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Abstract: Bacteria resistance to antibiotics is a concerning global health problem; in this context,
methicillin-resistant Staphylococcus aureus (MRSA) is considered as a high priority by the World
Health Organization. Furthermore, patients with a positive result for COVID-19 received early
antibiotic treatment, a fact that potentially encourages the increase in antibiotic resistance. There-
fore, there is an urgency to develop new drugs with molecular mechanisms different from those
of the actual treatments. In this context, enzymes from the shikimate pathway, a route absent in
humans, such as dehydroquinate dehydratase (DHQD), are considered good targets. In this work, a
computer-aided drug design strategy, which involved exhaustive virtual screening and molecular
dynamics simulations with MM-PBSA analysis, as well as an in silico ADMETox characterization, was
performed to find potential noncovalent inhibitors of DHQD from MRSA (SaDHQD). After filtering
the 997 million compounds from the ZINC database, 6700 compounds were submitted to an exhaus-
tive virtual screening protocol. From these data, four molecules were selected and characterized
(ZINC000005753647 (1), ZINC000001720488 (2), ZINC000082049768 (3), and ZINC000644149506 (4)).
The results indicate that the four potential inhibitors interacted with residues important for substrate
binding and catalysis, with an estimated binding free energy like that of the enzyme’s substrate. Their
ADMETox-predicted properties suggest that all of them support the structural characteristics to be
considered good candidates. Therefore, the four compounds reported here are excellent option to be
considered for future in vitro studies to design new SaDHQD noncovalent inhibitors and contribute
to the search for new drugs against MRSA.

Keywords: MRSA; shikimate pathway; dehydroquinate dehydratase; virtual screening; molecular
dynamics; computer-aided drug design

1. Introduction

Bacterial resistance to antibiotics is a concerning global health problem [1] that is
constantly evolving, where the emergence of antibiotic resistance is an outcome of a
repertoire of factors in various environmental and clinical settings that have important
repercussions on the health of the population [2–4]. Furthermore, increased exposure
to healthcare and invasive procedures implies expanded antibiotic use, which further
increases the risk for resistant pathogens to emerge [5]. Moreover, another situation is
currently taking place; reports are emerging that pose a concerning situation; the intensity
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with which the COVID-19 pandemic is affecting healthcare and community environments
is threatening [6–8]. High volumes of patients are becoming infected over short periods
of time, resulting in a spike in antimicrobial consumption. According to a review of the
data on COVID-19 cases, approximately 70% of patients with a positive result of COVID-19
received early antibiotic treatment when only approximately 8% needed it [9,10], a fact that
could potentially encourage the increase of antibiotic resistance.

Even though effective antibiotics are a cornerstone of modern medicine, few bacteria
can be as threatening as Staphylococcus aureus, a pathogen considered a high priority by the
World Health Organization [11,12] and implicated in skin and soft tissue infections. One of
the principal challenges is the methicillin-resistant S. aureus (MRSA) strains, because this
pathogen is resistant to most of the actual treatments, which in turn results in high rates of
mortality [13]. Therefore, new treatments are required to be able to manage this increasing
threat. Under this light, a fundamental metabolic pathway for bacteria’s survival is the
Shikimate Pathway (SK), a biosynthetic route that links carbohydrate metabolism through
glycolysis and the pentose phosphate pathway, which has been considered an excellent tar-
get for antibacterial drug design, furthermore, this pathway is absent in humans [14]. This
pathway consists of seven enzymatic steps that conclude with the formation of chorismate,
a precursor of aromatic compounds, folates, and ubiquinone, as the final product [15,16].

One of these enzymes is 3-dehydroquinate dehydratase, which exists in two isoforms
denoted as Type I and Type II. Structurally, Type I enzymes are homodimers, whilst Type II
are dodecamers [17,18]. Type I 3-dehydroquinate dehydratase (DHQD) is encoded by the
gene aroD and is found in fungi, plants, and bacteria, including the pathogenic Salmonella
(typhi and enterica), Escherichia coli, Clostridium difficile, and Staphylococcus aureus [19–21].
DHQD catalyzes the reversible conversion of 3-dehydroquinate to 3-dehydroshikimate by
a syn-elimination of water, another difference with Type II, which performs it through an
Anti-elimination of water [22,23].

