methods of genetic modification (e.g., gene knockout, presumably responsible for the
terpene synthesis; editing of individual sections of BGCs, in particular, by introducing
additional native or engineered promoters; influence on the regulatory gene expression)
and heterologous expression (e.g., cloning of the interest gene in bacteria that are not
capable of synthesizing the target product) are used to confirm the functional activity
of the studied genes. E. coli or mutant strains Streptomyces avermitilis SUKA 2–22 with

https://patentscope.wipo.int/
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deletion of all endogenous BGCs [48], Streptomyces lividans [49], Streptomyces coelicolor,
Streptomyces albus, etc. [50,51], can serve as host bacteria. The transformants are used either
for the direct terpene synthesis or for the production of recombinant proteins subsequently
incubated with acyclic allyl diphosphate substrates. Molecular and biochemical methods
allow studying the crystal structure, kinetic and mechanistic parameters of isolated and
purified TSs and mechanisms of terpene cyclization [47]. In addition, omics technologies
have been actively developed to search for secondary metabolites, terpenoids in particular,
to study the diversity, distribution, and evolution of BGCs [52].
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2.1. Terpene Derivatives Produced by Streptomycetes and Their Enzymes

The analysis of published data indicates that most of the identified actinomycete ter-
pene derivatives are synthesized by streptomycetes. The spectrum of produced compounds
varies from mono- to tetraterpenes and their derivatives.

2.1.1. Mono- and Sesquiterpenes and Their Derivatives

The formation of monoterpenoids as secondary metabolites was registered for individ-
ual streptomycetes. Streptomyces clavuligerus ATCC 27064 have been shown to catalyze the
formation of monoterpenoids cineole (1, eucalyptol) and linalool (2) [53–55]. Heterologous ex-
pression of terpene synthases bLinS и bCinS from S. clavuligerus ATCC 27064 in E. coli increased
linalool (2) and 1,8-cineole (1) yields to 363 ± 57.9 and 116.8 ± 36.4 mg/Lorg, respectively,
which exceeded the values obtained using plant enzymes. Furthermore, bLinS catalyzed
the nerolidol (3) formation (159.1 ± 71.3 mg/Lorg) and acted as a mono- and sesquiter-
pene synthase (WO2018142109). The use of recombinant bLinS increased the nerolidol (3)
and linalool (2) yields to 379 and 1054 ± 245.2 mg/Lorg, respectively [56] (WO2020234307;
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US20210238640). Two new nerolidol-type sesquiterpenoids rel-6R,7R,10R-6,10-epoxy-3,7,11-
trimethyldodec-2-ene-1,7,11-triol (4), and rel-6R,7R,10R-7,10-epoxy-3,7,11-tri-methyldodec-
2-ene-1,6,11-triol (5) were isolated from S. scopuliridis YIM 32460 [57].

2-Methylisoborneol (6) is an odorous irregular monoterpenoid identified in cultivation
medium of some species of streptomycetes [58–62]. Using S. coelicolor A3(2) as an exam-
ple, the two-gene cluster sco7700/sco7701, whose analogues were identified in S. griseus,
S. ambofaciens, and S. scabies, was found to be responsible for 2-methylisoborneol (6) synthesis.
Incubation of GPP with recombinant SCO7700A resulted in the production of a complex mix-
ture of cyclic monoterpenes α-pinene (7), β-pinene (23%) (8), limonene (32%) (9), γ-terpinene
(29%) (10), δ-terpinene (10%) (11), and trace amounts of monoterpene alcohols [63]. Köksal
et al. (2012) determined the crystal structure of 2-methylisoborneol synthase from S. coelicolor
A3(2) [64]. This enzyme was found to catalyze the formation of (1R)-(+)-camphor (12) from
2-fluorolinalyl diphosphate [65]. A non-oxidized bicyclic monoterpene 2-methyl-2-bornene
(13) was identified among secondary metabolites of S. exfoliatus SMF19 [66].
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thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
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formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 73 
 

 

nerolidol (3) and linalool (2) yields to 379 and 1054 ± 245.2 mg/Lorg, respectively [56] 
(WO2020234307; US20210238640). Two new nerolidol-type sesquiterpenoids rel-
6R,7R,10R-6,10-epoxy-3,7,11-trimethyldodec-2-ene-1,7,11-triol (4), and rel-6R,7R,10R-
7,10-epoxy-3,7,11-tri-methyldodec-2-ene-1,6,11-triol (5) were isolated from S. scopuliridis 
YIM 32460 [57]. 

2-Methylisoborneol (6) is an odorous irregular monoterpenoid identified in cultiva-
tion medium of some species of streptomycetes [58–62]. Using S. coelicolor A3(2) as an ex-
ample, the two-gene cluster sco7700/sco7701, whose analogues were identified in S. griseus, 
S. ambofaciens, and S. scabies, was found to be responsible for 2-methylisoborneol (6) syn-
thesis. Incubation of GPP with recombinant SCO7700A resulted in the production of a 
complex mixture of cyclic monoterpenes α-pinene (7), β-pinene (23%) (8), limonene (32%) 
(9), γ-terpinene (29%) (10), δ-terpinene (10%) (11), and trace amounts of monoterpene al-
cohols [63]. Köksal et al. (2012) determined the crystal structure of 2-methylisoborneol 
synthase from S. coelicolor A3(2) [64]. This enzyme was found to catalyze the formation of 
(1R)-(+)-camphor (12) from 2-fluorolinalyl diphosphate [65]. A non-oxidized bicyclic mon-
oterpene 2-methyl-2-bornene (13) was identified among secondary metabolites of S. exfo-
liatus SMF19 [66]. 

O

 

OH

 
OH

 

O
HO

OH

HO
 

1 2 3 4 

O OH
OH

HO

 
OH

   
5 6 7 8 

   
O   

9 10 11 12 13 

Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant 
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 73 
 

 

nerolidol (3) and linalool (2) yields to 379 and 1054 ± 245.2 mg/Lorg, respectively [56] 
(WO2020234307; US20210238640). Two new nerolidol-type sesquiterpenoids rel-
6R,7R,10R-6,10-epoxy-3,7,11-trimethyldodec-2-ene-1,7,11-triol (4), and rel-6R,7R,10R-
7,10-epoxy-3,7,11-tri-methyldodec-2-ene-1,6,11-triol (5) were isolated from S. scopuliridis 
YIM 32460 [57]. 

2-Methylisoborneol (6) is an odorous irregular monoterpenoid identified in cultiva-
tion medium of some species of streptomycetes [58–62]. Using S. coelicolor A3(2) as an ex-
ample, the two-gene cluster sco7700/sco7701, whose analogues were identified in S. griseus, 
S. ambofaciens, and S. scabies, was found to be responsible for 2-methylisoborneol (6) syn-
thesis. Incubation of GPP with recombinant SCO7700A resulted in the production of a 
complex mixture of cyclic monoterpenes α-pinene (7), β-pinene (23%) (8), limonene (32%) 
(9), γ-terpinene (29%) (10), δ-terpinene (10%) (11), and trace amounts of monoterpene al-
cohols [63]. Köksal et al. (2012) determined the crystal structure of 2-methylisoborneol 
synthase from S. coelicolor A3(2) [64]. This enzyme was found to catalyze the formation of 
(1R)-(+)-camphor (12) from 2-fluorolinalyl diphosphate [65]. A non-oxidized bicyclic mon-
oterpene 2-methyl-2-bornene (13) was identified among secondary metabolites of S. exfo-
liatus SMF19 [66]. 

O

 

OH

 
OH

 

O
HO

OH

HO
 

1 2 3 4 

O OH
OH

HO

 
OH

   
5 6 7 8 

   
O   

9 10 11 12 13 

Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 73 
 

 

nerolidol (3) and linalool (2) yields to 379 and 1054 ± 245.2 mg/Lorg, respectively [56] 
(WO2020234307; US20210238640). Two new nerolidol-type sesquiterpenoids rel-
6R,7R,10R-6,10-epoxy-3,7,11-trimethyldodec-2-ene-1,7,11-triol (4), and rel-6R,7R,10R-
7,10-epoxy-3,7,11-tri-methyldodec-2-ene-1,6,11-triol (5) were isolated from S. scopuliridis 
YIM 32460 [57]. 

2-Methylisoborneol (6) is an odorous irregular monoterpenoid identified in cultiva-
tion medium of some species of streptomycetes [58–62]. Using S. coelicolor A3(2) as an ex-
ample, the two-gene cluster sco7700/sco7701, whose analogues were identified in S. griseus, 
S. ambofaciens, and S. scabies, was found to be responsible for 2-methylisoborneol (6) syn-
thesis. Incubation of GPP with recombinant SCO7700A resulted in the production of a 
complex mixture of cyclic monoterpenes α-pinene (7), β-pinene (23%) (8), limonene (32%) 
(9), γ-terpinene (29%) (10), δ-terpinene (10%) (11), and trace amounts of monoterpene al-
cohols [63]. Köksal et al. (2012) determined the crystal structure of 2-methylisoborneol 
synthase from S. coelicolor A3(2) [64]. This enzyme was found to catalyze the formation of 
(1R)-(+)-camphor (12) from 2-fluorolinalyl diphosphate [65]. A non-oxidized bicyclic mon-
oterpene 2-methyl-2-bornene (13) was identified among secondary metabolites of S. exfo-
liatus SMF19 [66]. 

O

 

OH

 
OH

 

O
HO

OH

HO
 

1 2 3 4 

O OH
OH

HO

 
OH

   
5 6 7 8 

   
O   

9 10 11 12 13 

Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
lation combined with site-directed mutagenesis of Gd11olS changed the reaction direction 
with the formation of non-hydroxylated terpene isolepidozene (20) (88%) [70]. Along with 
the known germacradien-11-ol (15), new monocyclic sesquiterpenoids 1(10)E,5E-germa-
cradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17), and roseosporol A (21) 
were identified from S. griseus wild type strain [71] and S. roseosporus Lsr2-deletion mutant 
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in the 
formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-bisabo-
lol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol syn-
thase is its high specificity and one terpenoid formed as the main product [68]. An unchar-
acterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-germacra-
dien-6-ol synthase and produced compound 19 [69], while terpene synthase Gd11olS from 
S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15). Computer simu-
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Two homologous genes sc1 и sc2 from S. citricolor NBRC 13005 were involved in
the formation of monocyclic sesquiterpenoids (-)-germacradien-4-ol (14) and (-)-epi-α-
bisabolol (18) with more than 85% yields [67]. A distinctive feature of germacradien-4-ol
synthase is its high specificity and one terpenoid formed as the main product [68]. An
uncharacterized TS of S. pratensis ATCC 33331 was identified as (+)-(1(10)E,4E,6S,7R)-
germacradien-6-ol synthase and produced compound 19 [69], while terpene synthase
Gd11olS from S. coelicolor A3(2) catalyzes FPP cyclization into germacradien-11-ol (15).
Computer simulation combined with site-directed mutagenesis of Gd11olS changed the
reaction direction with the formation of non-hydroxylated terpene isolepidozene (20)
(88%) [70]. Along with the known germacradien-11-ol (15), new monocyclic sesquiter-
penoids 1(10)E,5E-germacradiene-3,11-diol (16), 1(10)E,5E-germacradiene-2,11-diol (17),
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and roseosporol A (21) were identified from S. griseus wild type strain [71] and S. roseosporus
Lsr2-deletion mutant strain [72], respectively. 1(10)E,5E-Germacradiene-3,11-diol (16) was
detected among the secondary metabolites of S. albolongus YIM 101047 isolated from Elephas
maximus feces [73].

Many streptomycetes are characterized by the formation of geosmin (22), a sesquiter-
penoid causing a specific smell of moist soil [59,74–76]. Microbial methods of geosmin
production by S. albus LBG-FXJ (CGMCC 4206), S. fradiae FJ-HX (CGMCC 4205),
Streptomyces sp. QC-1 (CGMCC 4535), and Streptomyces sp. QC-2 (CGMCC 4536) have
been patented (CN102719376; CN102719375; CN102181392; CN102719377). Genes and en-
zymes involved in geosmin biosynthesis were studied in the works of Cane et al. (2003–2008).
Expression of recombinant protein SC9B1.20 (=SCO6073) from S. coelicolor A3(2) in E. coli
resulted in Mg2+-dependent transformation of FPP to (4S,7R)-germacra-1(10)E,5E-dien-11-
ol (23), a precursor of 22, which indicates that the enzyme belongs to germacradienol/geosmin
synthase [75]. Subsequently, germacradienol/germacrene D synthase was shown to be a
bifunctional enzyme that, along with 22 (13%) and 23 (74%), catalyzed the formation of (−)-
(7S)-germacrene D (24) (10%) and a hydrocarbon (3%) [77–80], which was later identified
as (8S,9S,10S)-8,10-dimethyl-1-octalin (25) [79]. Genes Sav2163 (geoA) and spterp13, analogs
of sco6073, were found in S. avermitilis [74] and S. peucetius ATCC 27952 [81], respectively.
Incubation of selina-4(15),7(11)-diene synthase from S. pristinaespiralis ATCC 25486 [82] and
SAV_76 from S. avermitilis [83] with FPP produced trace amounts of germacrene B (26) and
germacrene A (27). Recombinant SpS from S. xinghaiensis S187 catalyzed cyclization of FPP to
germacrene D (24), germacrene A (27), and bicyclogermacrene (28) [84]. Germacrene D (24)
was also isolated from the culture medium of S. hygroscopicus NRRL 15879 [66].

A new bicyclic sesquiterpenoid (5S,8S,9R,10S)-selina-4(14),7(11)-diene-8,9-diol (29) was
produced by Streptomyces sp. QD518 [85]. Crystallographic, functional characteristics, and
molecular mechanisms of selina-4(15),7(11)-diene synthase (SdS) from S. pristinaespiralis ATCC
25486 catalyzing the formation of 30 were described [82,86]. Epi-cubenol (31), a bicyclic
cadinane sesquiterpenoid, was detected among terpenoids produced by Streptomyces sp.
GWS-BW-H5 [53] and S. albolongus YIM 101047 [73]. Overexpression of sgr6065 (gecA) from
S. griseus IFO13350 in S. lividans TK21 led to (+)-epi-cubenol (31), while the gecA-knockout mu-
tants lost this ability [87]. In the deuterated growth medium of S. griseus NBRC102592,
the unique [2H26]-1-epi-cubenol, firstly obtained by fermentation, was synthesized [88].
Streptomyces sp. JMRC:ST027706 and Streptomyces sp. HKI0595 were isolated from man-
grove trees Bruguiera gymnorrhiza and Kandelia candel and produced novel 11-hydroxy- (32),
12-hydroxy- (33) derivatives of 31 and 5,11-epoxy-10-cadinanol (35) [89] and five novel
eudesmene-type sesquiterpenoids kandenols A-E (36–40) [90]. Kandenols A (36) and B
(37) have a similar structure with plant eudesmenes, while kandenols C (38) and D (39)
are unique due to the presence of hydroperoxide fragments. Kandenol E (40) is the first
agarofurane isolated from bacteria. The strains S. sanglieri YIM 121209-2 [91], S. anulatus YIM
101882 [92], and Streptomyces sp. RM-14-6 [93] produced new 15-hydroxy-(+)-epi-cubenol (34),
5,11-epoxy-10-cadinanol (35), and isopterocarpolone (41), respectively.

Two new eudesmane-type sesquiterpenoids 1α,6β,11-eudesmanetriol (42) and
11-eudesmene-1α,6β-diol (43) were isolated from Streptomyces sp. YIM 56130 [94]. Along
with 42 and 4β,5β,7β,10α-5,11-eudesmanediol (44), S. anulatus YIM 101882 produced new
sesquiterpenoids 45–47 and norsesquiterpenoids 48–50 [92]. New norsesquiterpenoids
51–57 were synthesized by Streptomyces sp. 0616208 [95], Streptomyces sp. XM17 [96], and
S. albolongus YIM 101047 [73].

As a result of heterologous expression of sscg_02150 and sscg_03688 from S. clavuligerus
ATCC 27074 in E. coli, TSs catalyzing the (−)-δ-cadinene (58) and (+)-T-muurolol (59) forma-
tion were isolated [97]. Along with (+)-T-muurolol (59) and 3α-hydroxy-T-muurolol (60),
two new derivatives of 59, namely 15-hydroxy- (61) and 11,15-dihydroxy (62) derivatives,
were obtained from Streptomyces sp. M491 [98].

