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This Special Issue contains 16 original articles, 3 reviews, and 1 communication.
The authors of these papers focused on the topic of multidrug-resistant (MDR) bacte-
ria and addressed several targets either by natural or synthetic compounds as well as
novel techniques.

In particular, in the field of natural compounds, Abdulrahman S. Bazaid et al.
identified, by GC-MS analysis, 2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one and 1-
methylcyclopropanemethanol as the major phytoconstituents of Sumra honey [1] and
suggested that this source be used as a promising potential therapeutic tool against
infections caused by MDR bacteria and fungi [2]. In addition, they proposed Sumra honey
as a good candidate to inhibit bacterial cellular communication in strains of P. aeruginosa
and C. violaceum [1].

Zenon Węglarz et al. studied the chemical profile of the species cultivated in the
temperate climate of Central Europe of Helichrysum italicum (Roth) G. Don., one of the
most important medicinal plants originating from the Mediterranean region of Europe [3].
Both herbs and inflorescences were analyzed. Neryl acetate, accompanied by α-pinene in
the herb (10.42%), and nerol in inflorescences (15.73%), were the most important compo-
nents. When tested for their antioxidant properties, both methanolic extract and essential
oil obtained from the herb indicated a higher potential than those originating from the
inflorescences. By contrast, the antimicrobial activity of the essential oil from inflorescences
was higher than that of the herb essential oil. Gram-positive bacteria were more sensitive
to both essential oils in comparison with Gram-negative bacteria [4].

The antibacterial activity of a <10 kDa peptide-rich extract obtained through the autol-
ysis of yeast biomass under mild thermal treatment with self-proteolysis by endogenous
peptidases was reported [5]. Maria Fernanda da Silva Santos et al., by in silico analy-
sis using four independent algorithms, identified fifty-eight AMP candidate sequences
which possibly contribute to the bacterial inactivation; then, they recommended S. cere-
visiae-biomass peptides as promising adjuvants to treat infectious diseases that are poorly
sensitive to conventional antibiotics, as previously proposed [6].

Tafenoquine and a derivative of chondrofoline [7,8] were tested for their antileish-
manial activity against L. tropica (HTD7) by Sayyed Ibrahim Shah et al. In vitro tests
(intra-THP-1 amastigote activity) showed that 10-hydroxy chondrofoline was more potent
than tafenoquine (LD50 43.80 µM and 53.57 µM, respectively, after 48 h of incubation).

Varsha Srivastava et al. evaluated the antimycobacterial activity of the extracts of
S. xanthocarpum Schrad. & Wendl., authenticated according to the Ayurvedic Pharma-
copoeia of India, against M. avium subspecies paratuberculosis (MAP) infection [9]. The best
inhibition was shown by the hydro-alcoholic extract.

Tuberculosis was the topic of two other articles, which addressed different mycobacte-
rial enzymes.

The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is a recognized drug-
gable target [10]. Fawzia Faleh Albelwi et al., based on data from the literature, synthesized
a series of 1,2,3-triazole linked to different acetamide groups as inhibitors of InhA. In vitro
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tests proved that the compounds were able to completely inhibit InhA at a concentration of
10 µM, being better inhibitors than Rifampicin.

Matteo Mori et al., based on their previous results, tested a series of analogues of the 5-
(3-cyanophenyl)furan-2-carboxylic acid, the most potent salicylate synthase MbtI inhibitor
identified to date [11,12]. Structure–activity relationships evidenced the importance of the
side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity.
They also set up a fluorescence-based screening test, using MPI-2 murine cells, which
potentially accelerates the identification of new anti-TB drugs.

In recent years, the repurposing of well-known drugs has been proposed as a promis-
ing and less-demanding approach in antibiotic research.

On these premises, Tsung-Ying Yang et al. published two papers, investigating the
immunomodulator ammonium trichloro(dioxoethylene-O,O′)tellurate (AS101) [13] as an
antimicrobial agent.

In the first article, the compound was evaluated against carbapenem-resistant A. bau-
mannii (CRAB) [14]. Values of MIC below 50% cytotoxicity were recorded (0.5 to 32 µg/mL
and ~150 µg/mL, respectively). The compound displayed better effects than colistin in the
carbapenemase-producing A. baumannii mouse sepsis model. The accumulation of ROS
and disruption of the cell membrane were indicated as antibacterial mechanisms.