In addition to the biosynthetic role of DHQD, deletions in the aroD gene in S. typhi,
S. flexneri, and S. auerus have suggested that this enzyme may act as a virulence factor [24].
In the same context, in S. aureus, a Small Colony Variant (SCV) phenotype was isolated.
This strain supports an Ochre mutation in the aroD gene, being auxotrophic for all aromatic
amino acids and less virulent than the wild type [25]. Furthermore, aroD gene mutants have
been proposed as vaccines for Francisella tularensis, the causative agent of Tularemia [26].
Therefore, this enzyme has been considered a promising target not only for antibiotic drug
design but also for the design of new antivirulence drugs [24].

In this work, a computer-aided drug design strategy, including exhaustive virtual
screening, molecular dynamics, MM/PBSA analysis, and in silico ADMETox predictions,
was followed to find potential noncovalent inhibitors of DHQD from methicillin-resistant
Staphylococcus aureus (SaDHQD). The molecules reported here potentially bind to the active
site of the enzyme and support the structural characteristics to be considered promising
drug candidates to fight against antibacterial resistance.

2. Results and Discussion
2.1. Database Filtering and Virtual Screening

Nowadays, only a few covalent (irreversible) inhibitors of SaDHQD have been re-
ported [27]. Noncovalent (reversible) inhibitors of DHQD have been reported only from
other bacteria such as C. difficile and E. faecalis [28,29]. With the aim of obtaining the first
potential noncovalent inhibitors from SaDHQD, a computer-aided drug design protocol
was implemented (Figure 1). By the time the ZINC database was consulted, 997 million
compounds were included in the TRANCHES 3D section. The first filtering criteria was to
select structures with physicochemical characteristics similar to those of the substrate of the
enzyme (3-dehydroquinate, MW = 198 Da and Log p = −1.7), therefore, compounds with
a MW in the range of 200–250 Da, and a Log p value of −1 were included. Additionally,
the highest reactivity clean criteria (without reactive groups) were applied, keeping only
123,000 molecules. Thereafter, Lipinski’s rule of five compliance, toxicity risk assessment,
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Topological Surface Area (TPSA), and rotatable bond filters were applied, leaving a final set
of 6700 compounds. Nowadays, a lot of works using different virtual screening protocols
to filter large chemical libraries have been published, but the challenge is always to select
the best candidates for further experimental studies [30]. In this context, approximations
such as consensus docking or rescoring functions have been used [31]. Here, with the aim
to select molecules that potentially recognize the catalytic site of SaDHQD and to ensure
that each result was consistent, three independent virtual screening assays over the same
database (6700 compounds) were conducted using Autodock Vina (Table S1). It is impor-
tant to mention that stereoisomers from compounds with chiral centers in their structure
were included. The goal of this was to use molecular docking to find the compounds
with the best binding pose according to their docking score for further computational
characterization, not to perform binding free energy determinations [32]. The data show
that four compounds met the requirement: ZINC000005753647 (1), ZINC000001720488 (2),
ZINC000082049768 (3), and ZINC000644149506 (4) (Table 1).
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Figure 1. Workflow to obtain potential SaDHQD noncovalent inhibitors.

Table 1. Autodock Vina docking score for the best ligands.

Ligand Docking Score
(kcal/mol) Structure

3-dehydroquinate −6.1 ± 0.0
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Table 1. Cont.

Ligand Docking Score
(kcal/mol) Structure

Compound 1 −7.5 ± 0.0
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2.2. Molecular Dynamics Simulations

At this moment, we have a set of possible compounds that might bind to SaDHQD.
However, those ligands were selected using molecular docking that does not include
sidechain and/or protein conformational changes that may influence the ligand’s binding
to the enzyme [33]. To gain more information about the enzyme-ligand interaction, three
independent 100 ns molecular dynamics simulations were conducted on each system,
including the crystallographic ligand (3-dehydroquinate) (Figure 2). With the aim of
performing the analysis on the period when the simulations were stable over time, the last
20 ns were used for the analysis of each trajectory. Results show that the α-carbon Root
Mean Square Deviation (RMSD) for most of the systems simulated was stable along the
last 20 ns, but there were a couple of systems where RMSD fluctuations indicate that they
may not be stable or higher than the other replicas. However, fluctuations observed for
those systems were lower than 3.5 Å when compared to all systems; in fact, all systems had
a RMSD variation against the initial of no more than 3.5 Å (see, for example, the green line
on the 3-dehydroquinate complex and compare it with the red line from compound 4 on
Figure 2); therefore, those trajectories were included and analyzed.