Purified dauc-8-en-11-ol synthase from S. venezuelae ATCC 10712 was shown to accept
non-natural analogues of FPP, such as 10-methyl-FPP, 13-desmethyl-FPP, with the formation



Pharmaceuticals 2023, 16, 872 7 of 69

of methylated daucenol (64), widdrenol (65); nor-widdrenol (66); tenuifola-2,10-diene (67);
and tenuifola-2,11-diene (68). The site-directed mutagenesis of the dauc-8-en-11-ol synthase
resulted in a four-fold increase in the biosynthesis efficiency of the target terpenoid 63 [99].
Terpene synthases from S. pristinaespiralis ATCC 25486 [100], S. clavuligerus ATCC 27064,
and S. scabiei 8722 [101] catalyzed the formation of (+)-(2S,3S,9R)-pristinol (69), new (+)-
intermedeol (70), and (-)-neomeranol B (71), respectively.
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Cheng et al. (2020) studied the ability of streptomycetes to synthesize different
volatile terpene derivatives, among which mono-, bi-, and tricyclic sesquiterpenoids were
found [66]. S. hygroscopicus NRRL 15879 produced bicyclic sesquiterpenoids β-eudesmol
(72), β-vatirenene (73), calamene (74), compound 75, and tricyclic sesquiterpene β-cedrene
(76). Additionally, the above strain catalyzed the formation of β-patchoulene (77), dehydro-
β-agarofuran (78), and aromadendrene oxide-(2) (79). The monocyclic α-elemol (80), bicyclic
sesquiterpene derivatives α-himachalene (81), β-eudesmol (72), α-muurolene (82), and a
new 7β-hydroxy-7-epi-α-eudesmol (84) were derived from S. parvulus B1682, S. clavuligerus,
S. exfoliatus SMF19, S. aureofaciens ATCC 12551 [66], and S. sanglieri YIM 121209-2 [91], re-
spectively. Three new sesquiterpene synthases from S. chartreusis NRRL 3882 catalyzed the
formation of germacradiene-11-ol (15), α-eudesmol (83), and α-amorphene (85) as major
products and 10-epi-γ-eudesmol (86) as a minor product [102]. Incubation of recombinant
TSs from S. viridochromogenes DSM 40736 with FPP yielded the products identified as 7-epi-α-
eudesmol (83) and α-amorphene (85) [103].

Tricyclic humulane sesquiterpenoid (+)-isoafricanol (87) was identified among the
volatile metabolites produced by S. violaceusniger Tü 4113. A recombinant (+)-isoafricanol
synthase from S. malaysiensis DSM 4137 catalyzed the formation of 87 (95%) and trace
amounts of african-1-ene (88) and african-2(6)-ene (89) [104]. Incubation of recombinant
SAV_76 of S. avermitilis with FPP in the presence of Mg2+ resulted in avermitilol (90), a
novel sesquiterpene alcohol, and viridiflorol (91). Transformants of S. avermitilis SUKA17
containing copies of the sav76 gene and the native rpsJp (sav4925) promoter afforded the
new ketone avermitilone (92) along with previously obtained compounds [83].
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Tricyclic sesquiterpene β-caryophyllene (93) was identified among the volatile organic
compounds produced by S. yanglinensis 3-10 [62]. The formation of (+)-caryolan-1-ol (94),
an oxidized derivative of β-caryophyllene (93), was observed during the cultivation of
wild-type or genetically modified strains of streptomycetes [73,105–107] (WO2018062668).
Along with known 9α-hydroxy- (95), 9β-hydroxy- (96), novel 7α-hydroxy- (97), 10-hydroxy-
(micaryolane A) (98), and 15-hydroxy- (micaryolane B) (99) derivatives of 94 were iso-
lated from Streptomyces sp. YIM 56130 [94], Streptomyces sp. AH25 [108], S. anulatus YIM
101882 [92], and S. albolongus YIM 101047 [73]. Bacaryolanes A-C (100–102), enantioiso-
mers of plant caryolans, were separated from the fermentation broth of Streptomyces sp.
JMRC:ST027706 [109] and S. anulatus YIM 101882 [92].

Epi-isozizaene (103), tricyclic sesquiterpene, was generated by several Streptomyces
species and initially sparked interest as a candidate jet fuel on account of having a spe-
cific energy similar to that of jet fuel A-1 [110,111]. Heterologous epi-isozizaene synthase
from S. coelicolor A3(2) and pentalenene synthase from Streptomyces sp. UC5319 produced
103, pentalenene (107) and α-isocomene (108) [111]. Using the genetic engineering tech-
niques increased the yields of 108, 103, and 107 in E. coli to 77.5 mg/L, 727.9 mg/L, and
780.3 mg/L, respectively, while the yield of 107 was improved to 344 mg/L in Saccharomyces
cerevisiae (US20200239796).

Epi-isozizaene synthase (sco5222) of S. coelicolor A3(2) catalyzed multi-step
cyclization of FPP to 103, which is oxidized by P450 (sco5223) to albaflavenone (109),
a broad-spectrum antibiotic [112–114], detected in the culture medium of some species of
streptomycetes [115–117]. Genome-wide analysis of S. spectabilis NRRL-2792 found the
albaflavenone biosynthetic gene cluster [118]. S. avermitilis SUKA16 transformant, which
expresses sav3032 (ortholog sco5222) and promoter rpsJp (sav4925) from the native strain
S. avermitilis, accumulated 103, (4R)-albaflavenol (104), (4S)-albaflavenol (105), albaflavenone
(109), and a new compound 4β,5β-epoxy-2-epi-zizaan-6β-ol (110) [119]. New sesquiter-
penoids identified as albaflavenol B (106) and albaflavenoid (111) were isolated from
Streptomyces sp. Lv-4-26 [120] and S. violascens YIM 100225 [121], respectively.

Twenty-six site-directed mutants of the S. coelicolor A3(2) epi-isozizaene synthase cat-
alyzed the formation of acyclic (119–121), mono- (122–125), bi- (126–130), and tricyclic
(110, 83, 131–135) sesquiterpenes, which makes this enzyme a universal platform for obtain-
ing various terpene derivatives [110,122] (WO2015120431). New tricyclic sesquiterpenoids
strepsesquitriol (136) and bungoene (137) were obtained from Streptomyces sp. SCSIO
10355 [123] and S. bungoensis DSM 41781 [124], respectively.
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energy similar to that of jet fuel A-1 [110,111]. Heterologous epi-isozizaene synthase from 
S. coelicolor A3(2) and pentalenene synthase from Streptomyces sp. UC5319 produced 103, 
pentalenene (107) and α-isocomene (108) [111]. Using the genetic engineering techniques 
increased the yields of 108, 103, and 107 in E. coli to 77.5 mg/L, 727.9 mg/L, and 780.3 mg/L, 
respectively, while the yield of 107 was improved to 344 mg/L in Saccharomyces cerevisiae 
(US20200239796). 

Epi-isozizaene synthase (sco5222) of S. coelicolor A3(2) catalyzed multi-step cycliza-
tion of FPP to 103, which is oxidized by P450 (sco5223) to albaflavenone (109), a broad-
spectrum antibiotic [112–114], detected in the culture medium of some species of strepto-
mycetes [115–117]. Genome-wide analysis of S. spectabilis NRRL-2792 found the al-
baflavenone biosynthetic gene cluster [118]. S. avermitilis SUKA16 transformant, which 
expresses sav3032 (ortholog sco5222) and promoter rpsJp (sav4925) from the native strain 
S. avermitilis, accumulated 103, (4R)-albaflavenol (104), (4S)-albaflavenol (105), al-
baflavenone (109), and a new compound 4β,5β-epoxy-2-epi-zizaan-6β-ol (110) [119]. New 
sesquiterpenoids identified as albaflavenol B (106) and albaflavenoid (111) were isolated 
from Streptomyces sp. Lv-4-26 [120] and S. violascens YIM 100225 [121], respectively. 

Twenty-six site-directed mutants of the S. coelicolor A3(2) epi-isozizaene synthase cat-
alyzed the formation of acyclic (119‒121), mono- (122‒125), bi- (126‒130), and tricyclic 
(110, 83, 131‒135) sesquiterpenes, which makes this enzyme a universal platform for ob-
taining various terpene derivatives [110,122] (WO2015120431). New tricyclic sesquiterpe-
noids strepsesquitriol (136) and bungoene (137) were obtained from Streptomyces sp. 
SCSIO 10355 [123] and S. bungoensis DSM 41781 [124], respectively. 
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S. avermitilis, accumulated 103, (4R)-albaflavenol (104), (4S)-albaflavenol (105), al-
baflavenone (109), and a new compound 4β,5β-epoxy-2-epi-zizaan-6β-ol (110) [119]. New 
sesquiterpenoids identified as albaflavenol B (106) and albaflavenoid (111) were isolated 
from Streptomyces sp. Lv-4-26 [120] and S. violascens YIM 100225 [121], respectively. 

Twenty-six site-directed mutants of the S. coelicolor A3(2) epi-isozizaene synthase cat-
alyzed the formation of acyclic (119‒121), mono- (122‒125), bi- (126‒130), and tricyclic 
(110, 83, 131‒135) sesquiterpenes, which makes this enzyme a universal platform for ob-
taining various terpene derivatives [110,122] (WO2015120431). New tricyclic sesquiterpe-
noids strepsesquitriol (136) and bungoene (137) were obtained from Streptomyces sp. 
SCSIO 10355 [123] and S. bungoensis DSM 41781 [124], respectively. 

HH

 

7

OH

R1
R2

H H

 

10

OH

R1

H H
R2

 

OH
H H

O

 
93 94 R=H  98 R1=OH, R2=H 100 

93

94 R=H
95 R1=H, R2=αOH
96 R1=H, R2=βOH
97 R1=αOH, R2=H

98 R1=OH, R2=H
99 R2=OH, R1=H

100

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

101 R=αH
102 R=βH

103 R1=R2=H
104 R1=αOH, R2=H
105 R1=βOH, R2=H

106 R1=αOH, R2=OH

107 108

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

109 110 111 112

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

113 114 115 116

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

117 118 119 120



Pharmaceuticals 2023, 16, 872 12 of 69

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

121 122 123 124

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 11 of 73 
 

 

95 R1=H, R2=αOH 
96 R1=H, R2=βOH  
97 R1=αOH, R2=H 

99 R2=OH, R1=H 

6
OHHO

R

H H

 

13R1
R2

4

 

H

  

101 R=αH 
102 R=βH 

103 R1=R2=H 
104 R1=αOH, R2=H 
105 R1=βOH, R2=H 

106 R1=αOH, R2=OH 

107 108 

O

4

 
O OH

4 5 6

 13
COOH

  
109 110 111 112 

    
113 114 115 116 

  

H

 
 

117 118 119 120 

   

H
 

121 122 123 124 

H  H  H  H  
125 126 127 128 

125 126 127 128

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 12 of 73 
 

 

H
 

HO

HO
HO

  

 

129 130 131  

Pentalenolactone (132) is a tricyclic sesquiterpenoid antibiotic, derived from pen-
talenene (107) and synthesized by more than 30 Streptomyces species. The resistance of 
streptomycetes to 132 was found to be determined by the gap1 gene (sav2990). Pentalenene 
synthase was first isolated from S. exfoliatus UC5319 in the 1990s. Exemplified by S. aver-
mitilis, S. exfoliatus UC5319, and S. arenae TÜ469, the metabolic pathways of pentalenolac-
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Pentalenolactone (132) is a tricyclic sesquiterpenoid antibiotic, derived from pen-
talenene (107) and synthesized by more than 30 Streptomyces species. The resistance of
streptomycetes to 132 was found to be determined by the gap1 gene (sav2990). Pentalenene
synthase was first isolated from S. exfoliatus UC5319 in the 1990s. Exemplified by S. avermi-
tilis, S. exfoliatus UC5319, and S. arenae TÜ469, the metabolic pathways of pentalenolactone
synthesis were studied. The 13.4 kb BGC comprising 13 unidirectionally transcribed open
reading frames (ORFs) (sav2990–sav3002) was shown to be responsible for the pentalenolac-
tone (132) synthesis. The cyclization of FPP to 107 is catalyzed by PtlA (sav2998) [125]. Its
further oxidation involves PtlI (sav2999) with the formation of 1-deoxypentalen-13-ol (133),
1-deoxypentalen-13-al (134), and 1-deoxypentalenic acid (136) [126], while its oxidation
with PtlH hydroxylase (sav2991), PtlF dehydrogenase (sav2993) and PenD, PntD, or PtlD
resulted in the formation of (-)-11β-hydroxy-1-deoxypentalic acid (137) [127], 1-deoxy-11-
oxopentalenic acid (138) [128], and pentalenolactones D (140), E (141) and F (142) [129],
respectively. The penM and pntM genes were found to be responsible to final step in pental-
enolactone biosynthesis [130]. Pentalenolactone biosynthesis in S. exfoliatus UC5319 and
S. arenae TÜ469 is regulated by the orthologous proteins PenR and PntR [131]. Jiang et al.
(2009) described a new direction of the pentalenolactone biosynthetic pathway involving
the oxidation of 138 by PtlE (sav2994) to neopentalenolactone D (143), and its subsequent
conversion to neopentalenolactone E (144), compound PL308 (145), hydroxyl derivatives
(139) and (146), an oxidized lactone (147), and seco-acids 148 and 149 [132].

Pentalenic acid (135), a co-metabolite of 132 and 143, is formed due to the oxidation of
136 by cytochrome CYP105D7 (sav7469) [133]. Genome-wide analysis of Streptomyces sp.
NRRL S-4 identified a biosynthetic cluster of pentalenolactone type terpenes: 1-deoxy-8α-
hydroxypentalic acid (150) and 1-deoxy-9β-hydroxy-11-oxopentalenic acid (151) [134].
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The S. avermitilis SUKA22 transformant with sclav_p1407 afforded eight sesquiter-
penes, with the tricyclic isohirsut-1-ene (cucumene, 152) being the main product. With that,
slt18_1880 of S. lactacystinaeus OM-6159 was responsible for the formation of isohirsut-4-ene
(153). Isohirsut-1-ene (152) and isohirsut-4-ene (153) are linear triquinane sesquiterpenes
that have never been isolated from bacteria or any other source before [135] (WO2015022798).
Using computer modeling, cucumene synthase B5GLM7, the first TS involved in the syn-
thesis of linear triquinane, was identified in S. clavuligerus ATCC 27604 [136], and its crystal
structure was later described [137]. The recombinant sesquiterpene synthase from S. lincol-
nensis NRRL 2936A produced a novel tetracyclic sesquiterpene isoishwarane (154) with a
unique structure [138].

The recombinant SpS from S. xinghaiensis S187 converted 10,11-dehydro-FPP into
sesquiterpenes isopentylkelsoene (157) and spat-13-ene (161). Moreover, it transformed
GGPP into new diterpenes prenylkelsoene (155), spata-13,17-diene (158), cneorubin Y (159),
and GFPP into new sesterterpenes geranylkelsoene (163) and prenylspata-13,17-diene (160).
This reaction features of SpS proved that this TS exhibited sesqui-, di-, and sesterterpene
synthase activity [84].
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sut-4-ene (153). Isohirsut-1-ene (152) and isohirsut-4-ene (153) are linear triquinane ses-
quiterpenes that have never been isolated from bacteria or any other source before [135] 
(WO2015022798). Using computer modeling, cucumene synthase B5GLM7, the first TS 
involved in the synthesis of linear triquinane, was identified in S. clavuligerus ATCC 27604 
[136], and its crystal structure was later described [137]. The recombinant sesquiterpene 
synthase from S. lincolnensis NRRL 2936A produced a novel tetracyclic sesquiterpene 
isoishwarane (154) with a unique structure [138]. 

The recombinant SpS from S. xinghaiensis S187 converted 10,11-dehydro-FPP into ses-
quiterpenes isopentylkelsoene (157) and spat-13-ene (161). Moreover, it transformed 
GGPP into new diterpenes prenylkelsoene (155), spata-13,17-diene (158), cneorubin Y 
(159), and GFPP into new sesterterpenes geranylkelsoene (163) and prenylspata-13,17-
diene (160). This reaction features of SpS proved that this TS exhibited sesqui-, di-, and 
sesterterpene synthase activity [84]. 

H

H
 

H

HH
 

H

 
R H

 

152 153 154 
155 R=prenyl 
156 R=geranyl 

157 R=ipent 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 13 of 73 
 

 

COOH

O

O

COOMe

O
COOMe  

HO
HO

COOH

 
O

O

O

COOH

 
144 145 146 147 

COOH

OR
COOH  

OH

H

COOH

 

H

H

COOH

O
HO

 

 

148 R=H 
149 R=OH 150 151  

The S. avermitilis SUKA22 transformant with sclav_p1407 afforded eight sesquiter-
penes, with the tricyclic isohirsut-1-ene (cucumene, 152) being the main product. With 
that, slt18_1880 of S. lactacystinaeus OM-6159 was responsible for the formation of isohir-
sut-4-ene (153). Isohirsut-1-ene (152) and isohirsut-4-ene (153) are linear triquinane ses-
quiterpenes that have never been isolated from bacteria or any other source before [135] 
(WO2015022798). Using computer modeling, cucumene synthase B5GLM7, the first TS 
involved in the synthesis of linear triquinane, was identified in S. clavuligerus ATCC 27604 
[136], and its crystal structure was later described [137]. The recombinant sesquiterpene 
synthase from S. lincolnensis NRRL 2936A produced a novel tetracyclic sesquiterpene 
isoishwarane (154) with a unique structure [138]. 