Positive results for AS101 were also reported in the second paper, when the compound
was tested against colistin- and carbapenem-resistant K. pneumoniae (CRKP).

The hybridization of known scaffolds has also provided good results in the identifica-
tion of new potential drugs [15]. This approach was followed by Riham M. Bokhtia, who
synthesized 31 linezolid conjugates and tested them against different strains of bacteria.
The most promising agent showed MIC 4.5 µM against S. aureus and 2.25 µM against B.
subtilis. Based on their results, the group developed a robust QSAR (R2 = 0.926, 0.935;
R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models,
respectively) and 3D pharmacophore models.

Several novel synthetic moieties were reported by different groups.
Anthi Petrou et al., following a previous approach, tested seventeen (Z)-methyl 3-

(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives against
eight Gram-positive and Gram-negative bacteria [16]. Their activity was found to be higher
than that of ampicillin and streptomycin by 10–50-fold. They also displayed significant
antifungal activity, with T. viride being the most sensitive, while A. fumigatus was the most
resistant one.

Kevin Schindler et al. presented the results of the computationally evaluated binding
affinity of a series of rhenium di- and tricarbonyl diamine complexes against the published
structurally characterized membrane-bound S. aureus proteins [17]. Two possible major
targets were proposed, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal
peptidase II (LspA).

Beatriz Suay-García et al. selected two quinolones by applying to a library of
1000 quinolones [18,19] their prediction model of activity against E. coli, and they tested
them for their antibacterial properties together with a series of zwitterionic quinolonates
by a microdilution method. The two quinolones showed the best broad-spectrum activity,
though all the compounds were provided with antibacterial properties.

Bacteria resistance was also the topic of three different reviews.
Luigi Principe et al. devoted their attention to the combination of β-lactam/β-

lactamase inhibitors (Bls/BLIs) and considered the following associations of drugs:
aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, ce-
fepime/zidebactam, cefiderocol, ceftaroline/avibactam, ceftolozane/tazobactam, cef-
tazidime/avibactam, imipenem/relebactam, meropenem/ nacubactam, and meropenem/
vaborbactam [20].

Anika Rütten et al. reported on recent data in the literature concerning bioactivity-
based screening methods, focusing on the most relevant assays for the identification of
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antibiotic activity [21], and mechanisms of action investigations. Successful examples were
also reported.

Sekar Madhu et al. focused on recent developments in electrochemical sensing tech-
niques used to assess latent antibiotic resistances of pathogenic bacteria. They highlighted
the prevalence of biorecognition probes and tailor-made nanomaterials in electrochemical
antibiotic susceptibility testing (AST) [22].

Nanomaterials were also investigated by two other groups.
Maider Ugalde-Arbizu et al. synthesized hybrid nanosystems based on mesoporous

silica nanoparticles (MSNs) [23] functionalized with a nicotinic ligand and silver chloride
nanoparticles, both phenytoin sodium (Ph)-loaded and unloaded. Their antibacterial
activity was evaluated against three different strains of P. aeruginosa. The Ph-loaded
materials promoted a quasi-complete inhibition of bacterial growth.

Noura Hazime et al. synthesized, and tested against E. coli, 184 novel formulations,
based on colistin loaded on alginate nanoparticles (Alg Nps) [24], either in the absence
or presence of small molecules such as components of essential oils, polyamines, and
lactic acid. The formulations, whose safety towards eukaryotic HT-29 cells was established
in vitro, are thought to permeabilize the bacterial membrane and cause the leakage of
intracellular proteins [25].

Frida Svanberg Frisinger et al. investigated the prototype drug (MAC13243), which
interferes with the Gram-negative outer membrane protein LolA on the fecal microbiota.
The compound exhibited the concentration-dependent killing of coliforms in two fecal
suspensions of healthy donors after 8 h, thus assuring a low risk of inducing dysbiosis.

Finally, a communication by Marius Seethaler et al. proposed a simple one-pot
synthesis of fluorinated benzothiophene–indole hybrids as a promising strategy for the
search of novel antimicrobial agents [26]. Compounds were evaluated against various S.
aureus and MRSA strains. Bacterial pyruvate kinase was found to be their molecular target.
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