The same situation was observed when the position of the ligands along the simula-
tions was analyzed. In this case, 3-dehydroquinate shows the highest variations, followed
by compounds 3 and 4. However, the variations were so small that it can be said that all the
ligands kept their binding sites. In fact, when ligand movement is observed in the binding
site, complexes corresponding to substrate and compounds 3 and 4 show more variations
(Figure 3).

On the other hand, no important changes were observed in Root Mean Square Fluc-
tuations (RMSF) plots, which are used to explore the flexibility of each residue during
simulations [34]. Therefore, the binding of the potential inhibitors did not provoke substan-
tial alterations in the lateral chains of amino acids (Figure 4).
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Figure 3. Ligand-RMSD. (A) RMSD along the 100 ns of simulated time in each complex. Replicates
and axes labels are shown as described in Figure 2. (B) Ligand movement (brighter atoms at the center
of each image) on the binding site (darker atoms on each image) in SaDHQD during the last 20 ns.
The image also shows the movement of the lateral chains from the amino acids in the binding site.
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Figure 4. Root mean square fluctuation along the 100 ns of simulated time in each complex. Replicates
and axes labels are shown as described in Figure 2.

This is in consonance with data obtained from Radius of Gyration (RoG) plots. RoG
is a quantity that can be related to the natural protein “breathing”. A high value of RoG
might be an indication of a possible denaturation of the protein; the opposite might be
related to a compaction of the protein. Initial RoG was 1.72 ± 0.003 nm. RoG values over
time show fluctuations with increments above 1.8 nm. These fluctuations might indicate
that the protein had an opening that can be related to the natural movement of the amino
or carboxyl terminal. However, RoG distributions show that (even in the worst case: 3-
dehydroquinate simulation in green), these values are located around 1.76 and 1.77 nm.
These values show an increment of 0.4 Å when compared to the initial value. Therefore,
no effect was observed in the compactness of the protein structure, i.e., the binding of the
compounds did not generate a crucial conformational change (Figure 5).

In respect to hydrogen bond formation, as was expected, none of the compounds
made as many hydrogen bonds as the substrate (Figure 6). This is the logic: when the
structure of the potential inhibitors is analyzed, the number of hydrogen bond donors or
acceptors is limited, contrary to what is observed in the substrate. Therefore, the binding of
these compounds was governed (as shown later) by Van der Waals interactions, which are
the most common type of interactions and influence the stability of the complex [35].

According to a representative structure of the most populated cluster obtained from
clustering the last 20 ns of each replicate, compound 1 made a hydrogen bond with Glu35,
whilst compound 2 did not make any interaction. Compound 3 made hydrogen bonds
with Pro223 and Gln225, and compound 4 formed the same type of interaction with Glu35,
Arg37, Arg70, His133, Lys160, and Gln225. Some of these interactions were shared by the
substrate, such as Glu35, Lys160, and Gln225, additionally, a hydrogen bond with Arg37
and Arg202 was established by the substrate (Figure 7). Therefore, it can be said that
compounds 1, 3, and 4 were able to make some of the same interactions as the substrate.



Pharmaceuticals 2023, 16, 1148 7 of 16

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 5. Radius of gyration along the 100 ns of simulated time in each complex. Replicates and axes 
labels are shown as described in Figure 2. (A) RoG of the systems herein simulated along 100 ns. (B) 
Normalized distribution of the RoG for all the systems. 

In respect to hydrogen bond formation, as was expected, none of the compounds 
made as many hydrogen bonds as the substrate (Figure 6). This is the logic: when the 
structure of the potential inhibitors is analyzed, the number of hydrogen bond donors or 
acceptors is limited, contrary to what is observed in the substrate. Therefore, the binding 
of these compounds was governed (as shown later) by Van der Waals interactions, which 
are the most common type of interactions and influence the stability of the complex [35]. 

Figure 5. Radius of gyration along the 100 ns of simulated time in each complex. Replicates and axes
labels are shown as described in Figure 2. (A) RoG of the systems herein simulated along 100 ns.
(B) Normalized distribution of the RoG for all the systems.