The recombinant SpS from S. xinghaiensis S187 converted 10,11-dehydro-FPP into ses-
quiterpenes isopentylkelsoene (157) and spat-13-ene (161). Moreover, it transformed 
GGPP into new diterpenes prenylkelsoene (155), spata-13,17-diene (158), cneorubin Y 
(159), and GFPP into new sesterterpenes geranylkelsoene (163) and prenylspata-13,17-
diene (160). This reaction features of SpS proved that this TS exhibited sesqui-, di-, and 
sesterterpene synthase activity [84]. 

H

H
 

H

HH
 

H

 
R H

 

152 153 154 
155 R=prenyl 
156 R=geranyl 

157 R=ipent 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 13 of 73 
 

 

COOH

O

O

COOMe

O
COOMe  

HO
HO

COOH

 
O

O

O

COOH

 
144 145 146 147 

COOH

OR
COOH  

OH

H

COOH

 

H

H

COOH

O
HO

 

 

148 R=H 
149 R=OH 150 151  

The S. avermitilis SUKA22 transformant with sclav_p1407 afforded eight sesquiter-
penes, with the tricyclic isohirsut-1-ene (cucumene, 152) being the main product. With 
that, slt18_1880 of S. lactacystinaeus OM-6159 was responsible for the formation of isohir-
sut-4-ene (153). Isohirsut-1-ene (152) and isohirsut-4-ene (153) are linear triquinane ses-
quiterpenes that have never been isolated from bacteria or any other source before [135] 
(WO2015022798). Using computer modeling, cucumene synthase B5GLM7, the first TS 
involved in the synthesis of linear triquinane, was identified in S. clavuligerus ATCC 27604 
[136], and its crystal structure was later described [137]. The recombinant sesquiterpene 
synthase from S. lincolnensis NRRL 2936A produced a novel tetracyclic sesquiterpene 
isoishwarane (154) with a unique structure [138]. 

The recombinant SpS from S. xinghaiensis S187 converted 10,11-dehydro-FPP into ses-
quiterpenes isopentylkelsoene (157) and spat-13-ene (161). Moreover, it transformed 
GGPP into new diterpenes prenylkelsoene (155), spata-13,17-diene (158), cneorubin Y 
(159), and GFPP into new sesterterpenes geranylkelsoene (163) and prenylspata-13,17-
diene (160). This reaction features of SpS proved that this TS exhibited sesqui-, di-, and 
sesterterpene synthase activity [84]. 

H

H
 

H

HH
 

H

 
R H

 

152 153 154 
155 R=prenyl 
156 R=geranyl 

157 R=ipent 152 153 154
155 R=prenyl

156 R=geranyl
157 R=ipent

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 14 of 73 
 

 

H

HHH H

 

H
HR

 

H

H

H

H
m n  

158 159 R=prenyl 160 m=0, n=2 
161 m=1, n=0 

2.1.2. Diterpenes and Their Derivatives 
Two unique terpene cyclases DtcycA and DtcycB from Streptomyces sp. SANK 60404 

were described as responsible for the formation of cembrene C (162), (R)-nephthenol (163), 
(R)-cembrene A (164), and a new compound identified as (4E,8E,12E)-2,2,5,9,13-pentame-
thylcyclopentadeca-4,8,12-trien-1-ol (165) [139].  

Co-cultivation of S. cinnabarinus PK209 with Alteromonas sp. KNS-16 induced the for-
mation of a diterpenoid lobocompactol (166) [140]. The ability of streptomycetes to syn-
thesize new eunicellane-type diterpenoids was proved. Streptomyces sp. CL12-4 [141] and 
S. albogriseolus SY67903 [142] produced unique benditerpenoic acid (167) and microeuni-
cellols A (168), B (169), respectively. Enzymatic and mechanistic characteristics of the ben-
diterpenoic acid synthase from Streptomyces sp. CL12-4 were described in the article [143]. 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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2.1.2. Diterpenes and Their Derivatives

Two unique terpene cyclases DtcycA and DtcycB from Streptomyces sp. SANK 60404
were described as responsible for the formation of cembrene C (162), (R)-nephthenol
(163), (R)-cembrene A (164), and a new compound identified as (4E,8E,12E)-2,2,5,9,13-
pentamethylcyclopentadeca-4,8,12-trien-1-ol (165) [139].

Co-cultivation of S. cinnabarinus PK209 with Alteromonas sp. KNS-16 induced the
formation of a diterpenoid lobocompactol (166) [140]. The ability of streptomycetes to
synthesize new eunicellane-type diterpenoids was proved. Streptomyces sp. CL12-4 [141]
and S. albogriseolus SY67903 [142] produced unique benditerpenoic acid (167) and mi-
croeunicellols A (168), B (169), respectively. Enzymatic and mechanistic characteristics
of the benditerpenoic acid synthase from Streptomyces sp. CL12-4 were described in the
article [143].
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
structure of (E)-biformene synthase isolated from S. thermocarboxydus K155 for the first 
time. The (E)-biformene synthase was encoded by the LrdC, which was identified as part 
of the LRD cluster [145,146]. Transformants of S. coelicolor M1152, S. peucetius var. caesius 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, 
CldB/SCLAV_p0490, SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diter-
pene synthases from S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The 
diterpene derivatives were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), 
labda-8(17),13(16),14-triene (172), ladba-7,12(E),14-triene (173), and a new compound 
labda-7,13(16),14-triene (174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal 
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The transformants of S. avermitilis SUKA22 containing CldD/CldB, CldB/SCLAV_p0490,
SCLAV_p0490/CldD, and SCLAV_p0490/SCLAV_p0491 genes of diterpene synthases from
S. clavuligerus ATCC 27064 produced labdane-type diterpenoids. The diterpene derivatives
were identified as labda-8(17),12(E),14-triene ((E)-biformene, 170), labda-8(17),13(16),14-
triene (172), ladba-7,12(E),14-triene (173), and a new compound labda-7,13(16),14-triene
(174) [144]. Centeno-Leija et al. (2019) described the X-ray crystal structure of (E)-biformene
synthase isolated from S. thermocarboxydus K155 for the first time. The (E)-biformene
synthase was encoded by the LrdC, which was identified as part of the LRD cluster [145,146].
Transformants of S. coelicolor M1152, S. peucetius var. caesius and S. avermitilis SUKA22
having the LRD cluster generated 170 [147]. Streptomyces sp. KIB 015 produced four new
labdane-type diterpenoids, labdanmycins A–D (175–178), while the labE gene deletion
led to the formation of raimonol (171), their biogenetic precursor [148]. The formation of
compound 171 was also observed upon insertion of the rmn cluster from S. anulatus GM95
to S. avermitilis SUKA22. The transformants S. avermitilis SUKA22 [149] and S. cyslabdanicus
K04-0144∆cld [147] containing the cld or lrdABDC clusters produced (7S,8S,12E)-8,17-epoxy-
7-hydroxylabda-12,14-diene (179).

The diterpene synthase Stt4548 from Streptomyces sp. PKU-TA00600 catalyzed the
normal-copalyl diphosphate (CPP) cyclization to isopimara-8(9),15-diene (180) [150]. Both
strains Streptomyces sp. KO-3988 [151] and Streptomyces sp. SN194 [152] synthesized
diterpenoid 3-hydroxypimara-9(11),15-diene (viguiepinol, 181) via the formation of ent-
CPP (183) and pimara-9(11),15-diene (182) as intermediates.
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The biosynthetic cluster responsible for synthesis of tricyclic diterpenoid cyclooctatin 
(184) was found in S. melanosporofaciens MI614-43F2. This cluster consists of four genes, 
cotB1-cotB4, encoding GGDP synthase, CotB2 terpene cyclase, and two P450 cytochromes. 
The incubation of recombinant CotB2 with GGDP resulted in the formation of cyclooctat-
9-en-7-ol (187) [153]. Later, the crystal structure and mechanistic characteristics of CotB2 
were described [154–157]. A mutant of diterpene synthase CotB2 (W288G) was found to 
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The biosynthetic cluster responsible for synthesis of tricyclic diterpenoid cyclooc-
tatin (184) was found in S. melanosporofaciens MI614-43F2. This cluster consists of four
genes, cotB1-cotB4, encoding GGDP synthase, CotB2 terpene cyclase, and two P450 cy-
tochromes. The incubation of recombinant CotB2 with GGDP resulted in the formation of
cyclooctat-9-en-7-ol (187) [153]. Later, the crystal structure and mechanistic characteristics
of CotB2 were described [154–157]. A mutant of diterpene synthase CotB2 (W288G) was
found to produce (1R,3E,7E,11S,12S)-3,7,18-dolabellatriene (188), but not the native product
187 [158]. Recombinant E. coli carrying the CotB3 or CotB4 duet vector in combination with
AfR-Afx gene cassettes from S. afghaniensis produced 184 with a 43-fold increase (up to
15 mg/L) compared with the native producer. Moreover, CotB3 was found to be able to
hydroxylate (−)-casbene (189) to form sinularcasbane D (190) [159]. New 16,17-dihydroxy-
(185) [160], 17-hydroxy- (186) [161,162] and 18-acetyl- (191), 5-dehydroxy- (192), and 5,18-
dedihydroxy- (193) [163] derivatives of 184 were isolated from Streptomyces sp. LZ35,
Streptomyces sp. MTE4a, Streptomyces sp. M56, and Streptomyces sp. ZZ820, respectively.
Three new fusicoccane-type diterpenoids, 12α-hydroxy- (194), 12β-hydroxy- (195), and
14-hydroxycyclooctatin (196), were separated from the fermentation broth of S. violascens
YIM 100212 isolated from the feces of Ailuropoda melanoleuca [164]. The formation of new tri-
cyclic diterpene lydicene (197) was observed using the recombinant TS StlTC, with unique
UbiA-type diterpene cyclases, from S. lydicus [165].
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Genome mining of S. venezuelae ATCC 15439 revealed ven, a silent biosynthetic cluster 
responsible for the synthesis of diterpenoids venezuelaenes A (198) and B (5-oxo-vene-
zuelaene A) (199) with a unique 5-5-6-7 tetracyclic skeleton [166]. Rabe et al. (2017) per-
formed a mechanistic study of two diterpene cyclases, spiroviolene synthase from S. vio-
lens NRRL ISP-5597 and tsukubadiene synthase from S. tsukubaensis NRRL 18488, which 
catalyze the formation of 200 and 201. Although the structures of 200 and 201 are signifi-
cantly different, the cyclization mechanisms of both enzymes proceed through the same 
initial cyclization reactions, which proved their phylogenetic similarity [167,168]. The gen-
eration of a new tetracyclic diterpene cattleyene (202) was observed using the recombinant 
TS CyS from S. cattleya NRRL 8057 [169]. 
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droxylate (−)-casbene (189) to form sinularcasbane D (190) [159]. New 16,17-dihydroxy- 
(185) [160], 17-hydroxy- (186) [161,162] and 18-acetyl- (191), 5-dehydroxy- (192), and 5,18-
dedihydroxy- (193) [163] derivatives of 184 were isolated from Streptomyces sp. LZ35, 
Streptomyces sp. MTE4a, Streptomyces sp. M56, and Streptomyces sp. ZZ820, respectively. 
Three new fusicoccane-type diterpenoids, 12α-hydroxy- (194), 12β-hydroxy- (195), and 
14-hydroxycyclooctatin (196), were separated from the fermentation broth of S. violascens 
YIM 100212 isolated from the feces of Ailuropoda melanoleuca [164]. The formation of new 
tricyclic diterpene lydicene (197) was observed using the recombinant TS StlTC, with 
unique UbiA-type diterpene cyclases, from S. lydicus [165]. 
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Genome mining of S. venezuelae ATCC 15439 revealed ven, a silent biosynthetic cluster 
responsible for the synthesis of diterpenoids venezuelaenes A (198) and B (5-oxo-vene-
zuelaene A) (199) with a unique 5-5-6-7 tetracyclic skeleton [166]. Rabe et al. (2017) per-
formed a mechanistic study of two diterpene cyclases, spiroviolene synthase from S. vio-
lens NRRL ISP-5597 and tsukubadiene synthase from S. tsukubaensis NRRL 18488, which 
catalyze the formation of 200 and 201. Although the structures of 200 and 201 are signifi-
cantly different, the cyclization mechanisms of both enzymes proceed through the same 
initial cyclization reactions, which proved their phylogenetic similarity [167,168]. The gen-
eration of a new tetracyclic diterpene cattleyene (202) was observed using the recombinant 
TS CyS from S. cattleya NRRL 8057 [169]. 
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Genome mining of S. venezuelae ATCC 15439 revealed ven, a silent biosynthetic clus-
ter responsible for the synthesis of diterpenoids venezuelaenes A (198) and B (5-oxo-
venezuelaene A) (199) with a unique 5-5-6-7 tetracyclic skeleton [166]. Rabe et al. (2017)
performed a mechanistic study of two diterpene cyclases, spiroviolene synthase from
S. violens NRRL ISP-5597 and tsukubadiene synthase from S. tsukubaensis NRRL 18488,
which catalyze the formation of 200 and 201. Although the structures of 200 and 201 are
significantly different, the cyclization mechanisms of both enzymes proceed through the
same initial cyclization reactions, which proved their phylogenetic similarity [167,168].
The generation of a new tetracyclic diterpene cattleyene (202) was observed using the
recombinant TS CyS from S. cattleya NRRL 8057 [169].
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Based on the large-deletion mutant S. avermitilis SUKA22, the transformants catalyzing
the formation of terpene derivatives with various structures were created. The expression
of sclav_p1169 and sclav_p0765 from S. clavuligerus ATCC 26074 led to the formation of
monocyclic prenyl-β-elemene (203), prenylgermacrene B (204), bicyclic clavulatriene A
(205), clavulatriene B (206) or bicyclic isoelisabethatriene B (207), tetracyclic hydropyrene
(208), and hydropyrenol (209). The transformant carrying slt18_1078 from S. lactacystinaeus
OM-6159 catalyzed a tricyclic diterpene cyclooctat-7(8),10(14)-diene (210). The stsu_20912
gene from S. tsukubaensis NRRL 18488 was responsible for the synthesis of 201, while the
transformant with nd90_0354 from Streptomyces sp. ND90 synthesized tricyclic odyver-
dienes A (211) and B (212). The derived diterpenoids are novel compounds with unique
hydrocarbon skeletons [135] (WO2015022798). Under normal conditions, a hydropyrene
synthase from S. clavuligerus ATCC 27064 produced hydropyrene (208, up to 52%) and
hydropyrenol (209, up to 26%), and minor amounts of isoelisabethatrienes A (213) and
B (207), biosynthetic precursors of pseudopterosins with pronounced anti-inflammatory
activity. An increase in the yield of 213 and 207 to 41.91 ± 1.87 mg/L was achieved using a
genetically modified hydropyrene synthase [170] (WO2022003167).
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Unlike sesqui- and diterpenes, the formation of terpene derivatives with a chain length
of more than 20 carbon atoms was observed only for individual strains of Streptomycetes.
Sesterterpene cyclases were isolated from S. somaliensis ATCC 33201™ and S. mobaraensis
NBRC 13819 (=NRRL B-3729) and generated new somaliensenes A (214) and B (215) [171],
sestermobaraenes A–F (216–221), and sestermobaraol (222) [172], respectively.
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The heterologous expression of hopA and hopB (encoding squalene/phytoene syn-
thases) and hopD (encoding farnesyl diphosphate synthase) from S. peucetius ATCC 27952
in E. coli provided an acyclic triterpene squalene (230) with a yield of 11.8 mg/L [173].
Another acyclic triterpene, botryococcene (231), was produced by activating the Fur22 reg-
ulator and simultaneous expression of the biosynthetic genes of S. reveromyceticus SN-593.
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The yield of the target product was 0.3 g/L, which is comparable to the levels of other
microbial producers [174].

Hopanoids are unusual pentacyclic triterpenes present in bacterial species. Hop-
22(29)-ene (290) was isolated from wild-type [175,176] and genetically modified strains of
streptomycetes [72,177]. A genome-wide analysis of S. scabies 87–22 detected a hopanoid
biosynthetic cluster responsible for the synthesis of 232 [178]. The squalene-hopene cyclase
(spterp25) catalyzing the complex cyclization of 230 to the pentacyclic triterpene 232 was
described for S. peucetius ATCC 27952 [179].
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different biosynthetic origins, meroterpenoids can be divided into two groups, polyketide 
and non-polyketide terpenoids. Meroterpenoids have attracted researchers� attention due 
to their unusual chemical structures and a wide range of biological properties [180].  

