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Abstract: PROTAC is a rapidly developing engineering technology for targeted protein degradation
using the ubiquitin–proteasome system, which has promising applications for inflammatory diseases,
neurodegenerative diseases, and malignant tumors. This paper gives a brief overview of the devel-
opment and design principles of PROTAC, with a special focus on PROTAC-based explorations in
recent years aimed at achieving controlled protein degradation and improving the bioavailability of
PROTAC, as well as TPD technologies that use other pathways such as autophagy and lysosomes to
achieve targeted protein degradation.

Keywords: PROTAC; TPD; targeted protein degradation; protein-hydrolysis-targeted chimeras;
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1. Introduction

From salicylic acid derived from willow to imatinib, the first targeted small-molecule
drug against BCR-ABL, the development of small-molecule inhibitors has undergone a
brilliant history from empirical science to rational design. However, their occupancy-driven
mechanism dictates that small-molecule inhibitors have difficulty effectively inhibiting the
activity of pathogenic proteins with wide and shallow pockets or smooth surfaces and are
prone to drug resistance. In addition to the recent boom in biological therapies, targeted
protein degradation (TPD) has also gained much attention from researchers, offering new
opportunities to target proteins that are traditionally defined as “non-druggable”.

In this area, the protein-hydrolysis-targeting chimera (PROTAC) has received the most
attention and has been the most extensively studied and advanced clinically. PROTAC
consists of a warhead that binds to the protein of interest (POI), an E3 ubiquitin ligase ligand
that recruits E3 ubiquitin ligase, and a linker. After forming a POI–PROTAC–E3 ubiquitin
ligase ternary complex, PROTAC induces the ubiquitination of the POI and its subsequent
degradation by the 26S proteasome. This event-driven mechanism of action makes it
completely different from traditional small-molecule inhibitors.

This paper gives a brief overview of the development and common design principles
of PROTAC, with a focus on summarizing new explorations based on PROTAC, and TPD
strategies benefiting patients via other pathways.

2. The Development of PROTAC
2.1. PROTAC Theoretical Basis

PROTAC degrades target proteins via the ubiquitin–proteasome system (UPS) (Figure 1).
UPS is involved in the regulation of numerous biological processes in eukaryotic cells, and
the ubiquitination of proteins is one of the most important determinants of cell fate and
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function. A misfunctioning UPS may lead to the development of congenital defects and many
major diseases.

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 2 of 18 
 

 

2. The Development of PROTAC 
2.1. PROTAC Theoretical Basis 

PROTAC degrades target proteins via the ubiquitin–proteasome system (UPS) (Fig-
ure 1). UPS is involved in the regulation of numerous biological processes in eukaryotic 
cells, and the ubiquitination of proteins is one of the most important determinants of cell 
fate and function. A misfunctioning UPS may lead to the development of congenital de-
fects and many major diseases. 

 
Figure 1. Mechanism of ubiquitination. E1 enzymes use ATP to generate a high-energy thioester 
between ubiquitin and the enzyme. Charged E1 enzymes transfer ubiquitin to E2 enzymes, which 
then cooperate with E3 ubiquitin ligases to produce a ubiquitylated substrate. E3 ubiquitin ligases 
can transfer ubiquitin directly from E2 enzymes or undergo charging of their reactive Cys from 
which ubiquitin is transferred to the substrate. The ubiquitylated substrate is then degraded by pro-
teasome. This degradation event could also be terminated by DUBs cleaving ubiquitin off the sub-
strate protein. Ub, ubiquitin; E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; 
E3, ubiquitin ligase; DUB, deubiquitinating enzyme. 

Ubiquitin (Ub) is a 76-amino acid protein with a highly conserved sequence, which 
can be specifically expressed by different ubiquitin-encoding genes under different phys-
iological conditions. Ubiquitination involves three main steps named activation, conjuga-
tion, and ligation, performed by ubiquitin-activating enzymes (E1s), ubiquitin-conjugat-
ing enzymes (E2s), and ubiquitin ligases (E3s), respectively. Proteins can be mono- or 
polyubiquitinated, and the formation of ubiquitin chains of different lengths and topolo-
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direct target of thalidomide dramatically drove the rise of the concept of molecular glue 
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Figure 1. Mechanism of ubiquitination. E1 enzymes use ATP to generate a high-energy thioester
between ubiquitin and the enzyme. Charged E1 enzymes transfer ubiquitin to E2 enzymes, which
then cooperate with E3 ubiquitin ligases to produce a ubiquitylated substrate. E3 ubiquitin ligases
can transfer ubiquitin directly from E2 enzymes or undergo charging of their reactive Cys from which
ubiquitin is transferred to the substrate. The ubiquitylated substrate is then degraded by proteasome.
This degradation event could also be terminated by DUBs cleaving ubiquitin off the substrate protein.
Ub, ubiquitin; E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; E3, ubiquitin
ligase; DUB, deubiquitinating enzyme.