Pharmaceuticals 2023, 16, 1148 8 of 16
Pharmaceuticals 2023, 16, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 6. Number of hydrogen bonds formed along the 100 ns of simulated time in each complex. 
Replicates and axes labels are shown as described in Figure 2. 

According to a representative structure of the most populated cluster obtained from 
clustering the last 20 ns of each replicate, compound 1 made a hydrogen bond with Glu35, 
whilst compound 2 did not make any interaction. Compound 3 made hydrogen bonds 
with Pro223 and Gln225, and compound 4 formed the same type of interaction with Glu35, 
Arg37, Arg70, His133, Lys160, and Gln225. Some of these interactions were shared by the 
substrate, such as Glu35, Lys160, and Gln225, additionally, a hydrogen bond with Arg37 
and Arg202 was established by the substrate (Figure 7). Therefore, it can be said that com-
pounds 1, 3, and 4 were able to make some of the same interactions as the substrate. 

 

Figure 6. Number of hydrogen bonds formed along the 100 ns of simulated time in each complex.
Replicates and axes labels are shown as described in Figure 2.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 6. Number of hydrogen bonds formed along the 100 ns of simulated time in each complex. 
Replicates and axes labels are shown as described in Figure 2. 

According to a representative structure of the most populated cluster obtained from 
clustering the last 20 ns of each replicate, compound 1 made a hydrogen bond with Glu35, 
whilst compound 2 did not make any interaction. Compound 3 made hydrogen bonds 
with Pro223 and Gln225, and compound 4 formed the same type of interaction with Glu35, 
Arg37, Arg70, His133, Lys160, and Gln225. Some of these interactions were shared by the 
substrate, such as Glu35, Lys160, and Gln225, additionally, a hydrogen bond with Arg37 
and Arg202 was established by the substrate (Figure 7). Therefore, it can be said that com-
pounds 1, 3, and 4 were able to make some of the same interactions as the substrate. 

 

Figure 7. 3D interaction map of each complex; the image shows a representative structure. Residues
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2.3. Binding Free and Interaction Energies

To study the stability of each complex, binding free energy was calculated using the
MM/PBSA approximation. MM/PBSA is a computational way to estimate relative binding
affinities at a reduced computational cost that could be used to obtain a qualitative ranking
of the compounds tested [36–40]. Even when there are more robust ways to calculate these
affinities, such as free energy perturbation [41] or thermodynamic integration [42,43], those
methodologies are very time- and resource-consuming. Herein, we used the MM/PBSA
method, performing three independent replicas (100 ns) for each complex obtained from
the molecular docking screening (also realized in triplicate). Clustering analysis was used
to choose 100 random structures from each system, concatenate them, and treat them as a
single system (300 structures) using GMXPBSA 2.1 scripts. The energy calculations suggest
that the complex with 3-dehydroquinate was stabilized by polar contributions (solvation
energy terms), whilst in the case of the four potential inhibitors, their complexes were
stabilized through apolar contributions (nonsolvation energy terms) (Table 2). These agree
with ligand structure; substrate (3-dehydroquinate) has three alcohols and a carboxyl group
that allow it to be an acceptor or donor of hydrogen bonds. On the other hand, compound 1
has only one hydroxyl and one carbonyl group, while compound 2 has no hydrogen
donor atoms and, as can be seen in Figure 3, has basically hydrophobic interactions with
SaDHQD. Compound 3 possesses a hydrogen bond donor and acceptor atom; however, its
binding was dominated by apolar contributions. Finally, compound 4 has three carbonyl
groups and a 1, 2, 4-triazole ring that might be acting as hydrogen bond acceptors, but
like in the other inhibitors, the hydrophobic interactions were the principal component
(Figure 3 and Table 2).

Table 2. Binding free energy from potential SaDHQD inhibitors.

Ligand Total
(kcal/mol)

Polar
Contribution

Apolar
Contribution

3-dehydroquinate 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Compound 1 86.88 ± 8.96 219.17 ± 7.68 −132.29 ± 4.61
Compound 2 68.67 ± 9.39 218.77 ± 8.51 −150.10 ± 4.04
Compound 3 29.08 ± 9.33 237.14 ± 8.41 −208.06 ± 4.09
Compound 4 4.80 ± 8.90 172.73 ± 7.85 −168.03 ± 4.15

Note: Compound binding energies were referenced with respect to substrate binding energies. Positive energy
values in compounds mean that the substrate has a higher value (more negative) than the respective compound.
On the other hand, a negative energy value means that compounds have a higher value than the substrate.