Naphthoquinone-based meroterpenoids are large chemically diverse group includ-
ing napyradiomycins, merochlorins, marinones, furaquinocins, etc., some of which have 
a high therapeutic potential. Naphthoquinone-based meroterpenoids derived from strep-
tomycetes are described in the review published in 2020 [181], so our review highlights 
the most active producers and the derivatives with promising biological activity, as well 
as compounds isolated after 2020. 

Biosynthesis of naphthoquinone-based meroterpenoids includes regioselective addi-
tion of aromatic polyketide (1,3,6,8-tetrahydroxynaphthalene) to a terpene diphosphate 
catalyzed by ABBA prenyltransferase (PTase). After the initial prenylation, oxidation, hal-
ogenation and cyclisation steps occur. Genome mining of streptomycetes as producers of 
naphthoquinone-based meroterpenoids led to the discovery of unique prenyltransferase 
and vanadium-dependent haloperoxidase (VHPO) enzymes, which differ significantly 
from those previously described for algae and fungi [182,183]. For instance, the high-res-
olution crystal structures of two homologous members of the VHPO family associated 
with napiradiomycin biosynthesis, NapH1 and NapH3, were characterized [184].  

Furaquinocins A (226) and B (227) were first isolated from the culture broth of Strep-
tomyces sp. КО-3988 [185] and Streptomyces sp. strain CLl 90 (WO2006081537). Later, ana-
logues of these compounds (228‒231, 234, 235) [186] and the fur cluster responsible for 
furaquinocin biosynthesis were determined [187]. Among secondary metabolites derived 
from Streptomyces sp. TBRC7642 new furaquinocin I (232), streptolactone (239) and previ-
ously identified furaquinocins B (227), D (229), and murayaquinone (240) were described 
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Meroterpenoids are products of mixed biosynthetic origin that consist of terpenoid
scaffold combined with polyketide, alkaloid, phenol, or amino acid. According to their
different biosynthetic origins, meroterpenoids can be divided into two groups, polyketide
and non-polyketide terpenoids. Meroterpenoids have attracted researchers’ attention due
to their unusual chemical structures and a wide range of biological properties [180].

Naphthoquinone-based meroterpenoids are large chemically diverse group including
napyradiomycins, merochlorins, marinones, furaquinocins, etc., some of which have a
high therapeutic potential. Naphthoquinone-based meroterpenoids derived from strepto-
mycetes are described in the review published in 2020 [181], so our review highlights the
most active producers and the derivatives with promising biological activity, as well as
compounds isolated after 2020.

Biosynthesis of naphthoquinone-based meroterpenoids includes regioselective addi-
tion of aromatic polyketide (1,3,6,8-tetrahydroxynaphthalene) to a terpene diphosphate
catalyzed by ABBA prenyltransferase (PTase). After the initial prenylation, oxidation,
halogenation and cyclisation steps occur. Genome mining of streptomycetes as producers
of naphthoquinone-based meroterpenoids led to the discovery of unique prenyltransferase
and vanadium-dependent haloperoxidase (VHPO) enzymes, which differ significantly
from those previously described for algae and fungi [182,183]. For instance, the high-
resolution crystal structures of two homologous members of the VHPO family associated
with napiradiomycin biosynthesis, NapH1 and NapH3, were characterized [184].

Furaquinocins A (226) and B (227) were first isolated from the culture broth of Strep-
tomyces sp. KO-3988 [185] and Streptomyces sp. strain CLl 90 (WO2006081537). Later,
analogues of these compounds (228–231, 234, 235) [186] and the fur cluster responsible
for furaquinocin biosynthesis were determined [187]. Among secondary metabolites de-
rived from Streptomyces sp. TBRC7642 new furaquinocin I (232), streptolactone (239) and
previously identified furaquinocins B (227), D (229), and murayaquinone (240) were de-
scribed [188]. Furaquinocins I (232), J (233), JBIR-136 (236), and furaquinocins K (237)
and L (238) were obtained from genetically engineered S. reveromyceticus SN-593 [189],
Streptomyces sp. 4963H2 [190], and Streptomyces sp. Je 1-369 [191].
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Streptomyces sp. CNH-189 produced unique halogenated meroterpenoids, merochlo-
rins A–J (241–250) and meroindenon (251) [192–194], of which biosynthesis determined the
presence of mcl gene cluster with VHPO genes [182]. Flaviogeranin A (252) is promising
neuroprotective agent produced by Streptomyces sp. RAC226 [195]. Along with 252, six
flaviogeranin congeners or intermediates (253–258), including novel flaviogeranins B1
(255), B (253), containing an amino group, and flaviogeranin D (256), were derived from
Streptomyces sp. B9173 [196].
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Naphthoquinone-based meroterpenoids naphterpin (259) and related compounds
(260–263) were produced by Streptomyces sp. CNQ-509 and Streptomyces sp. CL190
(WO2006081537) and displayed pronounced antioxidant effect [197–199]. The napyra-
diomycins are a large group of unique meroterpenoids with different halogenation patterns
and a monoterpenoid subunit attached to C10a. Napiradiomycins were first isolated from
Chainia rubra in 1986 (later transferred to the genus Streptomyces), and more than 50 analo-
gous compounds have been identified to date. They have been arranged into three main
types according to their structural features: Type A with a linear terpene chain; Type B with
the side chain cyclized to a cyclohexane ring; and Type C with monoterpenoid subunit
cyclized between C7 and C10a of the naphthoquinone core to form a 14-membered ring.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 22 of 73 
 

 

HO

OH

O

O

OCH3

 

NH2

H3CO

OH

O

O

OCH3

 

HO

OH

O

O

OH

 
254 255 256 

OH

H3CO

OH

O

O

OH

 

OH
H3CO

OH

O

O

OCH3

 

 

257 258  

Naphthoquinone-based meroterpenoids naphterpin (259) and related compounds 
(260‒263) were produced by Streptomyces sp. CNQ-509 and Streptomyces sp. CL190 
(WO2006081537) and displayed pronounced antioxidant effect [197–199]. The napyradio-
mycins are a large group of unique meroterpenoids with different halogenation patterns 
and a monoterpenoid subunit attached to C10a. Napiradiomycins were first isolated from 
Chainia rubra in 1986 (later transferred to the genus Streptomyces), and more than 50 analo-
gous compounds have been identified to date. They have been arranged into three main 
types according to their structural features: Type A with a linear terpene chain; Type B with 
the side chain cyclized to a cyclohexane ring; and Type C with monoterpenoid subunit cy-
clized between C7 and C10a of the naphthoquinone core to form a 14-membered ring. 

O

HO
O

OOH

H

H

 

O

HO
O

OOH

R

H

 

O

HO
O

OOH

OR
H

H

 

259 260 R=βOH 
261 R=αOH 

262 R=H 
263 R=COCH3 

Among napyradiomycins produced by Streptomyces sp. YP127 [200], Streptomyces sp. 
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biologically active napyradiomycin A1 (264) and its Br-containing (266) derivative were 
isolated. Chemical analysis of a crude extract of Streptomyces sp. YP127 detected a series 
of napyradiomycins, in particular 16Z-19-hydroxynapyradiomycin A1 (265) possessed the 
high anti-inflammatory and antioxidant activities [205]. Along with 264, Streptomyces sp. 
CNQ-329, CNH-070 [206], and Streptomyces sp. SCSIO 10428 [204] produced napyradio-
mycins B type 273, 274, 275, 284, and the later strain also catalyzed the formation of bicy-
clic naphthomevalin (289). Napyradiomycins of A (265, 269) and B (275) types as well as 
SF2415B3 (269), A80915A (277) carrying additional methyl group at C7 and their 4-dehy-
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Among napyradiomycins produced by Streptomyces sp. YP127 [200], Streptomyces sp.
CA-271078 [201], S. antimycoticus NT17 [202,203], and Streptomyces sp. SCSIO 10428 [204],
biologically active napyradiomycin A1 (264) and its Br-containing (266) derivative were
isolated. Chemical analysis of a crude extract of Streptomyces sp. YP127 detected a series
of napyradiomycins, in particular 16Z-19-hydroxynapyradiomycin A1 (265) possessed
the high anti-inflammatory and antioxidant activities [205]. Along with 264, Streptomyces
sp. CNQ-329, CNH-070 [206], and Streptomyces sp. SCSIO 10428 [204] produced napyra-
diomycins B type 273, 274, 275, 284, and the later strain also catalyzed the formation of
bicyclic naphthomevalin (289). Napyradiomycins of A (265, 269) and B (275) types as well
as SF2415B3 (269), A80915A (277) carrying additional methyl group at C7 and their 4-
dehydro-4a-dechloro- (270, 276, 282) derivatives were isolated from S. aculeolatus PTM-029
and PTM-420 [207]. Streptomyces sp. CNQ-525 produced antibacterial or cytotoxic napyra-
diomycins 277, 280–283 [208] and Br-containing 271 [209]. Napyradiomycins 7-demethyl
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SF2415A3 (272) and 7-demethyl A80915B (285) containing diazonium group as well as
R-3-chloro-6-hydroxy-8-methoxy-α-lapachone (286) were derived from S. antimycoticus
NT17 [202]. Napyradiomycin D1 (287) was derived from Streptomyces sp. CA-271078 [203]
and displayed an unprecedented 14-membered cyclic ether ring between the prenyl side
chain and the chromophore, thus representing the first member of a new type of napyra-
diomycins. The biosynthetic methods for obtaining of napyradiomycins A1 (264), B1 (273),
A4 (267), A80915H (290), A80915G (291), naphthomevalin (289) by S. kebangsaanensis WS-
68302 (CN114805278); A80915A (277), A80915B (278), A80915D (279), A80915G (291) by S.
aculeolatus A80915 (NRRL 18422) (EP0376609); and 3-dechloro-3-bromonapyradiomycin A1
(266) by Streptomyces sp. SCSIO 10428 (CN105399721) were patented.

Four new sesquiterpene naphthoquinones, marfuraquinocins A–D (292–295), were
isolated from the fermentation broth of S. niveus SCSIO 3406 [210].

Teleocidin B (296) is a well-known naturally occurring tumor promoter. Since the
isolation of 296 in the early 1960s [211], more than 44-related compounds have been iso-
lated. In many cases, these compounds have a monoterpene moiety. Biosynthesis of
the teleocidin-type indole alkaloids and enzymatic reactions of teleocidin B biosynthesis
are summarized in the reviews [212–214]. More recent investigation of Streptomyces sp.
CNQ766 led to the identification of an unusual meroterpenoid azamerone (297), which
has an unprecedented chloropyranophthalazinone core with a 3-chloro-6-hydroxy-2,2,6-
trimethylcyclohexylmethyl side chain [215]. Along with known bacterial metabolites
WS-9659A14 (lavanducyanin, 304) and the C-2 chlorinated analog WS-9659B14 (305),
marinocyanins A–F (298–303) were isolated from Streptomyces sp. CNS-284 and CNY-
960. Marinocyanins represent first bromo-phenazinones with an N-isoprenoid substituent
in the skeleton [216].

Farnesides A (306) and B (307), new sesquiterpene nucleosides, were isolated from
Streptomyces sp. CNT-372 [217]. Two new geranylated phenazines, phenaziterpenes A (308)
and B (309), were isolated from the fermentation broth of S. niveus SCSIO 3406 [210]. Sub-
sequent genome analysis of this strain revealed the presence of a BGC encoding enzymes
necessary for the biosynthesis of 292–295, 308, and 309 [218].
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Xiamycin A (310) and its methyl ester (311) were obtained from Streptomyces sp. 
GT2002/1503 and Streptomyces sp. SCSIO 02999 [219,220]. Xiamycin represents one of the 
first examples of indolosesquiterpenes isolated from prokaryotes [221]. BGC responsible 
for xiamycin biosynthesis (xia), key enzymes and intermediates preindosespene (314), in-
dosespenol (315), 316, 317, indosespene (318) were determined and described in [219,222–
224] (CN102732534). Xiamycins C‒E (323, 324, 321) and xiamycin B (313), 318, and 
sespenine (319), along with 310, were isolated from the culture broth of a Streptomyces sp. 
HK18 [225] and Streptomyces sp. HKI0595 [226], respectively. New indolosesquiterpenes 
oridamycins A (326) and B (327) were identified from Streptomyces sp. KS84 [227]. Along 
with 310 and oxiamycin (320), Streptomyces sp. SCSIO 02999 catalyzed the formation of 
dixiamycins A (328), B (330), and chloroxiamycin (312). Compounds 328 and 330 represent 
the first examples of atropoisomerism of naturally occurring N-N-coupled atropo-dia-
stereomers [220] (CN102757908). Genome mining of S. xinghaiensis NRRL B-24674T re-
sulted in the discovery of nine xiamycin analogs, including three novel compounds 19-
methoxy-xiamycin (325), 19-carbonyl-xiamycin (322), and 19-hydroxy-24-methyl ester-N-
N-dixiamycin (329) [228]. Two new compounds 331 and 332, along with known 
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(319), along with 310, were isolated from the culture broth of a Streptomyces sp. HK18 [225]
and Streptomyces sp. HKI0595 [226], respectively. New indolosesquiterpenes oridamycins
A (326) and B (327) were identified from Streptomyces sp. KS84 [227]. Along with 310 and
oxiamycin (320), Streptomyces sp. SCSIO 02999 catalyzed the formation of dixiamycins A
(328), B (330), and chloroxiamycin (312). Compounds 328 and 330 represent the first exam-
ples of atropoisomerism of naturally occurring N-N-coupled atropo-diastereomers [220]
(CN102757908). Genome mining of S. xinghaiensis NRRL B-24674T resulted in the discovery
of nine xiamycin analogs, including three novel compounds 19-methoxy-xiamycin (325),
19-carbonyl-xiamycin (322), and 19-hydroxy-24-methyl ester-N-N-dixiamycin (329) [228].
Two new compounds 331 and 332, along with known dixiamycins (333–337, 340), were de-
rived from S. olivaceus OUCLQ19-3 [229]. Biocatalytic production of bixiamycins (333/334,
335/336, 337) and sulfonylbixiamycins (338–340) using S. albus transformant with xia from
Streptomyces sp. SCSIO 02999 was patented, wherein a key role of flavin-dependent en-
zyme (XiaH) in biosynthesis of sulfadixiamycins, unprecedented sulfonyl-bridged alkaloid
dimers, was proved [230,231] (WO2014029498).

The strain Streptomyces sp. K04-0144, representing a novel species S. cyslabdanicus
(=NBRC 110081T, DSM 42135T) [232], catalyzed the formation of the N,S-containing labdane
diterpenoid cyslabdan A (341) and its 18-hydroxy- (cyslabdan B, 342) and 1’-methoxy-
(cyslabdan C, 343) derivatives [233]. Genome-wide analysis of S. cyslabdanicus K04-0144
revealed the cld cluster consisting of the cldA, cldB, cldC, and cldD genes responsible for
cyslabdan biosynthesis. The transformants of S. avermitilis SUKA22 containing the cld
cluster produced 341 as well as its new 17-hydroxy- (344) and 2α-hydroxy- (345) derivatives,
and (7S,8S,12E)-8,17-epoxy-7-hydroxylabda-12,14-diene (346). Insertion of the cld-like rmn
cluster from S. anulatus GM95 in S. avermitilis SUKA22 resulted in raimonol (171) [149]. In
addition, the heterologous expression of the lrdABDC cluster from S. thermocarboxydus K155
in the S. cyslabdanicus K04-0144∆cld mutant led to the formation of 341 and 346 [147].

Streptomyces sp. KO-3988 [234], S. griseus CB00830 [235], and Streptomyces sp.
SN194 [152] synthesized novel oxaloterpins A–E (347–351). Two new Cl-containing diter-
penoids chloroxaloterpins A (352) and B (353) containing unique groups [(2-chlorophenyl)
amino]carbonyl and 2-[(2-chlorophenyl)amino]-2-oxo-acetyl, respectively, were identified
among the metabolites of Streptomyces sp. SN194 [152].
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mediates of synthesis of phenalinolactones A (354) and D (357) were identified as PL IM1 
(370) and PL IM2 (369), respectively [239]. Heterologous expression of the phenalinolac-
tone BGC (35 genes) in S. coelicolor M512 resulted in the formation of the non-glycosylated 
derivative phenalinolactone E (358) [240].  