Ubiquitin (Ub) is a 76-amino acid protein with a highly conserved sequence, which can
be specifically expressed by different ubiquitin-encoding genes under different physiologi-
cal conditions. Ubiquitination involves three main steps named activation, conjugation, and
ligation, performed by ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes
(E2s), and ubiquitin ligases (E3s), respectively. Proteins can be mono- or polyubiquitinated,
and the formation of ubiquitin chains of different lengths and topologies often confers
different fates on proteins, where a specific length of K48 ubiquitination modification will
induce protein degradation via the 26S proteasome [1–3].

PROTAC accelerates the degradation of the intrinsic substrate by forming a ternary
complex or degrades proteins that are not otherwise degraded by the proteasome in
their physiological state. Unlike traditional small-molecule inhibitors, this mechanism of
action allows PROTAC to act without occupying the active site of the protein, which is
particularly suitable for targeting pathogenic proteins with multiple active sites, shallow
binding pockets, or smooth surfaces lacking binding pockets [4] Theoretically, due to the
direct reduction in POI levels, PROTAC is less likely to cause mutational resistance and
even degrade wild-type/mutant POIs simultaneously.

In recent years, the concept of molecular glue has often been mentioned in conjunc-
tion with PROTAC, but differences in the mechanisms of action make it impossible to
generalize between these molecules (Figure 2). Cyclosporine A was first isolated from soil
samples by scientists at Sandoz Pharmaceuticals in 1969, but it was not until 1991 that the
Schreiber laboratory at Harvard University first described the mechanism of cyclosporine
A and FK506 as a natural molecular glue [5]. Two decades later, the identification of the
direct target of thalidomide dramatically drove the rise of the concept of molecular glue
degradation agent [6]. In the past, thalidomide was thought to be a drug with multiple
targets and benefited patients with certain diseases or caused fetal malformations by inter-
acting directly with different proteins. Thalidomide binds to cereblon (CRBN), which is a
substrate recognition receptor for Cullin 4 RING (CRL4) E3 ubiquitin ligase and induces
the recruitment of nonintrinsic substrate to CRL4CRBN and their subsequent degradation.
Thalidomide and its derivatives, now known as immunomodulatory imide drugs (IMiDs),
have also become well-established ligands for the recruitment of CRL4CRBN E3 ubiquitin
ligases commonly used in PROTAC.
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Figure 2. Differences in the mechanism of action between PROTAC and molecular glue.
(A) PROTACs are composed of a target-binding warhead (green), a linker (black), and a ligase-
binding moiety (yellow), the discovery of which usually undergoes a rational design. (B) The
discovery of degrader molecular glues is usually serendipitous, whereby a known molecule is shown
to have a degrader effect, making it possible to identify the E3 ligase mediating the degradation and
determine whether the mechanism could be expanded to target additional POIs. E3, ubiquitin ligase;
POI, protein of interest.

2.2. PROTACs Bridge the Gap between Preclinical Research and Clinical Application

In 2001, the concept of PROTAC was first introduced in the Crews lab at Yale Uni-
versity [7]. The first PROTAC, Protac-1, was designed and synthesized to achieve the
degradation of methionine aminopeptidase-2 (MetAP-2), which is neither a native sub-
strate of SCFβ-TRCP E3 ubiquitin ligase nor being degraded via the proteasome pathway
under physiological condition. It consists of a POI-binding warhead, the antiangiogenic
drug Ovalicin, a linker, and an IκBα phosphorylated peptide that recruits the SCFβ-TRCP
E3 ubiquitin ligase. This type of peptide-containing PROTAC is now called bioPROTAC,
and its application is limited mainly due to the peptide’s susceptibility to hydrolysis.

VHL is another E3 ubiquitin ligase commonly used in PROTAC, and HIF-1α is its
main substrate in the physiological state. In 2012, Ciulli A and Crews CM designed and
synthesized a small-molecule analog of the HIF-1α recognition peptide [8], which makes
the PROTAC based wholly on small molecule structures a reality and opens the door for
PROTAC to become an orally bioavailable and thus easy-to-use drug candidate.

Since 2013, pharmaceutical giants such as Merck, Novartis, and Pfizer have laid out
their PROTAC pipeline, and companies such as Arvinas and C4 Therapeutics have also
been established and focused on PROTAC development. Finally, Arvinas, with ARV-110
for metastatic castration-resistant prostate cancer [9] and ARV-471 for ER+/HER2− breast
cancer [10], first provided a clinical proof-of-concept for PROTAC in mature tumor targets,
demonstrating the ability to degrade target proteins in vivo and providing clinical benefit
to patients [4]. In terms of safety, ARV-110 is the first to be tested in a mature tumor target.
In terms of safety, ARV-110 and ARV-471 have not been observed to have dose-limiting
toxicity in dose-creep clinical trials up to 420 mg/700 mg, respectively. Encouraged by the
encouraging result in the Phase I clinical trial, both agents have advanced to Phase II and
are being explored for a comedication regimen with other anticancer therapies (Table 1).