To gain more information about the interactions made between the compounds and
the protein through dynamic simulations, interaction energy was estimated for each residue
at the binding site. The same 300 frames used for the binding free energy were used to calcu-
late the interaction energy between the corresponding amino acid and compound (Figure 8,
Table S2). Additionally, interactions with more than 50% appearance along the simulation
time were considered for the analysis (Table 3). As can be observed, the interactions with
Arg70, Lys160, Met194, and Ala222 were the only ones shared among potential inhibitors
and the substrate crystallographic complex even with the 3-dehydroquinate complex simu-
lated, having additionally high percentages of appearance [19]. The above highlights the
importance of these residues as hot spots to interact with the enzyme. Furthermore, from
an energetic point of view, compound 4 shows the highest interaction energies at residue
level and the highest total interaction energy among the four potential inhibitors. It is
important to mention that the total interaction energy includes not only the residues shown
in Table 3, but also considers interactions with residues that have less than 50% appearance.
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Figure 8. Interaction energy (kcal/mol) between the substrate and each potential inhibitor with
residues at 5 Å in the binding site. The residue number and interaction energy values are shown in x
and y-axes, respectively. Each point indicates the mean ± SD.

Table 3. Protein/ligand interaction energy over structures used for MM/PBSA analysis.

3-dehydroquinate Compound 1 Compound 2 Compound 3 Compound 4

THR9 * −1.35 ± 2.96 (88.67) −3.97 ± 3.75 (65.33) −3.93 ± 3.77 (89.33) −2.28 ± 1.71 (73.67)

GLU35 * −89.04 ± 48.34 (88.67) 64.91 ± 47.03 (67.00) −52.03 ± 29.74 (88.33) −43.42 ± 27.92 (85.67)

ARG37 * −45.26 ± 21.24 (88.67) −12.50 ± 9.63 (67.00) −10.91 ± 8.45 (89.33) −22.15 ± 21.41 (72.67)

THR68 * 0.08 ± 1.48 (52.67) −4.34 ± 4.27 (63.00)

ARG70 * −19.21 ± 16.73 (71.67) −16.05 ± 9.22 (89.33) −7.47 ± 8.01 (74.33) −19.87 ± 6.70 (89.33) −37.71 ± 15.75 (86.00)

GLN74 −8.36 ± 8.11 (86.67) −4.28 ± 4.86 (59.00) −3.99 ± 5.35 (59.33)

GLY75 −4.38 ± 3.40 (83.67) −8.05 ± 5.10 (89.33) −8.45 ± 4.22 (85.67)

GLY76 −3.42 ± 2.00 (86.33) −2.98 ± 2.13 (67.33)

ASP102 * −6.03 ± 8.87 (57.00) 5.97 ± 4.50 (57.67)

SER131 * 1.93 ± 3.36 (78.33)

HIS133 * −8.65 ± 6.69 (97.33) −3.83 ± 3.84 (61.67) −31.24 ± 16.88 (86.00)

PHE135 −5.86 ± 6.24 (70.00) −1.90 ± 2.03 (62.33)

LYS160 * −65.90 ± 21.63 (88.67) −2.07 ± 3.98 (58.67) −17.53 ± 14.40 (68.67) 1.60 ± 5.04 (62.67) −35.25 ± 25.62 (86.00)

ALA162 * −1.81 ± 1.02 (67.00) −5.34 ± 4.63 (80.00) −2.42 ± 1.81 (58.33) −4.63 ± 1.99 (86.00)

MET164 −3.36 ± 2.73 (63.00)

ILE192 * −4.65 ± 1.96 (88.00) −4.46 ± 1.73 (83.00) −9.06 ± 2.36 (86.00)

SER193 2.73 ± 2.05 (59.33)

MET194 * −16.97 ± 10.48 (87.33) −9.89 ± 4.22 (98.67) −12.99 ± 13.97 (91.33) −19.99 ± 7.40 (89.33) −33.32 ± 7.31 (86.00)

ARG202 * −35.99 ± 29.86 (76.00)

TYR214 * −8.48 ± 5.76 (88.33) −6.06 ± 5.32 (91.67) −14.17 ± 7.95 (89.33) −10.07 ± 7.73 (86.00)