Tiancilactones A‒K (371‒381), close structural analogues of phenalinolactones, were 
discovered by genome mining of diterpene synthases in Streptomyces sp. CB03234 and 
Streptomyces sp. CB03238. Tiancilactones are characterized by a highly functionalized 
diterpene backbone, which comprises chloroanthranilate and γ-butyrolactone moieties, 
and exhibit antibacterial activity [241]. Two new terpenoids with unique a 6-6-6-fused ring 
system and an oxidized unsaturated γ-lactone, namely trinulactones A (382) and B (383), 
were isolated from Streptomyces sp. S006 [242]. 
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Streptomyces sp. Tü6071 produced phenalinolactones A–D (354–357), tricyclic terpene
glycosides, and their derivatives 359–362, 365, and 366 [236,237]. The mutants of Strepto-
myces sp. Tü6071 with inactivated oxygenase genes (plaO2, plaO3, plaO5), dehydrogenase
genes (plaU, plaZ) and putative acetyltransferase gene (plaV) yielded phenalinolactone
derivatives PL HS2 (364), PL X1 (363) PL HS6 (367), and PL HS7 (368) [238]. Later, the inter-
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mediates of synthesis of phenalinolactones A (354) and D (357) were identified as PL IM1
(370) and PL IM2 (369), respectively [239]. Heterologous expression of the phenalinolactone
BGC (35 genes) in S. coelicolor M512 resulted in the formation of the non-glycosylated
derivative phenalinolactone E (358) [240].

Tiancilactones A–K (371–381), close structural analogues of phenalinolactones, were
discovered by genome mining of diterpene synthases in Streptomyces sp. CB03234 and
Streptomyces sp. CB03238. Tiancilactones are characterized by a highly functionalized
diterpene backbone, which comprises chloroanthranilate and γ-butyrolactone moieties,
and exhibit antibacterial activity [241]. Two new terpenoids with unique a 6-6-6-fused ring
system and an oxidized unsaturated γ-lactone, namely trinulactones A (382) and B (383),
were isolated from Streptomyces sp. S006 [242].
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Fusicomycin A (384), its isomer 385, and fusicomycin B (386) were separated from the 
fermentation broth of S. violascens YIM 100212 [164]. Two new non-cytotoxic diterpene 
streptooctatins A (387) and B (388) were obtained from Streptomyces sp. KCB17JA11 [243]. 
Actinoranone (389) is new meroterpenoid derived from Streptomyces sp. CNQ-027 consist-
ing of an unprecedented dihydronaphthalenone polyketide linked to a bicyclic diterpe-
noid [244]. 
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Fusicomycin A (384), its isomer 385, and fusicomycin B (386) were separated from the
fermentation broth of S. violascens YIM 100212 [164]. Two new non-cytotoxic diterpene strep-
tooctatins A (387) and B (388) were obtained from Streptomyces sp. KCB17JA11 [243]. Acti-
noranone (389) is new meroterpenoid derived from Streptomyces sp. CNQ-027 consisting of
an unprecedented dihydronaphthalenone polyketide linked to a bicyclic diterpenoid [244].
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S. platensis MA7327 and S. platensis MA7339 were shown to synthesize platensimycin 
(390) and platencin (391), representatives of a new class of broad-spectrum antibiotics 
against Gram-positive bacteria, in particular S. aureus [245,246]. Further study proved the 
involvement of ent-kaurene and ent-atiserene synthases in biosynthesis of 390 and 391, 
representing a new biosynthetic pathway for diterpenoids [247–249]. The crystal structure 
of PtmT2, an ent-copalyl diphosphate synthase involved in the biosynthesis of 390 and 391 
in S. platensis CB00739, was described. PtmT2 catalyzed the cyclization of GGPP to ent-
CPP, which subsequently channeled into (16R)-ent-kauran-16-ol (392) or ent-atiserene 
(393) by two distinct type (canonical or UbiA-type) diterpene synthases specific for biosyn-
thesis of 390 or 391, respectively [250]. The metabolically engineered strains S. platensis 
SB12002 and SB12600 produced 390 and 391 with yields of 323 ± 29 mg/L and 255 ± 30 mg/L, 
respectively, hundreds of times greater than those of wild-type strains [251,252] 
(US20090081673). S. platensis SB12600, in addition to 391, accumulated eight new congeners, 
platencins A2–A9 (394‒402) [253]. A method for obtaining 390 using the mixed culture of S. 
hygroscopicus HOK021 (NITE P-02560) and Tsukamurella pulmonis TP-B0596 was patented 
(JP2019149945). Exemplified by 390 and 391, a method of searching for novel natural com-
pounds based on the analysis of biosynthetic genes was proposed (WO2015200501). Data 
on the biosynthesis features and biological activity of natural and synthetic analogues of 
platensimycin and platencin were summarized in the reviews [254,255]. 

The intermediates of hopanoids biosynthesis, N-containing aminobacterioho-
panetriol (403), and adenosylhopane (405), as well as bacteriohopanetetrol (404) and ribo-
sylhopane (406), were determined. Orf14 and orf18 of S. coelicolor A(3)2 responsible for the 
synthesis of 403 were identified [176].  

Among the secondary metabolites of Streptomyces sp. YIM 56130, triterpene glycoside 
soyasaponin I (407) [94] with a wide spectrum of biological activities [256] was obtained. 
The tetraterpene glycoside KS-505a (longestin, 408) produced by S. argenteolus A-2 (FERM 
BP2065) has a unique structure consisting of a tetraterpene skeleton with 2-O-methylglu-
curonic acid and O-succinyl benzoate moieties [257]. 
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SB12002 and SB12600 produced 390 and 391 with yields of 323 ± 29 mg/L and 255 ± 30 mg/L, 
respectively, hundreds of times greater than those of wild-type strains [251,252] 
(US20090081673). S. platensis SB12600, in addition to 391, accumulated eight new congeners, 
platencins A2–A9 (394‒402) [253]. A method for obtaining 390 using the mixed culture of S. 
hygroscopicus HOK021 (NITE P-02560) and Tsukamurella pulmonis TP-B0596 was patented 
(JP2019149945). Exemplified by 390 and 391, a method of searching for novel natural com-
pounds based on the analysis of biosynthetic genes was proposed (WO2015200501). Data 
on the biosynthesis features and biological activity of natural and synthetic analogues of 
platensimycin and platencin were summarized in the reviews [254,255]. 

The intermediates of hopanoids biosynthesis, N-containing aminobacterioho-
panetriol (403), and adenosylhopane (405), as well as bacteriohopanetetrol (404) and ribo-
sylhopane (406), were determined. Orf14 and orf18 of S. coelicolor A(3)2 responsible for the 
synthesis of 403 were identified [176].  

Among the secondary metabolites of Streptomyces sp. YIM 56130, triterpene glycoside 
soyasaponin I (407) [94] with a wide spectrum of biological activities [256] was obtained. 
The tetraterpene glycoside KS-505a (longestin, 408) produced by S. argenteolus A-2 (FERM 
BP2065) has a unique structure consisting of a tetraterpene skeleton with 2-O-methylglu-
curonic acid and O-succinyl benzoate moieties [257]. 
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sylhopane (406), were determined. Orf14 and orf18 of S. coelicolor A(3)2 responsible for the 
synthesis of 403 were identified [176].  

Among the secondary metabolites of Streptomyces sp. YIM 56130, triterpene glycoside 
soyasaponin I (407) [94] with a wide spectrum of biological activities [256] was obtained. 
The tetraterpene glycoside KS-505a (longestin, 408) produced by S. argenteolus A-2 (FERM 
BP2065) has a unique structure consisting of a tetraterpene skeleton with 2-O-methylglu-
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S. platensis MA7327 and S. platensis MA7339 were shown to synthesize platensimycin
(390) and platencin (391), representatives of a new class of broad-spectrum antibiotics
against Gram-positive bacteria, in particular S. aureus [245,246]. Further study proved
the involvement of ent-kaurene and ent-atiserene synthases in biosynthesis of 390 and
391, representing a new biosynthetic pathway for diterpenoids [247–249]. The crystal
structure of PtmT2, an ent-copalyl diphosphate synthase involved in the biosynthesis of
390 and 391 in S. platensis CB00739, was described. PtmT2 catalyzed the cyclization of
GGPP to ent-CPP, which subsequently channeled into (16R)-ent-kauran-16-ol (392) or ent-
atiserene (393) by two distinct type (canonical or UbiA-type) diterpene synthases specific
for biosynthesis of 390 or 391, respectively [250]. The metabolically engineered strains
S. platensis SB12002 and SB12600 produced 390 and 391 with yields of 323 ± 29 mg/L and
255 ± 30 mg/L, respectively, hundreds of times greater than those of wild-type
strains [251,252] (US20090081673). S. platensis SB12600, in addition to 391, accumulated
eight new congeners, platencins A2–A9 (394–402) [253]. A method for obtaining 390 using
the mixed culture of S. hygroscopicus HOK021 (NITE P-02560) and Tsukamurella pulmo-
nis TP-B0596 was patented (JP2019149945). Exemplified by 390 and 391, a method of
searching for novel natural compounds based on the analysis of biosynthetic genes was
proposed (WO2015200501). Data on the biosynthesis features and biological activity of
natural and synthetic analogues of platensimycin and platencin were summarized in the
reviews [254,255].

The intermediates of hopanoids biosynthesis, N-containing aminobacteriohopanetriol
(403), and adenosylhopane (405), as well as bacteriohopanetetrol (404) and ribosylhopane
(406), were determined. Orf14 and orf18 of S. coelicolor A(3)2 responsible for the synthesis
of 403 were identified [176].

Among the secondary metabolites of Streptomyces sp. YIM 56130, triterpene gly-
coside soyasaponin I (407) [94] with a wide spectrum of biological activities [256] was
obtained. The tetraterpene glycoside KS-505a (longestin, 408) produced by S. argenteo-
lus A-2 (FERM BP2065) has a unique structure consisting of a tetraterpene skeleton with
2-O-methylglucuronic acid and O-succinyl benzoate moieties [257].
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2.2. Terpene Derivatives Produced by Others Actinomycetes and Their Enzymes 
Although most of the found actinomycete terpene derivatives are synthesized by 

streptomycetes, there is an increasing number of publications on terpene biosynthesis by 
representatives of the genera Nocardiopsis, Amycolatopsis, Isoptericola, Saccharopolyspora, 
Salinispora, Kitasatosporia, Verrucosispora, etc. The compounds produced are represented 
mainly by sesqui- and diterpenes and their derivatives. 

2.2.1. Mono- and Sesquiterpenes and Their Derivatives 
Among the secondary metabolites of Nocardiopsis chromogenes YIM 90109, two new 

monocyclic germacradiene-type sesquiterpenoids germacradiene-9β,11-diol (409) and 11-
hydroxy-germacradien-2-one (2-oxygermacradienol, 410) were identified along with the 
known geosmin-type sesquiterpenoid 46 [258]. The TSs from Kitasatospora setae KM-6054 
[259] and Micromonospora marina DSM 45555 [260] catalyzed the formation of hedycaryol 
(411) and (−)-germacrene A (27), respectively. The ability to produce bicyclic 2-methyl-
isoborneol (6) and geosmin (22) was described for Nocardia cummidelens and N. fluminea 
[59]. The transformant of S. avermitilis carrying the genes from Saccharopolyspora erythraea 
NRRL2338 yielded 2-methylisoborneol (6), while Micromonospora olivasterospora KY11048 
synthesized 2-methyleneornane (412) [58]. 
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2.2.2. Di- and Triterpenes and Their Derivatives 
The TS from Micromonospora marina DSM 45555 was functionally characterized to 

produce micromonocyclol (422), a new diterpene alcohol with a rare 15-membered ring 
[267]. Mycobacterium tuberculosis H37Rvн synthesized unique bicyclic diterpenoids, which 
presumably block the formation of phagolysosomes in human macrophages. The Rv3377c 
and Rv3378c genes proved to be responsible for synthesis of tuberculosinol (5(6),13(14)-
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A new trichoacorenol sesquiterpene synthase from Amycolatopsis benzoatilytica DSM 43387
catalyzing the formation of a bicyclic sesquiterpenoid (416) was described [263]. Verrucosispora
gifhornensis YM28-088 [264] and Verrucosispora sp. FIM06031 produced bicyclic sesquiterpenoid
cyperusol C (417) and FW03104 (418) (CN101898936), respectively.

Terpene synthases from Streptosporangium roseum DSM 43021 and Kitasatosporia setae
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and Rv3378c genes proved to be responsible for synthesis of tuberculosinol (5(6),13(14)-
halimadiene-15-ol, 423), 13R- (424) and 13S-isotuberculosinol (5(6),14(15)-halimadiene-13-
ol, 425), and nosyberkol (426) (previously identified as edaxadiene). The analogs of Rv3377c
and Rv3378c were found in the virulent strains of M. tuberculosis CDC1551 and M. bovis
subsp. bovis AF2122/97, but did not occur in non-pathogenic strains [268–272]. Later, the
crystal structure of the Rv3377 diterpene synthase was described [273].

A bicyclic terpenoid terpentecin (427) was firstly separated from the fermentation
broth of Kitasatosporia griseola MF730-N6 (syn. Streptomyces griseolosporeus MF730-N6) in
1985 [274]. A BGC responsible for the terpentecin biosynthesis includes seven ORFs (ORF8-
ORF14). Expression of two cyclase genes ORF11 and ORF12 in S. lividans together with
the GGDP synthase gene resulted in the formation of a new cyclic diterpene ent-clerod-
3,13(16),14-triene (terpentetriene, 428) with a structure similar to 427 [275–277]. CYC2,
which converted terpentedienyl phosphate (429) to 428, accepted labdane-type diterpene
diphosphates (+)-CDP (430), syn-CDP (431), (−)-ent-CDP (432), as well as halimane-type
diterpene diphosphate (TBPP, 433) and catalyzed the formation of corresponding deriva-
tives (434–437) [278].

Heterologous expression of the biosynthetic terp1 operon from Salinispora arenicola
CNS-205 in E. coli led to the generation of isopimara-8,15-dien-19-ol (438). It should
be noted that this terpenoid was not observed in pure cultures of S. arenicola CNS-205.
Apparently, the terp1 operon was expressed under certain conditions, for example, in the
presence of other marine organisms [279]. The terpene synthase Sat1646 from Salinispora sp.
PKU-MA00418 accepted CPP and syn-CPP and produced syn-isopimaradiene/pimaradiene
analogues (180, 439–446). Compound 439 possess a unique and previously unreported 6-6-
7 ring skeleton [150]. New hydroxylated derivatives of isopimaradiene, gifhornenolones A
(447) and B (448), were isolated from the culture medium of Verrucosispora gifhornenensis
YM28-088 [264]. Among secondary metabolites of Micromonospora haikouensis G039 [280]
and Microbispora hainanensis CSR-4 [281], new diterpenoids isopimara-2-one-3-ol-8,15-
diene (449) and 2α-hydroxy-8(14),15-pimaradien-17,18-dioic acid (450) were identified,
respectively.

Actinomadura sp. SpB081030SC-15 [282] and Actinomadura sp. KC 191 [283] synthe-
sized new JBIR-65 (451) and actinomadurol (452), rare bacterial C-19 norditerpenoids. A
norditerpenoid k4610422 (453), originally discovered from a mesophilic rare actinomycete
of the genus Streptosporangium, was isolated from the culture extract of a thermophilic
actinomycete Actinomadura sp. AMW41E2 [284].
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Diterpene synthases from Catenulispora acidiphila DSM 44928 and Saccharopolyspora
spinosa NRRL 18395 produced new di- and tricyclic catenul-14-en-6-ol (454), isocatenula-
2,14-diene (455), isocatenula-2(6),14-diene (456) [285], and spinodienes A (457), B (458), and
2,7,18-dolabellatriene (459) [286], respectively. All obtained compounds are characterized
by unique carbon skeletons.

Terpene synthases isolated from Nocardia testacea NBRC 100365 and N. rhamnosiphila
NBRC 108938 accepted GGPP, but not GPP, FPP, or GFPP as a substrate, which was converted
by both enzymes in a tetracyclic diterpene phomopsene (460) [169]. Allokutzneria albata DSM
44149 encoded four diterpene synthases that catalyze the formation of mono-, tri-, and tetra-
cyclic compounds: new spiroalbatene (461), bonnadiene (462) and allokutznerene (463), and
known compounds: cembrene A (164), thunbergol (464), phomopsene (460), and spiroviolene
(200) [287,288].

Hopanoid lipids (465–482) were found in the genus Frankia [289] with the highest
level among all known organisms. Short stretches of DNA have been identified that are
thought to contain squalene-hopene cyclase genes (shc) [290]. A new sesquarterpenoid
identified as heptaprenylcycline B (483) was isolated from the cell walls of nonpathogenic
mycobacteria [291,292].
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was identified as N6-tuberculosinyladenosine (489). Compounds 488 and 489 are specific 
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218, a symbiont of marine ascidians Symplegma brakenhielmi [294]. Further research of
Rv3378c from Mycobacterium tuberculosis H37Rvн revealed that this enzyme catalyzed the
formation of 1-tuberculosinyladenosine (488) and its two isomers, one of which was identi-
fied as N6-tuberculosinyladenosine (489). Compounds 488 and 489 are specific diterpene
nucleosides of pathogen of Mycobacterium tuberculosis and can serve as chemical mark-
ers of infection [295–297]. Heterologous expression of gene pair Rv3377c-Rv3378c from
M. tuberculosis H37Rvн in M. kansasii led to the production of 1-tuberculosinyladenosine
(488) [298].