Table 1. Other PROTACs that have entered clinical trials.

Company Degrader Target States

Nurix Therapeutics (San Francisco, CA, USA) NX-2127 [11] BTK Phase I (halted)
Nurix Therapeutics NX-5948 [12] BTK Phase I (ongoing)

Kymera (Watertown, MA, USA) KT-413 [13] IKAR4 Phase I (ongoing)
Kymera KT-333 [14] STAT3 Phase I (ongoing)

C4 Therapeutics (Watertown, MA, USA) CFT-8634 BRD9 Phase I/II, orphan drug designation
C4 Therapeutics CFT-8919 EGFR-L858R Phase I/II

Dialectic Therapeutics (Dallas, TX, USA) DT-2216 BCL-XL Phase I, first track design
Foghorn Therapeutics (Cambridge, MA, USA) FHD-609 BRD9 Phase I
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2.3. A Brief Glimpse of Published PCT Patent Application of PROTACs

Although only a limited number of PROTACs have successfully entered clinical trials,
a large number of PROTACs targeting different POIs have been patented, as described in
an excellent review [15]. Here, we briefly summarized them into four categories: PROTACs
targeting nuclear receptors, kinases, epigenetic mechanisms, and misfolded proteins, each
of which is exemplified by a patented PROTAC molecule (Figure 3).
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Figure 3. A brief summarization of published PCT patents of PROTACs. (A) PROTACs targeting
nuclear receptors, exemplified by an AR-targeting PROTAC (patent number: WO2016118666A1).
(B) PROTACs targeting kinases, exemplified by a BTK-targeting PROTAC (patent number:
WO2019177902A1). (C) PROTACs targeting epigenetic mechanisms, exemplified by a BET-targeting
PROTAC (patent number: WO2018064589A1). (D) PROTACs targeting misfolded proteins, exempli-
fied by a Tau-targeting PROTAC (patent number: WO2019014429A1).

2.4. PROTAC Targets for Cancer Therapy
2.4.1. PROTAC Targeting AR/ER

Hormonal therapies that block androgen generation or directly inhibit the androgen
receptor are major therapies for patients with advanced prostate cancer [16,17]. The afore-
mentioned ARV-110, also known as bavdegalutamide, induced potent AR degradation in
prostate cancer cell lines with a DC50 of ~1 nM and reduced prostate-specific antigen (PSA)
levels greater than or equal to 50% (PSA50) in 46% of metastatic castration-resistant prostate
cancer (mCRPC) patients with tumors harboring AR T878X and/or H875Y (X = A or S)
mutations in its Phase I/II clinical trial [9,18]. The ability to degrade not only wild-type AR
but also mutants indicates its potential application as a second-line therapy for patients
with primary/acquired resistance to hormonal therapy, especially to AR-targeting agents.

Breast cancer is the second leading cause of death for women worldwide. Estrogen-
receptor-positive (ER+) patients account for nearly 80% of breast cancers; therefore, en-
docrine therapies blocking the estrogen–ER axis have remained the standard treatment for
these patients for several decades [19,20]. Similar to ARV-110, ARV-471 can degrade both
wild-type ER and mutants such as Y547S and D538G, addressing the deficiencies of tradi-
tional ER antagonists [10]. Arvinas also evaluated the possibility of ARV-471 combining
with the CDK4/6 inhibitor palbociclib. This combination yielded a 131% tumor shrinkage
in the preclinical CDX model, supporting the ARV-471–palbociclib combination cohort as a
part of the Phase I/II clinical trial in patients with advanced-stage ER+HER− breast cancer.
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2.4.2. PROTAC Targeting BTK

Bruton’s tyrosine kinase (BTK) is an essential component of multiple signaling path-
ways that regulate B cell and myeloid cell proliferation, survival, and functions [21]. CRBN-
based protein degraders that target BTK have been developed for patients with B-cell
malignancies. Both NX-2127 and NX-5948 are capable of degrading wild-type and mutant
BTK, while NX5948 does not affect IkZF1/3, thus precluding immunomodulatory effects
associated with IMiD CRBN-targeting moieties [11,12,22,23].

2.4.3. Other Targets Involved in Carcinogenesis

CFT-8634 is a BiDACTM degrader targeting BRD9 for the treatment of BRD9-dependent
cancers, including synovial sarcoma and SMARCB1-deleted cancers. Bromodomain-
containing protein 9(BRD9), a component of the noncanonical BAF complex responsi-
ble for chromatin remodeling, has been recognized as an appealing therapeutic target in
hematological malignancies [24–26].