GLN221 * −19.07 ± 13.41 (73.67) −7.14 ± 8.21 (55.33)

ALA222 * −6.12 ± 4.98 (60.67) −3.28 ± 2.88 (61.33) −3.12 ± 2.48 (56.67) −12.81 ± 6.59 (86.67) −9.28 ± 2.89 (86.00)

PRO223 3.71 ± 3.00 (55.67) −4.76 ± 2.70 (83.33) −2.74 ± 2.81 (83.33)

GLN225 * −40.92 ± 27.09 (72.67) −8.89 ± 11.19 (72.67) −10.35 ± 7.63 (89.33) −22.02 ± 9.30 (86.00)

Total
interaction energy −345.01 ± 12.26 −90.67 ± 22.37 −181.24 ± 21.01 −202.39 ± 23.87 −284.03 ± 19.98

Note: Protein/ligand interaction energy was calculated from any atom of the ligand to any residue of the protein
within a 5 Å radius. Only interactions with more than 50% appearance are shown (number in parenthesis).
Residues identified in the crystallographic complex are highlighted (*).
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2.4. ADMETox Properties

Finally, an important point in the first steps of the drug design process is to predict the
drug-like characteristics of the potential inhibitors. In this context, the ADMETox properties
of each compound were analyzed through an in silico approach (Table S3). This analysis
was performed considering additional properties to those taken for initial filtering; these
included Pharmacokinetics, Druglikeness, and Medicinal Chemistry characteristics. In respect
to Pharmacokinetics, compounds 1 and 4 show low GI absorption, whilst in Druglikeness,
the best evaluated were compounds 3 and 4 with only one violation of Ghose rules. On
the other hand, predictions classified in Medicinal Chemistry are interesting because they
involve aspects such as Pan-assay interference compounds (PAINS) and Brenk alerts that
analyze the presence of undesirable substructures; synthetic accessibility, a characteristic that
becomes important if the molecules reach the lead optimization step; Blood Brain Barrier
penetration (BBB); and CYP450 inhibition, among others. From the fifteen characteristics
evaluated, none of the compounds received a positive score in all of them; however, the four
potential inhibitors approved the majority, highlighting PAINS alerts, synthetic accessibility,
BBB, and Pgp inhibition (Table 4). Therefore, considering all the predictions performed, in
general, the four compounds meet the commitments to be considered good candidates.

Table 4. The most relevant ADMETox predicted properties from the SaDHQD potential inhibitors.

Parameter Compound 1 Compound 2 Compound 3 Compound 4

Pharmacokinetics
GI absortion Low High High Low

Log Kp (Skin permeation) −7.36 cm/s −8.33 cm/s −8.27 cm/s −8.90 cm/s
Druglikeness

Ghose No; 2 violations:
WLOGP < −0.4, #atoms < 20

No; 3 violations:
WLOGP < −0.4, MR < 40,

#atoms < 20

No; 1 violation:
WLOGP < −0.4

No; 1 violation:
WLOGP < −0.4

Veber Yes Yes Yes Yes
Egan Yes Yes Yes Yes

Muegge No; 2 violations: MW < 200,
#C < 5

No; 2 violations: MW < 200,
#C < 5 Yes Yes

Bioavailability score 0.55 0.55 0.55 0.55
Medicinal chemistry

PAINS 0 alert 0 alert 0 alert 0 alert

Brenk 3 alerts: imine_1, oxime_1,
oxygen-nitrogen_single_bond 0 alert 0 alert 1 alert: beta_keto_anhydride

Leadlikeness No; 1 violation: MW < 250 No; 1 violation: MW < 250 No; 1 violation: MW < 250 No; 1 violation: MW < 250
Synthetic accesibility 3.60 2.42 2.78 2.61

BBB 0.31 0.08 0.05 0.05
In vitro Caco2 cell

permeability 3.94 0.73 1.28 6.54

In vitro CYP 2C19 inhibition Inhibitor Inhibitor Non Inhibitor
In vitro CYP 2C9 inhibition Non Non Non Non
In vitro CYP 2D6 inhibition Non Non Non Non
In vitro CYP 2D6 substrate Non Non Non Non
In vitro CYP 3A4 inhibition Non Non Non Inhibitor
In vitro CYP 3A4 substrate Weakly Non Substrate Non