The ability of Nocardia brasiliensis IFM 0406 (now N. terpenica) to synthesize diter-
pene glycoside brasilicardin A (490) was first described in 1999 [299]. Brasilicardin A
(490) displays a unique structure consisting of a diterpene skeleton with L-rhamnose,
N-acetylglucosamine, amino acid, and 3-hydroxybenzoate components [300]. Later, three
new terpenoids were derived from N. terpenica IFM0406 and identified as brasilicardins
B–D (491–493) [301]. The heterologous expression of a biosynthetic cluster (bra0-12), re-
sponsible for the synthesis of 490, in Amycolatopsis japonicum (A. japonicum::bcaAB01) led
to the formation of four brasilicardin congeners, namely BraC (492), BraD (493), BraC-agl
(BraE, 494), and BraD-agl (BraF, 495) [302–305]. The use of the S. griseus::bcaAB01 (pRHAMO)
transformant containing the biosynthetic cluster of brasilicardin A and a plasmid with a
biosynthetic cassette for the generation of TDP-L-rhamnose resulted in increased yields of
compounds 492 (1669 mg/L), 495 (926 mg/L), and a new metabolite (496) (15 mg/L). The
target 490 was obtained through a five-step chemical modification of 494 [306].

Cloning and activation of the atolypene (ato) gene cluster from Amycolatopsis toly-
pomycina NRRL B-24205 in S. albus led to the characterization of two unprecedented tricyclic
sesterterpenoids atolypenes A (497) and B (498) [307]. Terretonin N (499), a new highly
oxygenated unique tetracyclic 6-hydroxymeroterpenoid, was derived from Nocardiopsis sp.
LGO5 [308].
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3. Discussion 
The present review demonstrates that actinomycetes synthesize a wide variety of ter-

pene derivatives ranging from monocyclic monoterpenes to polycyclic tri- and tetrater-
penes and their various derivatives. Most actinomycete terpene derivatives are produced 
by Streptomyces, however, terpene biosynthesis by Allokutzneria, Amycolatopsis, Frankia, 
Kitasatosporia, Nocardia, Salinispora, Verrucosispora, etc., have been recently reported (Figure 
3). The total number of identified terpenes and their derivatives exceeds 500. Among ter-
penes and terpenoids, sesqui- and diterpenoids predominate. The ability of streptomy-
cetes to synthesize a wide range of hybrid metabolites (meroterpenoids), the total number 
of which exceeds 190, was shown. More than 350 actinomycete-derived terpenoids and 
meroterpenoids are novel compounds and frequently with unique carbon skeletons (Fig-
ure 4).  
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3. Discussion

The present review demonstrates that actinomycetes synthesize a wide variety of
terpene derivatives ranging from monocyclic monoterpenes to polycyclic tri- and tetrater-
penes and their various derivatives. Most actinomycete terpene derivatives are produced
by Streptomyces, however, terpene biosynthesis by Allokutzneria, Amycolatopsis, Frankia, Ki-
tasatosporia, Nocardia, Salinispora, Verrucosispora, etc., have been recently reported (Figure 3).
The total number of identified terpenes and their derivatives exceeds 500. Among terpenes
and terpenoids, sesqui- and diterpenoids predominate. The ability of streptomycetes to
synthesize a wide range of hybrid metabolites (meroterpenoids), the total number of which
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exceeds 190, was shown. More than 350 actinomycete-derived terpenoids and meroter-
penoids are novel compounds and frequently with unique carbon skeletons (Figure 4).
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Figure 4. Various groups of terpene derivatives synthesized by actinomycetes: (A) the genus
Streptomyces, (B) other genera.

An extensive development of genome-sequencing technologies and bioinformatics
tools have allowed the discovery of BCGs (including silent ones) in the genome of actino-
mycetes. That terpenoids and meroterpenoids are predominantly found among Strepto-
myces strains is presumably due to plenty of available genetic information about this group
of actinomycetes. As of 26 June 2022, 1784 scaffold-level and 745 complete-level genome
sequences of Streptomyces strains were available in the NCBI database. Recent genetic
studies have shown that the biosynthetic potential of these actinomycetes is enormous.
A genome-wide analysis of 22 Streptomyces species revealed more than 900 biosynthetic
clusters; for most of these, the products are still unidentified [309]. In addition, Strepto-
myces are preferred hosts for the heterologous expression of terpene biosynthetic clusters
from other microorganisms [48,50,310]. Since 2015, high biosynthetic potential of actino-
mycete genera such as Saccharopolyspora [311], Nocardiopsis [312], Rhodococcus [313,314],
Salinispora [315], Verrucosispora [316], and Actinomadura [317] have been demonstrated.
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For instance, a genome-wide analysis of terpentecin- or brasilicardin-producing strains
K. griseola MF730-N6 [318] and N. terpenica IFM0406 [319] revealed 15 and 47 BGCs yielding
unidentified natural products, respectively. One of the main problems in terpene biosyn-
thesis is that most biosynthetic clusters are silent; therefore, searching for methods of their
activation is an urgent research direction. Currently, great success has been achieved in
this field due to methods of heterologous expression and/or genome editing of the native
producer [320]. Genomic data of the described actinomycete species demonstrated that 90%
of the biosynthetic potential of these microorganisms is untapped yet and the possibility
of discovering novel terpenoids with potential therapeutic effects remains [15,52,310,321].
Microbial collections can serve as a “springboard” for the discovery and patenting of new
producers of bioactive terpene derivatives, as they include identified and well-characterized
pure microbial cultures. For instance, the Regional Specialized Collection of Alkanotrophic
Microorganisms (acronym IEGM, Perm, Russia; World Federation for Culture Collections
# 285; USU 73559; http://www.iegmcol.ru/strains, accessed on 25 March 2022) contains
more than 3000 strains of actinomycetes with a wide range of metabolic capabilities, which
are promising for biocatalytic production of terpene derivatives [322–326] (RU0002529365).

Unlike the biosynthesis of well-studied secondary metabolites, such as polyketides and
nonribosomal peptides, the prediction of terpene structures requires detailed understanding
of the cyclization mechanisms and the structural characteristics of bacterial TSs [321,327].
In this regard, a separate research area is isolation of individual actinomycete terpene
synthases, and description of their structural and mechanistic characteristics, as well as
the study of terpene cyclization mechanisms. The crystal structures of linalool/nerolidol,
2-methylisoborneol, germacradienol/germacrene D, selina-4(15),7(11)-diene, epi-zizaene,
pentalenene, cucumene, (E)-biformene synthases, and other TSs isolated from strepto-
mycetes were characterized. In turn, genome mining of streptomycetes as producers of
naphthoquinone-based meroterpenoids led to the discovery of unique prenyltransferase
(PTase) and vanadium-dependent haloperoxidase enzymes (VHPO) [182,183]. For instance,
the high-resolution crystal structures of two homologous members of the VHPO family as-
sociated with napiradiomycin biosynthesis, NapH1 and NapH3, were characterized [184].
It has been found that bacterial TSs, PTases, and VHPOs differ significantly from the
plant or fungi ones as well as from each other. Moreover, they are capable of producing
dozens of different compounds, which distinguishes them from most bacterial biosynthetic
enzymes [46]. By the example of an epi-zizaene synthase, the successful application of
site-directed mutagenesis of the enzyme to control the range of the compounds produced
was proved [110,122] (WO2015120431).

Actinomycetes produce terpenoids with various biological and pharmacological activi-
ties such as antimicrobial, anticancer, antioxidant, antiviral, anti-inflammatory, immunosup-
pressive, etc. (Table 2). However, the bioactivity for most of the new actinomycete-derived
terpenoids has not yet been determined but may be discovered in the future. For instance,
napyridymycins A1 and A80915 A, B, C, D were originally known as antimicrobial agents,
but after 2010, their high antiviral and cytotoxic activity have been determined. Among the
biologically active actinomycete terpenoids, compounds with pronounced antimicrobial
activity predominate (Figure 5A). They seem to inhibit the growth of extraneous microflora
and render actinomycetes competitive in the microbial community. This statement is con-
firmed by the fact that some actinomycetes begin to produce terpenoids in the presence of
other microorganisms. Thus, S. cinnabarinus PK209 and S. hygroscopicus HOK021 (NITE
P-02560) synthesize the diterpene lobocompactol and the antibiotic platensimycin in the
presence of the Gram-negative Alteromonas sp. KNS-16 [140] and the Gram-positive Tsuka-
murella pulmonis TP-B0596 (JP2019149945), respectively. The effectiveness of actinomycete
terpenoids and meroterpenoids, namely pentalenolactone, albaflavenone, platensimycin,
platencin, terpentecin, lavanducyanin, marinocyanins A–C, furaquinocin L, 3-dechloro-3-
bromonapyradiomycin A1, napyradiomycin A1, and merochlorin A, as promising antibi-
otics has been proven. This is true for cyslabdan, which enhances the action (1000-fold)
of the antibiotic imipenem against MRSA. In addition to high antibacterial activity, many

http://www.iegmcol.ru/strains
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meroterpenoids, such as napyradiomycins B1, B3, B4, A80915A, B, C, furaquinocins A and
B, murayaquinone, marinocyanin A–C, and saccharoquinoline, exhibit a high cytotoxic
activity against different cancer cell lines (Figure 5B).
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The high biological activity of meroterpenoids is probably associated with the addition
of an isoprene fragment to the pharmacophore polyketide part that increases the affinity for
biological membranes. The unique biological and structural properties of meroterpenoids
contribute to the search for methods of their total and semi-synthetic synthesis [328–330].

Actinomycete-derived terpenoids participate in specific interactions with macroorgan-
isms (plants and animals), regulate the bacterial life cycle, perform protective functions,
or serve as taxonomic markers. Bacterial terpenoids are often optical isomers of plant
terpenoids and may represent two chemical communication channels that do not overlap
even if the same habitat is occupied by prokaryotic and eukaryotic organisms producing
terpenes [103]. Soil-smelling terpenoids geosmin and 2-methylisoborneol were shown to
play the role of signaling molecules for springtails (Collembola), which spread Streptomyces
spores in the soil [331]. According to other reports, these terpenoids are aposematic signals
used to indicate the unpleasant taste qualities of toxin-producing microbes, preventing
predation by eukaryotes [332]. Čihák et al. (2017) pointed out that during germination of
S. coelicolor M145 spores, they synthesize albaflavenone, which may coordinate the devel-
opment of the producer (quorum sensing) and/or play a role in the competitive repression
of microflora (quorum suppression) in the natural environment [117]. In the liquid culture,
S. coelicolor A3(2) does not produce aminobacteriohopanetriol or produces this compound
in negligible amounts. However, the triterpene generation increased sharply during the
formation of an aerial mycelium and sporulation, which may be associated with structural
changes in the membrane and protection against water loss [176]. In addition, some TSs
and terpene derivatives are so unique that they can become a taxonomic trait and be used
to identify different groups of actinomycetes. For instance, the bioinformatics analysis of
all sequenced Micromonospora isolates revealed TS genes, which differ significantly from
other groups of characterized bacterial TSs and may be useful as markers of the genus,
while Mycobacterium tuberculosis H37Rvн produced specific diterpene nucleosides, 1- and
N6-tuberculosinyladenosines, promising for development as specific diagnostic markers of
tuberculosis.

Despite the significant (more than 300) number of publications on terpene biosyn-
thesis by actinomycetes, the conducted patent analysis revealed only 26 patents in this
research area (Table S1). Terpenoids such as linalool, geosmin, caryolan-1-ol, and pseu-
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dopterosin intermediates as well as meroterpenoids, namely napyradiomycins A4, A80915,
bixiamycins, and sulfonylbixiamycins, were obtained from native or genetically modified
streptomycetes, their genetic constructs, or individual terpene synthases. The relatively
small number of active patents may be due to the initial stage of research in this area. In
addition, wild-type strains are not suitable for commercial purposes, as they produce low
quantities of target products.

Table 2. Biologically active terpene derivatives derived from actinomycetes.

Compound

Previously
Isolated

from
Other

Sources

Strain/Enzyme Patent Biological Activity

Mono- and sesquiterpenes

1,8-Cineole (1) Yes Streptomyces clavuligerus
ATCC 27064 [53–55] WO2018142109 anti-inflammatory

antioxidant [333]

Linalool (2) Yes

Streptomyces clavuligerus
ATCC 27064

[53–55] WO2020234307
WO2018142109

anticancer
antimicrobial

neuroprotective
anxiolytic

antidepressant
anti-stress

hepatoprotective

[334]

Streptomyces sp. GWS-BW-H5 [53]

Nerolidol (3) Yes Streptomyces clavuligerus
ATCC 27064 [53–55] WO2018142109

WO2020234307

antimicrobial
anti-biofilm
antioxidant
antiparasitic

skin-penetration
enhancer

skin-repellent
antinociceptive

anti-inflammatory
anticancer

[335]

α-Pinene (7)
β-Pinene (8) Yes Streptomyces coelicolor A3(2) [63] antimicrobial [336]

Limonene (9) Yes Streptomyces coelicolor A3(2) [63]

antimicrobial
antioxidant

anti-inflammatory
antidiabetic

[337]

γ-Terpinene (10)
δ-Terpinene (11) Yes Streptomyces coelicolor A3(2) [63] antioxidant [338]

(1R)-(+)-Camphor (12) Yes Streptomyces coelicolor A3(2) [65] insecticidal [339]

(-)-epi-α-Bisabolol (18) Yes Streptomyces citricolor NBRC 13005 [67]

anti-inflammatory
analgesic
antibiotic
anticancer

[340]

Germacrene B (26)
Germacrene D (24) Yes

TS from Streptomyces pristinaespiralis
ATCC 25486 [82]

antileishmanial
antiproliferative [341]

SAV76 from
Streptomyces avermitilis [83]

SpS from
Streptomyces xinghaiensis S187 [84]

Streptomyces hygroscopicus
NRRL 15879 [66]

Bicyclogermacrene (28) Yes SpS from
Streptomyces xinghaiensis S187 [84] antibacterial

antifungal [342]

Isopterchiayione (415) No Isoptericola chiayiensis BCRC 16888 [262] anti-inflammatory
(IC50 24.72 ± 1.25 µM) [262]

Cyperusol C (417) Yes Verrucosispora gifhornensis YM28-088 [264]
antiviral (against

hepatitis B virus, IC50
14.1 ± 1.1 µM)

[343]
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Table 2. Cont.