The epidermal growth factor receptor (EGFR) regulates cell proliferation and multiple
signal pathways. The alteration of EGFR signaling is associated with tumor growth,
angiogenesis, invasion, and metastasis [27]. Tyrosine kinase inhibitors (TKIs) targeting
EGFR have been applied in cancer treatment and have shown considerable efficacy in
patients with non-small cell lung cancer, breast cancer, glioma, etc. However, plenty of
patients suffer from intrinsic and acquired resistance mediated by EGFR, making PROTAC
a promising approach because of its capability to degrade wild-type and multiple mutants
simultaneously [28,29].

Moreover, other essential proteins involved in tumor initiation, proliferation, metas-
tasis, and apoptosis could be potential targets for PROTAC degradation, especially those
with multiple mutants or difficult to target with small-molecule inhibitors.

3. PROTAC Design Strategy
3.1. POI and Warhead

The first PROTACs to enter the clinical phase targeted classical, clinically proven
targets, answering the questions of in vivo safety and efficacy and establishing PROTAC as
an effective treatment for solid tumors. However, the real exciting prospect of PROTAC
is to rewrite the history of some of the “hard to target” or “non-druggable” proteins,
providing a targeting strategy that is completely different from that of traditional small-
molecule inhibitors.

Unfortunately, no investigator has yet summarized a “gold standard” for PROTAC tar-
gets similar to the rule of five proposed by Linpinski. The ideal PROTAC target is generally
considered to (1) undergo pathogenic gain-of-function alterations, such as overexpression,
mutation, and altered location; (2) have a pocket where a warhead can bind; (3) have a
surface site that can be ubiquitinated by E3 ubiquitin ligase; (4) preferably have a nonrigid
structural region that can enter the barrel cavity of the proteasome [4,30].

PROTACs currently under investigation tend to use targeted medicines that have
already been used in the clinical treatment or well-studied inhibitors that have entered clini-
cal trials as a warhead. These molecules are usually supported by extensive in vitro/in vivo
experiments, which can reduce the risk of the warhead not being able to bind effectively to
the POI.

It is worth mentioning that a high affinity or covalent binding between the POI and the
warhead is not required for a PROTAC. A study based on the multikinase inhibitor foretinib
suggested that PROTAC with foretinib as the warhead only degraded a small fraction of
the kinases present bound to foretinib, and the final efficiency of kinase degradation was
independent of the affinity between foretinib and the target protein, instead of depending
on the efficiency of the formation of POI–PROTAC–E3 ubiquitin ligase ternary [31]. In
addition, the high affinity or covalent binding between the POI and the warhead may
make it difficult to free PROTAC from the ternary complex to achieve long-lasting protein
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degradation, and it tends to act through an occupancy-driven rather than an event-driven
mechanism, losing the significance of the PROTAC application.

3.2. Linker

The primary issue to consider in linker design is the selection of suitable sites in
the warhead and the E3 ubiquitin ligase ligand. The ideal linker site allows the linker to
approach from the ligand-binding pocket or solvent-exposed region, trying to avoid any
effect on the binding between the small molecule and its target protein. Considering the
accessibility and yield of the reaction, researchers usually look for linker sites from the
active atoms of the ligand, such as carboxyl and amino groups [32]. For some larger ligands,
the linker can be attached while removing some irrelevant groups without affecting POI tar-
geting or E3 ubiquitin ligase recruitment [33]. For small molecules with multiple potential
linker sites, it is important to consider whether some of the groups in the solvent-exposed
region are also required for binding between the small molecule and the protein [34,35],
which often requires experimental verification.

No universally accepted principle of linker design ensures the degradation of target
proteins. Finding a suitable linker can require a lot of experiments and may be influenced
by the established method in different laboratories. PEG and alkyl chains are the most
common linker motifs, as researchers can easily synthesize these chains of different lengths to
compare their degradation efficiency on the target protein. Click chemistry is often used for
the synthesis of PROTAC molecules due to its high efficiency, rapidity, and mild conditions,
so triazole structures are also a common choice of linkers [32]. Some researchers have also
focused on the development of linkers. Li H and his coworkers designed and synthesized a
dual-targeted PROTAC using the natural star-shaped structure of amino acids to achieve the
simultaneous targeting of EGFR and PARP, which is a novel attempt [36] (Figure 4).
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The difficulty of linker design is that it is impossible to precisely predict in advance
the linker length or specific conformation required to achieve the ubiquitination of the POI
by the recruited E3 ubiquitin ligase. A linker that is too short tends to form a POI–linker
or E3 ubiquitin ligase–linker binary complex rather than a POI–linker–E3 ubiquitin ligase
ternary complex. On the other hand, too-long linkers also reduce the stability of the formed
ternary complexes and affect the ability of PROTAC to penetrate cell membranes.