HIA 40.23 70.25 70.86 27.24
MDCK 1.42 0.72 0.60 0.59

Pgp inhibition Non Non Non Non
Plasma Protein Binding 2.68 14.37 60.17 5.91

Note: All values were calculated with the SwissADME web tool and PreADMET server. Skin Permeability:
in vitro skin permeability-transdermal delivery (logKp, cm/h), Ghose, Veber, Egan, and Muegge (Filters that
determine the druglikeness of a compound: no violations are considered ideal). Bioavailability score: it predicts
the probability of a compound having at least 10% oral bioavailability in rats, Number of Brenk alerts and PAINS
alerts (number of alerts for undesirable substructures/substructures; a result with no alerts is ideal). Leadlikeness:
molecules are evaluated according to three parameters: ≤250 MW ≤350, XLOGP ≤3.5, and number of rotatable
bonds ≤7; there should be no violations; Synthetic accessibility: refers to the ease of chemical synthesis from
1 (very easy) to 10 (very difficult). BBB: in vivo blood-brain barrier penetration (C.brain/C.blood); Caco2: in vitro
Caco−2 cell permeability (nm/s); values > 500 nm s−1 indicate a good permeability, and values < 25 nm s−1

indicate a low permeability; CYP 2C19 inhibition: in vitro Cytochrome P450 2C19 inhibition; CYP 2C9 inhibition:
in vitro Cytochrome P450 2C9 inhibition; CYP 2D6 inhibition: in vitro Cytochrome P450 2D6 inhibition; CYP 2D6
substrate: in vitro Cytochrome P450 2D6 substrate; CYP 3A4 inhibition: in vitro Cytochrome P450 3A4 inhibition;
CYP 3A4 substrate: in vitro Cytochrome P450 3A4 substrate; HIA: Human intestinal absorption (HIA, %); a
high intestinal abortion percentage is desirable, as indicated by values closest to 100%; MDCK: in vitro MDCK
(Mandin Darby Canine Kidney) cell permeability (nm/s), values > 500 nm s−1 indicate a good permeability, and
values < 25 nm s−1 indicate a low permeability; Pgp inhibition: in vitro P-glycoprotein inhibition; Plasma Protein
Binding: in vitro plasma protein binding (%); a value of >90% is desirable.
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3. Materials and Methods
3.1. Compound Selection and Filtering

Compound selection was performed from the TRANCHES 3D collection in the ZINC15
database (https://zinc15.docking.org/ accessed on 30 September 2020) [44], which con-
sisted of over 997 million compounds by the time the database was consulted. From
this library, compounds with a molecular weight up to 250 Da and a Log p value of −1,
considering 3-dehydroquinate properties (MW = 198 Da and Log p = −1.7), as well as
structures without reactive groups (highest reactivity clean), were selected; this process
resulted in a database of 123,000 compounds. Thereafter, additional filtering criteria,
including physicochemical characteristics in accordance with the Lipinski rule of five,
compounds with predicted toxicological parameters (mutagenicity, reproductive, tumori-
genic, and irritant effects) were eliminated, structural aspects (such as the number of
rotatable bonds <5, number of aromatic rings <4, a polar surface area >75 and <140),
and an adequate “druglike” value (−2 to 5) that indicates the potential that a certain
compound had in order to become a drug, were applied using Data Warrior V.5.2.1 soft-
ware (http://www.openmolecules.org/datawarrior/) [45]. Finally, 6700 compounds were
selected for the virtual screening process.

3.2. Exhaustive Virtual Screening

To perform the virtual screening, the SaDHQD crystal structure (PDBID: 1SFJ, chain A)
was used as a receptor [19]. The structure was prepared by removing the crystallographic
ligand 3-dehydroquinate, and energy was minimized with 100 steps using the steepest de-
scent method and 10 steps using conjugate gradient as implemented in Chimera UCSF [46].
Compounds were processed with Openbabel 3.1.1 [47] to convert the SDF library to individ-
ual pdb files, and then each pdb file was converted to a pdbqt file using prepare_ligand4.py
as distributed on MGLTools 1.5.7 [48]. Molecular docking was performed using Autodock
Vina [49]. The crystallographic ligand was used as the center of the grid box (104.40, −17.89,
−107.70) with a size of 15 × 15 × 15 Å3. To validate docking results, a crystallographic
ligand was redocked, obtaining an RMSD value of 2.35 ± 0.00 Å. To consider a correct
molecular docking study, the RMSD between the crystallographic and the redocked ligand
must be lower than 2 Å. Our study had a higher RMSD value, but it is important to point out
that we are not doing covalent docking, which is the case for 3-dehydroquinate. Nonethe-
less, the number and type of interactions found on the crystal and the redocked ligand
remain at 82%. Only three interactions were missing on the redocked 3-dehydroquinate
(Thr68, Asp102, and Ser131). Three independent docking experiments were made on each
ligand (6700 × 3), and all outputs were clustered by binding score. Ligands with a binding
score lower than the average minus two standard deviations (4% of the normal distribution)
were selected for molecular dynamics simulations (Figure 1).