Compound

Previously
Isolated

from
Other

Sources

Strain/Enzyme Patent Biological Activity

epi-Cubenol (31) Yes

Streptomyces sp. GWS-BW-H5 [53]

antifungal [344]

Transf. Streptomyces lividans TK21 gecA
from Streptomyces griseus IFO13350 [87]

Streptomyces albolongus YIM 101047 [73]

Streptomyces griseus NBRC102592 [88]

Streptomyces roseosporus
NRRL 11379 [5]

Streptomyces sp. SirexAA-E [5]

Streptomyces roseosporus NRRL15998 [237]

Streptomyces flavogriseus ATCC33331 [237]

Kandenol A (36)
Kandenol B (37)
Kandenol C (38)
Kandenol D (39)
Kandenol E (40)

No Streptomyces sp. HKI0595 [90]

antimicrobial (against
Bacillus subtilis,

Mycobacterium vaccae,
MIC 12.5–50 µM)

[90]

(2R,4S,8αR)-8,8α,1,2,3,4-
Hexahydro-2-hydroxy-4,8α-

dimethyl-2(2H)-
naphthalenone (52)

No Streptomyces sp. XM17 [96] antiviral (against
influenza A virus, IC50

5–49 nM)

[96]
(1S,3S,4S,4αS,8αR)-4,8α-

Dimethyloctahydronaphthalene-
1,3,4α(3H)-triol (53)

(4S,4αS,8αS)-Octahydro-4α-
hydroxy-4,8α-dimethyl-

1(2H)-naphthalenone (54)

(1β,4β,4aβ,8aα)-4,8α-
Dimethyloctahydronaphthalene-

1,4a(2H)-diol (55)
No Streptomyces albolongus YIM 101047 [73]

antifungal (against
Candida parapsilosis,
MIC 3.13 µg/mL)

[73]

(-)-δ-Cadinene (58) Yes SSCG_02150 from Streptomyces
clavuligerus ATCC 27074 [97] antimicrobial [345]

T-Muurolol (59) Yes
SSCG_03688 from Streptomyces

clavuligerus ATCC 27074 [97]
antifungal [346]

Streptomyces sp. M491 [98]

15-Hydroxy-T-muurolol (61) No Streptomyces sp. M491 [98] antitumor
(IC50 6.7 µg/mL) [98]

10-epi-δ-Eudesmol (86) Yes Streptomyces chartreusis NRRL 3882 [5] repellent (against Aedes
aegypti and ticks) [102,347]

β-Eudesmol (72) Yes
Streptomyces exfoliatus SMF19 [66] potential antitumor

potential antiangiogenic
antimicrobial

[348,349]
Streptomyces hygroscopicus NRRL 15879 [66]

Aromadendrene
oxide-(2) (79) Yes Streptomyces hygroscopicus NRRL 15879 [66] antibacterial

antitumor [350]

(-)-β-Cedrene (126)
(+)-β-Cedrene (127)

Yes
Streptomyces hygroscopicus NRRL 15879 [66]

WO2015120431 antibacterial [351]epi-isozizaene synthase from
Streptomyces coelicolor A3(2) [110,122]

β-Patchoulene (77) Yes Streptomyces hygroscopicus NRRL 15879 [66] anti-inflammatory [352]

α-Elemol (80) Yes

Streptomyces parvulus B1682 [66] insecticidal (against
Ixodes scapularis,

Amblyomma americanum)
[353]

Streptomyces chartreusis NRRL 3882 [102]

Caryophyllene (93) Yes
Streptomyces yanglinensis 3-10 [62] anticancer

antioxidant
antimicrobial

[354,355]
Saccharothrix espanaensis DSM 44229 [103]

Caryolan-1-ol (94) Yes

Streptomyces griseus [105]

antifungal (against
Botrytis cinerea, IC50

0.026 µM/mL)
[107]

Transf. Streptomyces lividans with gcoA
from S. griseus

Streptomyces globisporus TFH56 [106]

Streptomyces griseus S4–7 [107] WO2018062668

Streptomyces albolongus YIM 101047 [73]
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Albaflavenone (109) No

Streptomyces coelicolor A3 (2) [112]

antibacterial (against
Bacillus subtilis,

MIC 8–10 µg/mL)
[356]

Transf. Streptomyces avermitilis
SUKA16 with sav3032 and sav4925

from S. avermitilis
[119]

Streptomyces cyaneogriseus subsp.
noncyanogenus [5]

Streptomyces spectabilis NRRL-2792 [118]

Streptomyces viridochromogenes
DSM 40736 [116]

Streptomyces griseoflavus Tu4000 [116]

Streptomyces ghanaensis ATCC 14672 [116]

Streptomyces albus ATCC 2396 [116]

Streptomyces sp. CRB46 [115]

Streptomyces coelicolor M145 [117]

Streptomyces albidoflavus DSM 5415 WO1995007878

(Z)-α-Bisabolene (115)
(Z)-γ-Bisabolene (117) Yes epi-isozizaene synthase

Streptomyces coelicolor A3(2) [110,122] WO2015120431 antioxidant [357]

Curcumene (116) Yes epi-isozizaene synthase
Streptomyces coelicolor A3(2) [110,122] antifungal [358]

Sesquiphellandrene (118) Yes epi-isozizaene synthase
Streptomyces coelicolor A3(2) [110,122] antiproliferative [359]

Strepsesquitriol (136) No Streptomyces sp. SCSIO 10355 [123] anti-inflammatory [123]

Pentalenolactone (132) No

Streptomyces exfoliatus UC5319
Streptomyces avermitilis

Streptomyces arenae TÜ469
[130] antimicrobial

antiviral
[125]

Streptomyces albus JA 3453-10 DD261608

1-Deoxy-8α-
hydroxypentalenic

acid (150)
No Streptomyces sp. NRRL S-4 [134]

antimicrobial (against
Staphylococcus aureus,

MIC 16 µg/mL;
Escherichia coli, MIC

16–32 µg/mL)

[134]
1-Deoxy-9β-hydroxy-11-

oxopentalenic
acid (151)

Dihydro-β-agarofuran (78) Yes Streptomyces hygroscopicus NRRL 15879 [66] insecticidal [360]

Caryolan-1,9β-diol (96) Yes
Streptomyces sp. AH25 [108] anti-inflammatory (ED50

0.34 mg/ear)
[361]

Streptomyces albolongus YIM 101047 [73]

Viridiflorol (91) Yes SAV_76 from Streptomyces avermitilis [83]

anti-inflammatory
antioxidant (against

DPPH, IC50
74.7 µg/mL)

[362]

Di- and triterpenes and their derivatives

Lobocompactol (166) No Streptomyces cinnabarinus PK209 [140]

antifouling (against
macroalga Ulva pertusa,

EC50 0.18 µg/mL;
diatom Navicula annexa;

EC50 0.43 µg/mL)

[140]

Microeunicellol A (168) No Streptomyces albogriseolus SY67903 [142]

antitumor (against
MCF-7, IC50 5.3 µM;
MDA-MB-231, IC50

8.6 µM)

[142]

Terpentecin (427) No Kitasatosporia griseola MF730-N6 [202]

antibacterial (against
Staphylococcus aureus,

Bacillus subtilis,
Corynebacterium bovis,

Shigella dysenteriae,
Aeromonas salmonicida,

Vibrio anguillarum, MIC
0.05 µg/mL)

[274]
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Isopimara-8(9),15-diene (180) Yes
Streptomyces sp. PKU-TA00600

[150] anti-inflammatory [363]Sat1646 from Salinispora sp.
PKU-MA00418

Isopimara-7(8),15-diene (445)
Isopimara-8(14),15-

diene (446)
Syn-isopimara-7(8),15-

diene (440)
8β-Isopimara-9(11),15-

diene (441)
8β-Pimara-9(11),15-

diene (442)
Syn-stemod-13(17)-ene (443)

Syn-pimara-7(8),15-
diene (444)

No

2α-Hydroxy-8(14),15-
pimaradien-17,18-dioic acid

(450)
No Microbispora hainanensis CSR-4 [281]

anti-Alzheimer
neuroprotective

(1 ng/mL)
antitumor

antioxidant

[281]

Gifhornenolone A (447) No Verrucosispora gifhornensis YM28-088 [264] antiandrogenic (IC50
2.8 µg/mL) [264]

Actinomadurol (452) No Actinomadura sp. KC 191 [283]

antibacterial (against
Staphylococcus aureus,

Kocuria rhizophila, Proteus
hauseri, MIC

0.39–0.78 µg/mL)

[283]

k4610422 (453) No Actinomadura sp. AMW41E2 [284] cytotoxic (against P388,
IC50 30 µM) [284]

Cyclooctatin (184) No

Streptomyces melanosporofaciens
MI614-43F2

anti-inflammatory [364]Transf. E. coli with CotB3 or CotB4 from
Streptomyces afghaniensis

Streptomyces sp. KCB17JA11

3,7,18-Dolabellatriene (188)
Yes

Mutant W288G of CotB2 from
Streptomyces melanosporofaciens

MI614-43F2
[158] antimicrobial (against

methicillin-resistant
Staphylococcus aureus,

MIC 16.0 µg/mL)

[365]

2,7,18-Dolabellatriene (459) Saccharopolyspora spinosa NRRL 18395 [286]

Thunbergol (464) Yes Allokutzneria albata DSM 44149 [287] antimicrobial [366]

Meroterpenoids

Furaquinocin A (226)
Furaquinocin B (227) No Streptomyces sp. KO-3988

Streptomyces sp. CLl90 [185] WO2006081537 antitumor (against HeLa
S3, IC50 1.6–3.1 µg/mL) [185]

Furaquinocin C (228)
Furaquinocin D (226)
Furaquinocin E (234)
Furaquinocin G (235)
Furaquinocin H (231)

No Streptomyces sp. KO-3988

cytotoxic (against B16,
IC50 0.08–6.87 µg/mL;

HeLa S3, IC50
0.22–5.05 µg/mL)

Furaquinocin L (238) No Streptomyces sp. Je 1-369 [191]
antibacterial (against
Staphylococcus aureus,

MIC 2.0 µg/mL)
[191]

Murayaquinone (240) No Streptomyces sp. TBRC7642 [188]

antitubercular (MIC
3.13 µg/mL)

[188]cytotoxic (against MCF-7
IC50 6.0 µM; NCI–H187,

IC500.85 µM; Vero,
IC502.05 µM)

Merochlorin A (241) No Streptomyces sp. CNH-189 [192]

antibacterial (against
MRSA, MIC

2.0–4.0 µg/mL;
Clostridium difficile
0.3–0.15 µg/mL)

[192]
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Merochlorin I (249) No Streptomyces sp. CNH-189 [194]

antibacterial (against
Bacillus subtilis, MIC
1.0 µg/mL; Kocuria

rhizophila, MIC
2.0 µg/mL;

Staphylococcus aureus,
MIC 2.0 µg/mL)

[194]

Merochlorin E (245)
Merochlorin F (246) No Streptomyces sp. CNH-189 [193]

antibacterial (against
Bacillus subtilis, MIC
1.0 µg/mL, Kocuria

rhizophila MIC
2.0 µg/mL,

Staphylococcus aureus
MIC 1.0–2.0 µg/mL)

[193]

Flaviogeranin D (256)
Flaviogeranin C2 (258) No Streptomyces sp. B9173 [196]

antibacterial (against
Mycobacterium smegmatis,

MIC 5.2 µg/mL)
[196]

cytotoxic (against A549,
IC50 0.6–0.9 µM; Hela,

IC50 0.4–1.1 µM)

Flaviogeranin A (252) Streptomyces sp. RAC226 [195] neuroprotective (EC50
8.6 nM) [195]

Naphterpin (259) No Streptomyces sp. CL190
Streptomyces sp. strain CLl90 [197] WO2006081537

antioxidant (suppressed
lipid peroxidation in rat

homogenate system,
IC50 5.3 µg/mL)

[197]

Naphterpin B (260)
Naphterpin C (261) No Streptomyces sp. CL190 [199]

antioxidant (suppressed
lipid peroxidation in rat

homogenate system,
IC50 6.0–6.5 µg/mL)

[199]

Napyradiomycin
CNQ-525.1 (226)

No Streptomyces sp. CNQ-525 [208]

antibacterial (against
MRSA, MIC 1.95

µg/mL; Enterococcus
faecium (VREF) MIC

1.9–3.9 µg/mL) [208]

Napyradiomycin
CNQ-525.2 (281)

Napyradiomycin
CNQ-525.3 (282) cytotoxic (against HCT,

IC50 1.0–2.4 µg/mL)
Napyradiomycin
CNQ-525.4 (283)

Napyradiomycin D1 (287) No Streptomyces sp. CA-271078 [203]

antibacterial (against
MRSA, MIC 12.0–24.0
µg/mL; Mycobacterium

tuberculosis, MIC
12.0–48.0 µg/mL)

[203]

cytotoxic (HepG2, IC50
14.9 µM)

3-Dechloro-3-
bromonapyradiomycin A1

(266)

No
Streptomyces sp. SCSIO 10428

Streptomyces kebangsaanensis WS-68302
Streptomyces sp. CA-271078

[201,204] CN105399721

antibacterial (against
Staphylococcus aureus,
MIC 0.5–1.0 µg/mL;

MRSA, MIC
4.0–8.0 µg/mL; Bacillus

subtilis, MIC 1.0–2.0
µg/mL; Bacillus

thuringiensis, MIC
0.5–2.0 µg/mL)

cytotoxic (against
HCT-116, IC50

2.0–3.0 µM)

[201,204,
209]Napyradiomycin B1 (273)

Naphthomevalin (289)

Napyradiomycin A1 (264) No

Streptomyces sp. CA-271078 [201]
antibacterial (against

MRSA, MIC
0.5–1.0 µg/mL)

[201]

Streptomyces sp. YP127 [200] antiangiogenic [200]

Streptomyces kebangsaanensis WS-68302 CN105399721

antibacterial (against
Staphylococcus aureus,
MIC 0.078 µg/mL)
antiviral (against

Pseudorabies virus, IC50
2.2 µg/mL)
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Napyradiomycin B2 (275) No

Streptomyces sp. CNQ-329
Streptomyces sp. CNH-070 [206]

cytotoxic (against
HCT-116, IC50
3.18 µg/mL)

antibacterial (against
MRSA, MIC

3.0–6.0 µg/mL)

[206]

Streptomyces sp. CA-271078 [203]

Napyradiomycin B3 (274) No

Streptomyces sp. CNQ-329
Streptomyces sp. CNH-070 [206]

cytotoxic (against
HCT-116, IC50

0.2 µg/mL)
antibacterial (against

MRSA, MIC 2.0 µg/mL;
against Staphylococcus

aureus, MIC 0.5 µg/mL;
Bacillus subtilis, MIC
0.2 µg/mL; Bacillus
thuringiensis, MIC

0.5 µg/mL)

[203,206]

Streptomyces sp. SCSIO 10428 [203]

Napyradiomycin B4 (284) Streptomyces strains CNQ-329 and
CNH-070 [206]

cytotoxic (against
HCT-116, IC50
1.41 µg/mL)

[206]

NPM 1 (288) Streptomyces strains CNQ-329 and
CNH-070 [206]

cytotoxic (against
HCT-116, IC50

4.2–4.8 µg/mL)
[206]

Napyradiomycin
CNQ525.538 (271) No Streptomyces sp. CNQ-525 [209]

cytotoxic (against
HCT-116, IC50

6.0 µg/mL)
[209]

A80915A (277)
A80915B (278)
A80915D (279)
A80915G (291)

No Streptomyces aculeolatus A80915 - EP0376609

antibacterial (against
Staphylococcus aureus,

MIC 0.03–4.0 µg/mL; S.
epidermidis, MIC
0.15–2.0 µg/mL;

Streptococcus pyogenes,
MIC 0.03–2.0 µg/mL; S.

pneumonia, MIC
0.125–2.0 µg/mL;

Enterococcus faecium, MIC
1.0–4.0 µg/mL; E. faecalis,

MIC 1.0 µg/mL;
Haemophilus influenzae,

MIC 0.008 µg/mL;
Clostridium difficile, MIC

2.0–4.0 µg/mL; C.
perfringers, MIC 2.0–4.0

µg/mL; C. septicum, MIC
1.0–2.0 µg/mL;

Eubacterium aerofaciens,
MIC 0.5–2.0 µg/mL;

Peptococcus
asaccharolyticus, MIC

0.5–4.0 µg/mL; P. prevotii,
MIC 1.0–2.0 µg/mL; P.

intermediatus, MIC
1.0–2.0 µg/mL;

Propionibacterium acnes,
MIC 0.5–1.0 µg/mL;

Bacteroides fragilis, MIC
2.0–4.0; B.

melaninogenicus, MIC
0.5–2.0 µg/mL; B.

corrodens, MIC
2.0–4.0 µg/mL;

Fusobacterium symbiosum,
MIC

0.5–4.0 µg/mL)

-

A80915A (277)
A80915B (278)
A80915D (279)

No Streptomyces sp. CNQ-525 [209]
cytotoxic (against

HCT-116, IC50
1.0–3.0 µg/mL)

[209]

7-Demethyl SF2415A3 (272)
7-Demethyl A80915B (285) No Streptomyces antimycoticus NT17 [202]

antibacterial (against
Staphylococcus aureus,
MIC 2.0–3.7 nM/mL;
Bacillus subtilis, MIC

1.0–3.7 nM/mL)

[202]
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Napyradiomycin A4 (267) No Streptomyces kebangsaanensis WS-68302 CN114805278
antiviral (against

Pseudorabies virus (PRV),
IC50 2.056 µM)

16Z-19-
Hydroxynapyradiomycin

A1 (265)
No Streptomyces sp. YP127 [205] anti-inflammatory

antioxidant [205]

(R)-3-Chloro-6-hydroxy-8-
methoxy-alpha-
lapachone (286)

No Streptomyces sp. YP127
Streptomyces antimycoticus NT17 [202,205] anti-inflammatory [205]

Marfuraquinocin A (292)
Marfuraquinocin C (294)
Marfuraquinocin D (295)

No Streptomyces niveus SCSIO 3406 [210]

cytotoxic (against
NCI-H460, IC50 3.7; 4.4;

8.8 µM)
antibacterial (against
Staphylococcus aureus

ATCC 29213,
methicillin-resistant

Staphylococcus
epidermidis, MIC

8.0 µg/mL)

[210]

FW03105 (484) No Verrucosispora sp. FIM06031 CN101921721

antitumor (against
HepG2, IC50 16.99 µM;
EC109, IC50 25.33 µM;
HeLA, IC50 34.64 µM)

Saccharoquinoline (492) No Saccharomonospora sp. CNQ-490 [293] cytotoxic (against
HCT-116, IC50 1.0 µM) [293]

Teleocidin B (314)
No

Streptomyces mediocidicus [211] tumor promoter [211]

Streptomyces sp. 680560 [367] nematicidal [367]

Streptomyces blastmyceticus [214]

Lavanducyanin (304) No Streptomyces sp. CNS-284 and CNY-960
Streptomyces sp. CLl90

[216] WO2006081537

cytotoxic (against
HCT-116, IC50 2.41 µM)

[216]antimicrobial (against
Staphylococcus aureus,

MIC 2.92 µM; Candida
albicans, MIC 5.96 µM)

Marinocyanin A (298)
Marinocyanin B (299)
Marinocyanin C (300)