3.3. E3 Ubiquitin Ligase

There are more than 600 E3 ubiquitin ligases in the human body. However, among
more than a dozen PROTACs currently entering clinical trials, except DT2216, a BCL-xL
degrader that circumvents platelet toxicity by recruiting VHL-targeted [37], all PROTACs
achieve targeted degradation of the POI by recruiting CRBN.

Finding a suitable E3 ubiquitin ligase ligand has become a major difficulty limiting the
application of E3 ubiquitin ligases in PROTAC. Before IMiDs were widely used for CRBN
recruitment, investigators had developed PROTACs that recruited mouse double minute
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2 homolog (MDM2) and cellular inhibitor of apoptosis protein 1 (cIAP1) E3 ubiquitin
ligases [32]. MDM2 acts as an E3 ubiquitin ligase to mediate the degradation of p53 via
the proteasome pathway [38], and its ligand nutlin-3a and idasanutlin have been used
in PROTACs to recruit MDM2 to degrade AR and BRD4, respectively [39,40]. However,
these PROTACs have not been further advanced due to a low degradation efficiency, large
molecule weight, and difficulties in synthesis. cIAP1 is a highly conserved endogenous anti-
apoptotic factor that is overexpressed in a variety of cancers. Naito M found that the methyl
bestatin compound (MeBS) could activate the E3 ubiquitin ligase activity of cIAP1 [41] and
achieve the degradation of cIAP1 through self-ubiquitination. Off-target cIAP1 autoubiqui-
tination degradation was present in a PROTAC developed based on MeBS [42]. Multiple
PROTACs have been designed and developed for different targets [43,44]; however, even
with the development of new cIAP1 ligands, this self-ubiquitination has always failed
to be avoided, which largely limited the application of cIAP1 as an E3 ubiquitin ligase
in PROTACs.

In addition, researchers have paid attention to E3 ubiquitin ligases that are highly
expressed in tumors, hoping that the tissue specificity of these E3 ligases will enhance
the antitumor activity of PROTACs while reducing toxicity to other tissues. At the same
time, the high expression of E3 ubiquitin ligases in such tumors often suggests that the
tumor chose to depend on this E3 ubiquitin ligase during its evolution, which to some
extent reduces the possibility of tumor cells acquiring drug resistance through E3 ubiquitin
ligase deletion mutations or expression downregulation, while a similar resistance has been
seen in PROTACs recruiting CRBN and VHL [4]. However, it has also been noted that
such E3 ubiquitin ligases tend to be associated with the cell cycle and that the immune
and hematopoietic systems, which are also dependent on rapid cell division, may also be
affected [4,45]. The therapeutic window and hematopoietic toxicity need special attention
during the development process of this kind of PROTAC.

4. New Explorations Based on PROTACs
4.1. PhotoPROTAC

Controlling the production or release of active small molecules by light has become a
relatively mature idea for precision therapy, such as photodynamic therapy (PDT), which
treats specific skin diseases and malignancies by activating a photosensitizer that is toxic at
the lesion site with specific wavelengths of light [46]. Similarly, researchers hope to reduce
drug toxicity by activating PROTACs at specific sites to make them capable of degrading
target proteins while the PROTAC remain inactive in other tissues to achieve “systemic
drug delivery and precise degradation”.

The photoswitchable PROTAC achieves a reversible control of protein degradation by
introducing light-sensitive conformationally altered groups (e.g., azobenzene) in the linker
or E3 ubiquitin ligase ligand (Figure 5). For example, Crews CM and Carreira EM changed
the PEG Linker of ARV-771 to an azobenzene linker. Under a 415 nm light irradiation,
azobenzene was in the trans conformation, the distance between the two amide bonds at
both ends of the linker was 11 Å, which was consistent with the original ARV-771 linker,
and the molecular was activated to have the ability to induce POI degradation; while at
the 530 nm irradiation, azobenzene was in the cis conformation, and the distance between
the two amide bonds was shortened to 8 Å. Thus, the POI could not be ubiquitinated
normally and the PROTAC was inactivated [47]. This approach has also been applied in
the development of bifunctional molecules targeting FKBP12, bromodomains, and multiple
kinases. The tissue penetration of activating lighting seems to be one of the main constraints
of the clinical application of photoswitchable PROTACs; however, recent development in
implantable localized irradiation and optofluidic drug delivery system will certainly help
in expanding these PROTACs’ applicability as a promising photomedicine [48].
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groups to achieve a reversible control of degradation. (A) Schematic diagram of photoswitchable PRO-
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Ub, ubiquitin; E2, ubiquitin-conjugating enzyme; E3, ubiquitin ligase; POI, protein of interest.