3.3. Exhaustive Molecular Dynamics Simulations

Complexes generated on Autodock Vina for each compound and the crystallographic
ligand 3-dehydroquinate were used to perform molecular dynamics simulations using
GROMACS 2019 [50,51]. To this end, ligand parameters were obtained from the Auto-
mated Topology Builder and Repository (ATB) [52]. Each system was immersed in an
orthorhombic cell with SPC water molecules and 0.15 M NaCl to neutralize. Every sys-
tem was energy minimized with 1000 steepest descent steps, followed by 50,000 steps of
molecular dynamics on the NVT and NPT ensembles to equilibrate the system. Finally,
100 ns molecular dynamics simulations were performed using a 2 fs timestep, periodic
boundary conditions (PBC), Particle Mesh Ewald (PME) for electrostatics, velocity rescale
temperature coupling, and Parrinello–Rahman (NPT ensemble) for pressure coupling.
Molecular dynamics simulations were carried out in triplicate for a total of 15 systems
(1.5 µs total simulation time). The last 20 ns of every system (2000 frames) were used for
clustering structures using α-carbons with the gromacs gmx cluster utility. Clustering was

https://zinc15.docking.org/
http://www.openmolecules.org/datawarrior/
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made using a cutoff of 1.25 Å with the GROMOS method [53], which allowed that at least
50% of the structures were clustered on the first cluster.

3.4. Binding Free Energy

Additionally, binding free interaction energies of 300 random structures (100 structures of
each replica) of the most populated cluster (for every replica) were calculated using the Molec-
ular Mechanics/Poisson-Boltzmann Accessible Area (MM-PBSA) approximation [36,37,54].
MM-PBSA binding-free energies were calculated using GMXPBSA 2.1 scripts [55]. Binding
free energy was obtained from the equation:

∆Gbinding = Gcomplex −
(
Gprotein in complex + Gligand in complex

)
Each free energy value was calculated as follows:

< G > = EMM + GSOLV − T< SMM >

Entropy was not calculated; therefore, binding free energies reported are the enthalpic
contribution to the total binding free energy.

3.5. ADMETox Properties

ADMETox properties prediction (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) of the selected compounds was carried out using the SwissADME [56] and
PREADMET online servers [57] (Bioinformatics and Molecular Design Research Center;
2004). Different parameters, including gastrointestinal absorption, permeability of the
blood-brain barrier, potential substrate or inhibitor of G-glycoprotein, inhibitor of the
cytochrome family, and artificial synthesis accessibility, were estimated.

4. Conclusions

In the present work, a computer-aided drug design strategy was applied to report po-
tential noncovalent SaDHQD inhibitors. After an exhaustive virtual screening protocol, four
compounds were selected and characterized (ZINC000005753647 (1), ZINC000001720488
(2), ZINC000082049768 (3), and ZINC000644149506 (4)). Clustering molecular dynamics
show that these molecules were able, potentially, to interact with residues important for
substrate binding and catalysis when compared to the crystallographic ligand. The inter-
action energy calculation for each residue in the binding site helped to detect hotspots for
potential enzyme inhibition. Finally, the ADMETox properties prediction suggests that these
compounds can be considered good candidates. Therefore, the four compounds reported
here are excellent options to be considered for future in vitro studies to design new SaDHQD
noncovalent inhibitors and contribute to the search for new drugs against MRSA.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16081148/s1, Table S1: Molecular docking scores from the three
independent runs: Excell_datasheet; Table S2: Interaction energy (kcal/mol) between ligands and
those residues at 5 Å. Table S3: ADMETox predicted properties from the SaDHQD potential inhibitors.
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