No Streptomyces sp. CNS-284 и CNY-960 [216]

-

cytotoxic (against
HCT-116, IC50

0.029–0.049 µM)

[216]antimicrobial (against
Staphylococcus aureus,

MIC 2.37 µM; Candida
albicans, MIC

0.95–3.90 µM)

Farneside A (306) No Streptomyces sp. CNT-372 [217] antimalarial (against
Plasmodium falciparum) [217]

Xiamycin A (310)

Streptomyces sp. SCSIO 02999 [220] CN102757908
CN102732534

antiviral
anti-HIV
cytotoxic

[220]

Streptomyces sp. GT2002/1503 [221] antiviral (against
SARS-CoV-2) [368]

Streptomyces sp. HKI0595 [226] antiviral (against HSV-1) [329]

Xiamycin methyl ester (311) No Streptomyces sp. SCSIO 02999 [220] CN102757908

antitumor (IC50
10.13 µM)

antiviral (against
SARS-CoV-2) [368]

Dixiamycin A (328)
Dixiamycin B (330)

No

Streptomyces sp. GT2002/1503 [221] antibacterial (against E.
coli, S. aureus, MIC

8–16 µg/mL; B.
thuringiensis, MIC

4–8 µg/mL)

[221]Streptomyces xinghaiensis NRRL
B-24674T [228]

Streptomyces sp. SCSIO 02999 CN102757908

Dixiamycin 6a/6b (333/334)

No Transf. S. albus with xia from
Streptomyces sp. SCSIO 02999

[230] WO2014029498

antibacterial (against
MRSA, MIC 0.2 µg/mL)

[230]

Dixiamycin 8 (337)
antibacterial (against S.

aureus, MRSA, MIC
1.56 µg/mL)
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Dixiamycin 7a/7b (335/336)

No Streptomyces olivaceus OUCLQ19-3 [229]

antibacterial (S. aureus, E.
faecalis, E. faecium, M.

luteus, P. aeruginosa, MIC
6.25–12.5 µg/mL)

[229]

Dixiamycin
12a/12b (331/332)

antibacterial (S. aureus,
MIC 0.78–3.12 µg/mL;
E. faecalis, E. faecium, M.

luteus, MIC 3.12–6.25
µg/mL; P. aeruginosa,

MIC 1.56 µg/mL)

Xiamycin B (313)
Indosespene (318)

No Streptomyces sp. HKI0595
Streptomyces sp. SCSIO 02999

[226] CN102732534

antimicrobial (against
MRSA;

vancomycin-resistant
Enterococcus faecalis)

[226]

Sespenine (319) antiviral (against
SARS-CoV-2) [368]

Xiamycin D (324)

No Streptomyces sp. HK18 [225]
antiviral (against PEDV) [225]

Xiamycin C (323) antiviral (against
SARS-CoV-2) [368]

Oridamycin A (326) No Streptomyces sp. KS84 [227]
antifungal (against

Saprolegnia parasitica,
MIC 3.0 µg/mL)

[227]

Sulfonylbixiamycin A (338) No Transf. S. albus with xiamycin BGC
from Streptomyces sp. [231] WO2014029498

antibacterial (against
Bacillus subtilis, MIC 6.25
µg/mL; Staphylococcus

aureus, MIC 3.12 µg/mL;
MRSA, MIC
6.25 µg/mL)

[231]

Cyslabdan A (341) No Streptomyces cyslabdanicus K04-0144 [233]
enhance (1000-fold) the

antibiotic imipenem
action (against MRSA)

[369]

Oxaloterpin A (347) No

Streptomyces sp. KO-3988 [151] antibacterial (against
Bacillus subtilis ATCC

43223, IC50 1.9 µM/mL;
Staphylococcus aureus

ATCC29213; EC50 3.7)

[151]Streptomyces griseus CB00830 [235]

Streptomyces sp. SN194 [152]

Chloroxaloterpin A (352)
Chloroxaloterpin B (353) No Streptomyces sp. SN194 [152]

antifungal (against
Botrytis cinerea, EC50
4.40–4.96 µg/mL)

[152]

Fusicomycin A (384)
Fusicomycin (385)

Fusicomycin B (386)
No Streptomyces violascens YIM 100212 [164]

cytotoxicity (against
BGC-823 H460, HCT116,

HeLa, SMMC7721 8.9,
IC50 from 3.5 ± 0.7 to

14.1 ± 0.8 µM)

[164]

Streptooctatin A (387)
Streptooctatin B (388) No Streptomyces sp. KCB17JA11 [243] autophagic (against

HeLa) [243]

Actinoranone (389) Streptomyces sp. CNQ-027 [244]
cytotoxic (against

HCT-116, LD50
2.0 µg/mL)

[244]

Brasilicardin A (490) No
Nocardia brasiliensis IFM 0406 (now N.

terpenica)
[299]

immunosuppressive [300]

antiproliferative (against
LN229, IC50 0.13 µM) [306]

Platensimycin (390)
Platencin (391)

Streptomyces platensis MA7327
Streptomyces platensis MA7339
Streptomyces platensis MA7237

[245,246] US20090081673

antibacterial (against S.
aureus (MRSA),

Enterococcus faecalis,
Enterococcus faecium,
MIC 0.1–1.0 µg/mL)

[245,246]

Atolypene A (497)
Atolypene B (498) No

Transf. Streptomyces albus with ato gene
cluster from Amycolatopsis tolypomycina

NRRL B-24205
[307]

cytotoxic (against HL-60,
Jurkat, HEK293, HeLa,

A549, IC50 12.0–36.7 µM)
[307]

Terretonin N (499) No Nocardiopsis sp. LGO5 [308] antibacterial (against
Staphylococcus warneri) [308]
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Soyasaponin I (407) Yes Streptomyces sp. YIM 56130 [94]

anti-inflammatory
antimutagenic

anticarcinogenic
antimicrobial

[256]

Longestin (408) No Streptomyces argenteolus A-2 [257] antiamnesic (IC50
0.065 µM) [370]

4. Conclusions

Thus, the synthesis of terpenes and terpenoids is an important pathway in the sec-
ondary metabolism of actinomycetes. The compounds produced may be promising ther-
apeutic agents for the treatment of viral, inflammatory, cancerous, and other diseases in
the future. Terpenoids and meroterpenoids synthesized by actinomycetes and possessing
high antibacterial activity against drug-resistant pathogenic microorganisms may be useful
for the development of new antibiotics. Further study of actinomycetes, accumulation
of genetic information about this group of microorganisms, and employment of modern
and development of novel tools of synthetic biology and genetic engineering will open
prospects for creation of ideal “cell factories” using actinomycetes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16060872/s1. Table S1: Patents on the biosynthesis of terpene
derivatives using actinomycetes.
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48. Komatsu, M.; Uchiyama, T.; Ōmura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression

of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [CrossRef]
49. Ahmed, Y.; Rebets, Y.; Estévez, M.R.; Zapp, J.; Myronovskyi, M.; Luzhetskyy, A. Engineering of Streptomyces lividans for

heterologous expression of secondary metabolite gene clusters. Microb. Cell Fact. 2020, 19, 5. [CrossRef] [PubMed]
50. Nah, H.-J.; Pyeon, H.-R.; Kang, S.-H.; Choi, S.-S.; Kim, E.-S. Cloning and heterologous expression of a large-sized natural product

biosynthetic gene cluster in Streptomyces species. Front. Microbiol. 2017, 8, 394. [CrossRef]
51. Baltz, R.H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind.

Microbiol. Biotechnol. 2010, 37, 759–772. [CrossRef] [PubMed]
52. Palazzotto, E.; Weber, T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms.

Curr. Opin. Microbiol. 2018, 45, 109–116. [CrossRef]
53. Dickschat, J.S.; Martens, T.; Brinkhoff, T.; Simon, M.; Schulz, S. Volatiles released by a Streptomyces species isolated from the North

sea. Chem. Biodivers. 2005, 2, 837–865. [CrossRef] [PubMed]
54. Nakano, C.; Kim, H.-K.; Ohnishi, Y. Identification of the first bacterial monoterpene cyclase, a 1,8-cineole synthase, that catalyzes

the direct conversion of geranyl diphosphate. ChemBioChem 2011, 12, 1988–1991. [CrossRef] [PubMed]
55. Karuppiah, V.; Ranaghan, K.E.; Leferink, N.G.H.; Johannissen, L.O.; Shanmugam, M.; Ní Cheallaigh, A.; Bennett, N.J.; Kearsey,

L.J.; Takano, E.; Gardiner, J.M.; et al. Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and
1,8-cineole synthase. ACS Catal. 2017, 7, 6268–6282. [CrossRef] [PubMed]

56. Ferraz, C.A.; Leferink, N.G.H.; Kosov, I.; Scrutton, N.S. Isopentenol utilization pathway for the production of linalool in Escherichia
coli using an improved bacterial linalool/nerolidol synthase. ChemBioChem 2021, 22, 2325–2334. [CrossRef]

57. Li, L.; Liu, R.; Han, L.; Jiang, Y.; Liu, J.; Li, Y.; Yuan, C.; Huang, X. Structure determination of two new nerolidol-type
sesquiterpenoids from the soil actinomycete Streptomyces scopuliridis. Magn. Reson. Chem. 2016, 54, 606–609. [CrossRef]

58. Komatsu, M.; Tsuda, M.; Omura, S.; Oikawa, H.; Ikeda, H. Identification and functional analysis of genes controlling biosynthesis
of 2-methylisoborneol. Proc. Natl. Acad. Sci. USA 2008, 105, 7422–7427. [CrossRef]

59. Schrader, K.K.; Harries, M.D.; Page, P.N. Temperature effects on biomass, geosmin, and 2-methylisoborneol production and
cellular activity by Nocardia spp. and Streptomyces spp. isolated from rainbow trout recirculating aquaculture systems. J. Ind.
Microbiol. Biotechnol. 2015, 42, 759–767. [CrossRef] [PubMed]

60. Wang, C.; Wang, Z.; Qiao, X.; Li, Z.; Li, F.; Chen, M.; Wang, Y.; Huang, Y.; Cui, H. Antifungal activity of volatile organic compounds
from Streptomyces alboflavus TD-1. FEMS Microbiol. Lett. 2013, 341, 45–51. [CrossRef] [PubMed]

61. Saadoun, I. Production of 2-methylisoborneol by Streptomyces violaceusniger and its transformation by selected species ofPseu-
domonas. J. Basic Microbiol. 2005, 45, 236–242. [CrossRef] [PubMed]

62. Lyu, A.; Yang, L.; Wu, M.; Zhang, J.; Li, G. High efficacy of the volatile organic compounds of Streptomyces yanglinensis 3-10 in
suppression of Aspergillus contamination on peanut kernels. Front. Microbiol. 2020, 11, 142. [CrossRef]

63. Wang, C.-M.; Cane, D.E. Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in
Streptomyces coelicolor biosynthesis of methylisoborneol scheme 2. Cyclization of GPP by SCO7700. J. Am. Chem. Soc 2008,
130, 8908–8909. [CrossRef] [PubMed]

64. Köksal, M.; Chou, W.K.W.; Cane, D.E.; Christianson, D.W. Structure of 2-methylisoborneol synthase from Streptomyces coelicolor
and implications for the cyclization of a noncanonical C -methylated monoterpenoid substrate. Biochemistry 2012, 51, 3011–3020.
[CrossRef] [PubMed]

65. Köksal, M.; Chou, W.K.W.; Cane, D.E.; Christianson, D.W. Unexpected reactivity of 2-fluorolinalyl diphosphate in the active site
of crystalline 2-methylisoborneol synthase. Biochemistry 2013, 52, 5247–5255. [CrossRef]

https://doi.org/10.3390/molecules26154504
https://doi.org/10.1016/j.dld.2018.02.012
https://doi.org/10.3389/fbioe.2021.770248
https://www.ncbi.nlm.nih.gov/pubmed/35004640
https://doi.org/10.3389/fmicb.2015.00212
https://doi.org/10.1002/cbic.202200231
https://doi.org/10.1002/anie.201905312
https://www.ncbi.nlm.nih.gov/pubmed/31183935
https://doi.org/10.1039/D0NP00066C
https://doi.org/10.1039/D1NP00047K
https://doi.org/10.1021/acs.chemrev.7b00287
https://doi.org/10.3762/bjoc.15.283
https://www.ncbi.nlm.nih.gov/pubmed/31839835
https://doi.org/10.1021/ar200198d
https://doi.org/10.1073/pnas.0914833107
https://doi.org/10.1186/s12934-020-1277-8
https://www.ncbi.nlm.nih.gov/pubmed/31918711
https://doi.org/10.3389/fmicb.2017.00394
https://doi.org/10.1007/s10295-010-0730-9
https://www.ncbi.nlm.nih.gov/pubmed/20467781
https://doi.org/10.1016/j.mib.2018.03.004
https://doi.org/10.1002/cbdv.200590062
https://www.ncbi.nlm.nih.gov/pubmed/17193176
https://doi.org/10.1002/cbic.201100330
https://www.ncbi.nlm.nih.gov/pubmed/21726035
https://doi.org/10.1021/acscatal.7b01924
https://www.ncbi.nlm.nih.gov/pubmed/28966840
https://doi.org/10.1002/cbic.202100110
https://doi.org/10.1002/mrc.4409
https://doi.org/10.1073/pnas.0802312105
https://doi.org/10.1007/s10295-015-1600-2
https://www.ncbi.nlm.nih.gov/pubmed/25724337
https://doi.org/10.1111/1574-6968.12088
https://www.ncbi.nlm.nih.gov/pubmed/23351181
https://doi.org/10.1002/jobm.200410495
https://www.ncbi.nlm.nih.gov/pubmed/15900545
https://doi.org/10.3389/fmicb.2020.00142
https://doi.org/10.1021/ja803639g
https://www.ncbi.nlm.nih.gov/pubmed/18563898
https://doi.org/10.1021/bi201827a
https://www.ncbi.nlm.nih.gov/pubmed/22455514
https://doi.org/10.1021/bi400797c


Pharmaceuticals 2023, 16, 872 57 of 69

66. Cheng, Z.; McCann, S.; Faraone, N.; Clarke, J.-A.; Hudson, E.A.; Cloonan, K.; Hillier, N.K.; Tahlan, K. Production of plant-
associated volatiles by select model and industrially important Streptomyces spp. Microorganisms 2020, 8, 1767. [CrossRef]
[PubMed]

67. Nakano, C.; Kudo, F.; Eguchi, T.; Ohnishi, Y. Genome mining reveals two novel bacterial sesquiterpene cyclases: (−)-germacradien-
4-ol and (−)-epi-α-bisabolol synthases from Streptomyces citricolor. ChemBioChem 2011, 12, 2271–2275. [CrossRef] [PubMed]

68. Grundy, D.J.; Chen, M.; González, V.; Leoni, S.; Miller, D.J.; Christianson, D.W.; Allemann, R.K. Mechanism of germacradien-4-ol
synthase-controlled water capture. Biochemistry 2016, 55, 2112–2121. [CrossRef] [PubMed]

69. Rabe, P.; Barra, L.; Rinkel, J.; Riclea, R.; Citron, C.A.; Klapschinski, T.A.; Janusko, A.; Dickschat, J.S. Conformational analysis,
thermal rearrangement, and EI-MS fragmentation mechanism of (1(10)e,4e,6s,7r)-germacradien-6-ol by 13C-labeling experiments.
Angew. Chem. Int. Ed. 2015, 54, 13448–13451. [CrossRef] [PubMed]

70. Srivastava, P.L.; Escorcia, A.M.; Huynh, F.; Miller, D.J.; Allemann, R.K.; Van Der Kamp, M.W. Redesigning the molecular
choreography to prevent hydroxylation in germacradien-11-ol synthase catalysis. ACS Catal. 2021, 11, 1033–1041. [CrossRef]

71. Guan, S.; Grabley, S.; Groth, I.; Lin, W.; Christner, A.; Guo, D.; Sattler, I. Structure determination of germacrane-type sesquiterpene
alcohols from an endophyte Streptomyces griseus subsp. Magn. Reson. Chem. 2005, 43, 1028–1031. [CrossRef] [PubMed]

72. Deng, L.; Wang, R.; Wang, G.; Liu, M.; Liao, Z.; Liao, G.; Chen, M. Roseosporol A, the first isolation of a novel sesquiterpenoid
from Streptomyces roseosporus. Nat. Prod. Res. 2018, 33, 2038–2043. [CrossRef] [PubMed]

73. Ding, N.; Jiang, Y.; Han, L.; Chen, X.; Ma, J.; Qu, X.; Mu, Y.; Liu, J.; Li, L.; Jiang, C.; et al. Bafilomycins and odoriferous
sesquiterpenoids from Streptomyces albolongus isolated from Elephas maximus feces. J. Nat. Prod. 2016, 79, 799–805. [CrossRef]
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