Another idea of PhotoPROTAC is to introduce a light-unstable caging group, such as
6-nitroveratryloxycarbonyl (NVOC), to one end of the E3 ubiquitin ligase ligand (Figure 6).
Photocaged PROTAC is inactivated in the absence of light and cannot recruit E3 ubiquitin
ligase properly; after light activation, the NVOC group is removed, and the PROTAC can
form the ternary complex normally to achieve a targeted degradation of the POI [49].
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of protein degradation. (A) Schematic diagram of photocaged PROTAC. (B) The NVOC group of
opto-dALK is removed under a certain wavelength of UV radiation and therefore, the PROTAC
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4.2. CLIPTAC

PROTAC contains two covalently linked ligands, which are usually large in molecular
weight and have a relatively poor solubility, drug metabolic properties, and bioavailability.
Click chemistry, pioneered by the Sharpless lab, has been used to describe a series of
chemical reactions with the properties of mild reaction conditions, high product yields,
and high selectivity. It is now the theoretical basis for covalent modifications and self-
assembly under physiological conditions [50,51]. Heightman TD proposed the concept of
CLIPTAC in 2016 [52], in which a PROTAC was divided into two precursor drugs, POI–half-
linker and half-linker–E3 ubiquitin ligase ligand, which were administered separately and
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then self-assembled intracellularly to form a complete PROTAC structure and induce POI
degradation (Figure 7). Although this method faces the problem of intracellular reaction
efficiency, it is still an interesting attempt to improve the bioavailability of PROTACs.
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4.3. Oligonucleotide-Based PROTAC

The abnormal expression or mutation of transcription factors (TFs) and RNA-binding
proteins (RBPs) are important triggers of many major diseases. Protein–protein interaction
(PPI) is important for TFs and RBPs to function [53,54]. Different from enzyme–substrate
or ligand–receptor interaction, PPI-associated proteins have shallower binding pockets and
often multiple active sites for nucleotides or proteins to bind [55]. This makes these proteins
difficult to target by traditional small-molecule inhibitors and is often considered “non-
druggable”. Such characteristics make TFs and RBPs suitable for PROTAC development.

The development of the bromodomain-containing protein 4 (BRD4) PROTAC is a
classic work to target TF [56]. BRD4 is a member of the bromodomain and extra terminal
(BET) family, which consists of epigenetic regulatory proteins and transcriptional regulators
with important roles in transcriptional initiation, elongation, regulation, and even DNA
damage repair [57]. It has been shown that inhibition of BRD4 using JQ1 can reduce
intracellular MYC levels, further leading to a reduced expression of MYC downstream
target genes, making the inhibition of transcription-factor auxiliary proteins one of the
strategies to inhibit transcription factors [58]. What is particularly exciting is the fact
that PROTACs targeting BRD4 can effectively overcome the weakness of small-molecule
inhibitors that cannot completely inhibit the activity of BRD4 and further reduce MYC
levels [59].

Researchers have also made attempts to design universal TF-PROTACs that directly
target transcription factors. Jin J and Wei WY designed DNA oligomer-based PROTACs
that directly use NF-κB recognition sequences as POI-targeting warheads, which are linked
to VHL ligands via a triazole linker to achieve the targeted degradation of NF-κB [60].

Similarly, Hall J designed an RNA-PROTAC based on RNA oligomers and achieved
the intracellular degradation of the RNA-binding protein LIN28 by the 26S proteasome,
whose warhead is also an intrinsic recognition sequence for LIN28 [61].

Like other oligonucleotide drugs, TF-PROTACs and RNA-PROTACs face dilemmas
such as poor pharmacokinetic properties, off-target toxicity, and immature delivery sys-
tems [62]. Compared to the TF-PROTAC, the clinical application of the RNA-PROTAC
faces even more difficulties, attributed to the high structural variability and changing
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conformations of RBPs in order to recognize different RNAs [63]. Oligonucleotide-based
PROTACs still have a lot of hurdles to conquer to become clinically applicable medicine.

5. Alternative Pathways for TPD

The success of PROTACs has led to the investigation of other bifunctional molecules
that degrade target proteins by non-UPS pathways, which usually target intracytoplasmic
proteins due to the mechanism of action of UPS, while targeting protein degradation by
other pathways may broaden the target to membrane proteins, extracellular proteins, and
even nonprotein organelles. This also makes these non-UPS-dependent TPDs potentially
superior options in certain diseases where the therapeutic target is a noncytosolic protein
or nonprotein organelles.

5.1. Autophagy–Lysosome Pathway

Autophagy is a highly conserved cellular degradation mechanism in eukaryotes and
is mainly classified into macroautophagy, microautophagy, and chaperone-mediated au-
tophagy (CMA). The main function of autophagy is to degrade intracellular substances
to provide nutrients and raw materials for critical cellular life activities in stressful condi-
tions such as nutrient deprivation and growth factor deficiency, and thus has long been
considered a nonselective process, whereas recent studies have found that autophagy can
selectively remove potentially harmful intracellular substances, such as misfolded proteins
or damaged mitochondria, suggesting its function as a cytoprotective system [64].

Macroautophagy is mediated by the autophagosome. The process of canonical
macroautophagy can be divided into different stages, including initiation, nucleation, elon-
gation, maturation, and infusion. Normally, the autophagy reaction is mainly regulated by
rapamycin complex 1 (mTORC1) and 5′ AMP-activating kinase (AMPK) and requires the
cascaded cooperation of various proteins, such as unc-51-like autophagy-activating kinase
1 (ULK1), a key protein kinase initiating autophagy, microtubule-associated protein 1 light
chain 3 (LC3s) involved in autophagosome formation, and p62 that function as a selective
autophagy receptor [64,65].

Recently, researchers have developed techniques that achieve targeted protein degra-
dation via the autophagy process, three of which are reviewed here (Figure 8).
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Figure 8. TPD strategy with the help of autophagy. During autophagy, a panel of autophagy-related
gene products orchestrates the formation of an autophagosome, which encapsulates cellular cargo
and fuses with lysosomes, resulting in the degradation of its contents. ATTEC mediates target cargo
degradation by directly linking the cargo to LC3, an important marker protein on the phagosome
surface. AUTOTAC takes advantage of p62, which mediates the transfer of ubiquitylated substrates
into autophagic vesicles to degrade target cargo via the autophagy pathway. AUTAC attaches a
cGMP-based autophagic degradation tag to the target cargo, leading to the degradation of certain
POIs or organelles. Ub, ubiquitin; G, cGMP.
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5.1.1. ATTEC

Lu BX of Fudan University proposed that linking POI with LC3, an important marker
protein on the phagosome surface, through bifunctional small molecules might mediate the
subsequent autophagic degradation of POIs and screened by small-molecule microarray
(SMM) technology to obtain small molecules that could simultaneously bind LC3 and a
POI mutant huntingtin (mHTT). In that study, researchers achieved the degradation of
mHTT via the autophagy process, while wild-type HTT was almost unaffected [66,67].
They also developed LD-ATTECs with Sudan III or Sudan IV dyes as warheads to achieve
the degradation of intracellular lipid droplets via the autophagic pathway and validated
them in a mouse model [68].

5.1.2. AUTOTAC

p62 mediates the transfer of ubiquitinated autophagic substrates into autophagic
vesicles and is subjected to further degradation [69]. Similar to ATTECs, Kim YK and his co-
workers developed a bifunctional AUTOTAC molecule that bound to both POI and p62 zinc
finger structural domains and directed the POI into the subsequent autophagy–lysosome
pathway for a degradation independent of POI ubiquitination [67,70].

5.1.3. AUTAC

8-nitrocyclic guanosine monophosphate (8-nitro-cGMP) is a second messenger down-
stream of NO that mediates S-guanosylation modifications of protein and further induces
autophagy [71,72]. The AUTAC molecule designed and synthesized in Arimoto’s laboratory
consists of a warhead that binds to POIs or organelles, a cGMP-based autophagic degrada-
tion tag, and a linker. In addition to degrading intracellular POIs, researchers also designed
AUTAC4 which achieved the degradation of damaged mitochondria via the autophagy–
lysosome pathway by targeting the translocator protein (TSPO) on the outer mitochondrial
membrane, providing a new candidate therapeutic approach to mitochondrial-dysfunction-
related diseases [73].

5.2. Lysosomal Pathway

Lysosomes are single membrane vesicular organelles, containing a variety of endoplasmic-
reticulum-synthesized, mannose-6 phosphate-modified hydrolases, capable of degrading a
variety of biological macromolecules such as nucleic acids, proteins, and lipids [74]. Tradi-
tionally, lysosomes have been considered the “waste recycling center” of the cell, relatively
isolated from other organelles. In recent years, as their study has progressed, researchers
have found that lysosomes are key organelles involved in the degradation of biomolecules,
intracellular transport of substances, innate and adaptive immune activation, and nutrient
sensing, and their dysfunction may lead to metabolic disorders, neurodegenerative diseases,
and cancer [74–76].

Unlike the autophagic pathway, the endosomal–lysosomal pathway is capable of
degrading either cytosolic or extracellular proteins. The internalization of extracellular
substances is often dependent on the binding of ligands to receptors, and the correspond-
ing process is called receptor-mediated endocytosis (RME). Ligand–receptor complexes
are endocytosed into intracellular vesicles, which subsequently fuse with each other to
form early endosomes (EEs), where metabotropic receptors are usually recycled to the
plasma membrane, while signaling receptors and their ligands are transported to late
endosomes (LEs) for subsequent degradation by lysosomes [65]. Unlike PROTACs, which
can only degrade intracellular proteins, TPD based on the lysosomal pathway can theoret-
ically degrade both cytosolic and extracellular proteins, further broadening the range of
targets (Figure 9).
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Figure 9. Besides cytosolic POIs, lysosomal-based TPD enables the degradation of membrane-
bound and extracellular proteins. (A) Lysosomal-based TPD is capable of degrading cell-membrane-
bound proteins without necessarily entering the cell. (B) Theoretically, lysosomal-based TPD can
mediate the degradation of circulating POIs via the receptors located on the cell membrane. POI,
protein of interest.

5.2.1. CI-M6PR LYTAC

The non-cation-independent mannose-6-phosphate receptor (CI-M6PR) is a classical
lysosomal targeting receptor that transports proteins with M6P multimeric modifications
at the N-terminal end to the lysosome [77]. The first LYTAC molecule was designed and
synthesized by Bertozzi CR [78]. LYTAC uses an M6P polysaccharide as a ligand to recruit
CI-M6PR, while the other end binds to the extracellular structural domain of the cytosolic
protein or extracellular protein. In that study, the investigators used biotin as the warhead
to achieve the degradation of extracellular tool protein NA-647, and cetuximab, a clinical
monoclonal antibody for EGFR, as the warhead to degrade EGFR successfully.

5.2.2. IFLD

In addition to M6P/CI-M6PR, other receptors on the cell surface involved in ligand–
receptor interactions, such as transferrin receptors [79], folate receptors [80], integrins [81],
etc., are also able to deliver fluorophores, medicine, or nanoparticles into the cell via RME.
Integrin αvβ3 is overexpressed in a variety of tumor cells, and its recognition motif Arg-Gly-
Asp (RGD) is widely used in the development of targeted therapies, but no RGD-based TPD
studies are available. Fang Lijing and co-workers at the University of Chinese Academy of
Sciences designed an integrin-facilitated lysosomal degradation (IFLD)-based strategy [82],
which targeted the POI at one end and the integrin recognition sequence RGD at the other
end and enabled the degradation of the extracellular tool protein NAP-650 and the cytosolic
protein PD-L1 via the lysosomal pathway.

To sum up, we have described several new explorations based on PROTAC and
TPDs that take advantage of autophagy or lysosomal pathways to achieve target pro-
teins or organelles degradation (Figure 10). All these efforts attempt to achieve a precise
control of medicine activation, improve the bioavailability of such large molecules, or
expand the target spectrum, with which we hope that TPDs could be applied clinically in
treating patients.
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Figure 10. An overview of the aforementioned explorations based on PROTACs and TPDs that
take advantage of autophagy or lysosomal pathways. PROTACs hijack the UPS system to degrade
their POIs by directly binding both the E3 ligases and the target proteins. They could only degrade
cytosolic proteins due to the intrinsic property of the UPS system. Several new explorations have
been made to expand the application scenario. Moreover, some TPDs take advantage of degradation
pathways apart from the UPS system. These autophagy- or lysosomal-pathway-based TPDs expand
the target spectrum even further.

6. Conclusions

Over the past two decades, PROTACs have made the first leap from the laboratory
to the clinic, completing the theoretical validation of TPD as a therapeutic tool. However,
many questions remain to be explored and solved.

Expanding the POI spectrum is a promising orientation for TPD development. The
POI of traditional PROTACs is limited to cytosolic proteins. However, many proteins that
significantly contribute to cancer development and metastasis are located on cell membrane
and act as receptors. Researchers have made an effort to expand the POI spectrum to
membrane-bound and circulating proteins, and even further, lipids and organelles, by
taking advantage of autophagy and lysosomal pathways.

Another obstacle keeping PROTACs from clinical application is the poor bioavailability
of most PROTAC molecules. The structure of three moieties determines that PROTACs
tend to have large molecular weights, making it difficult to penetrate cell membranes.
Researchers attempt to utilize click chemistry, administrating precursors of fully functional
PROTACs and self-assembling within cells, to provide a possible solution to this problem.
Furthermore, lysosomal-based TPDs could induce the formation of endosomes and mediate
the degradation of POIs via the lysosomal pathway, and TPDs do not necessarily enter the
cell to function in the degradation of membrane-bound or circulating POIs. Incidentally,
these TPDs usually contain monoclonal antibody structures to bind target proteins, so an
intravenous administration must be taken into consideration.

Given its potential to degrade any target of choice, the reach of TPD can extend beyond
oncology. As previously described, a key property of PROTACs is the ability to degrade
proteins that are considered “undruggable” as they lack active sites. This attribute is
especially engaging in targets for several neurodegenerative diseases involving the toxic
build-up of proteins, such as tau, mutant huntingtin, etc. In addition, there are also efforts
to develop TPDs for inflammation, immunity-associated diseases, and viral infection.
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In conclusion, the field of TPD is full of challenges and opportunities and values both
inspiration and effort. We also expect that after generations of development and validation,
TPD will eventually provide new options for effective, safe, and reliable treatment for
patients suffering from diseases.
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