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Abstract: The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a
promising approach for the development of antibiotic adjuvants. This occurs via the organism devel-
oping an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative
and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics
at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl
sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyri-
doxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore
modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from
the PubChem database were carried out using AutoDock vina, while a post-screening analysis was
carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs
118614633, 135715279, and 155773276, possessing binding affinities of −9.1, −8.9, and −8.8 kcal/mol,
respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best
hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to
187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the
lowest binding energy (−9.3 kcal/mol) and performed better than its parent compound 155773276.
Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change
in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a syner-
gistic effect and consequently increases the binding energy. The stability of the best hit and optimized
compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and
SASA plots generated from a molecular dynamics simulation. The MD simulation results were also
used to monitor how the introduction of new functional groups of optimized compounds contributes
to the stability of ligands at the target active site. The improved binding affinity of these compounds
compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good
inhibitors of StOASS, and hence, possible antimicrobial adjuvants.

Keywords: adjuvants; antibiotics; cysteine biosynthesis; StOASS; drug resistance; scaffold hopping;
toxicity

1. Introduction

The capacity of microorganisms to inhibit the effects of antimicrobial agents is known
as antibiotic resistance. This phenomenon can be due to a depletion in the efficiency of
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antibiotics to stop growth in the bacterial population [1]. Antibiotic resistance is regarded
as a threat to the global public health system, with some of its consequences ranging from
prolonged admission in hospitals to increasing mortality rates due to treatment failure [2].
These consequences have a direct impact on patients, healthcare, and the economy, as a loss
in productivity leads to an elevation in the poverty rate [2]. One of the action plans stated
by the World Health Organization (WHO) in response to the request by the World Health
Assembly (WHA) to proffer solutions to antibiotic resistance is the optimization of the use
of antimicrobial medicines in human and animal health [3]. Resistance to antimicrobial
agents is developed based on factors such as antibiotic misuse, inaccurate diagnosis, a delay
in accurate diagnosis, etc. Some of these factors can be addressed via appropriate antibiotic
stewardship [4]. Antimicrobial resistance reduces the number of effective antimicrobials
available against different microbial infections; hence, there is a need to design and develop
new antimicrobial agents [5]. An approach that is being used to develop new antimicrobial
agents that address resistance is the investigation of non-essential targets, the study of
the biochemical pathways they are linked to, and the development of inhibitors against
these targets [6]. The inhibition of these non-essential pathways with small molecules has
resulted in promising successes to reduce future resistance resurgence, with some of these
molecules used in combination with antimicrobial agents and known as adjuvants [4].

The cysteine biosynthetic pathway is a non-essential target that has been reported to
be productive in antibacterial therapy [7]. Biotin, coenzyme A, Fe−S clusters, glutathione,
methionine, and penicillin are some of the sulfur-containing biomolecules with cysteine as
their precursor [8]. The cysteine biosynthetic pathway is absent in mammals and present
in bacteria and plants [9]. The last step of cysteine biosynthesis is catalyzed by serine
acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) in enteric bacteria. A study
on the cysteine biosynthetic pathway in Salmonella typhimurium revealed that inactivating
this pathway can reduce vegetative and swarm cell populations’ antibiotic resistance
through an unpaired oxidative stress response. This, in turn, results in conventional
antibiotics (e.g., Triazole) becoming effective at lower doses [10]. This highlights the
possibility that treatment efficacy can be enhanced using cysteine biosynthesis inhibitors
by reducing the antibiotic dosage, consequently decreasing resistance and its spread [7].
These factors suggest that the chemical inhibition of OASS isoforms could be a promising
strategy for the development of antibiotic adjuvants [4].

Heterocyclic compounds have been reported over the years to have numerous bio-
logical activities and many biologically relevant compounds including phytochemicals
and secondary metabolites contains an heterocyclic ring in their structure [11]. Further-
more, the conventional method for the discovery of bioactive molecules has been reported
to be expensive and time-consuming due to the low success rate observed, especially
at the later stage of the development process. Virtual screening is one of the strategies
that is used to optimize the drug discovery process [12]. Advances in bioinformatics
and computational modeling are some of the drivers of modern drug discovery that
have enabled the virtual screening of biologically active compounds in the identifica-
tion of hits and lead compounds [13]. The latest approach to discovering antibacterial
drugs is represented by recent developments in computer-aided drug design (CADD),
parallel and high-performance computing (HPC) platforms, and innovative in silico ap-
proaches [14]. The accuracy of high-throughput virtual screening can be improved us-
ing machine learning methods via ligand-based, structure-based, or consensus-based
approaches [15]. Hence, this study aims to identify potential inhibitors of StOASS that have
better inhibitory potential than co-crystallized ligand PLP using the CADD approach, and
then, optimize these compounds to design novel inhibitors with good synthetic accessibility
scores and improved pharmacodynamics and pharmacokinetics profiles that can serve as
antimicrobial adjuvants.
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2. Results
2.1. Pharmacophore Modeling

The pharmacophores that are responsible for the interaction present in co-crystallized
ligands are the pyridine ring and the phosphate group (Figure 1), as viewed in Discovery
studio. These interactions and the features that they correspond to on the Pharmit interface
are as follows: the pyridine ring-and-StOASS interaction corresponds to hydrogen bond
donor and aromatic ring features, and the phosphate group interaction corresponds to four
hydrogen bond donor features. These features conferred the resulting binding affinity of
pyridoxal 5-phosphate (PLP) and StOASS; hence, they were key to searching for pharma-
cophores within the PubChem database that had similar features, also taking how features
are positioned into consideration.
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Figure 1. (A) 2D interaction of PLP and 1OAS; (B) representative features in Pharmit.

2.2. Molecular Docking

A total of 4255 compounds, including PLP, were docked into the active site of StOASS,
and the best 10 hits were recorded. The top 10 hits from the virtual screening had binding
energies ranging from −9.1 to −8.5 kcal/mol, which were all higher than the binding energy
of the cofactor PLP at −5.7 kcal/mol. The higher binding affinity of these compounds
compared to PLP suggests that they have the likelihood of competitively binding to the
active site of StOASS, thereby inhibiting it, making them possible antibacterial adjuvants.
The docking scores of the best ten hits are presented in Table 1.
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Table 1. Binding affinity of 10 best hits from molecular docking of compounds and StOASS.

PubChem ID 3D Structure Docking Score
(kcal/mol) nHBA nHBD

118614633
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Table 1. Cont.

PubChem ID 3D Structure Docking Score
(kcal/mol) nHBA nHBD

132083481
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Table 1. Cont.

PubChem ID 3D Structure Docking Score
(kcal/mol) nHBA nHBD
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2.3. Post-Screening Analysis

Various interactions between the atoms of the best hits with the amino acid residues
in the active site of StOASS were viewed and analyzed using the Discovery Studio 2021
client. The intermolecular hydrogen bonds that formed between the ligand and the amino
acids in the active sites improve the strength of the protein–ligand complex, emphasizing
the importance of hydrogen bond acceptors (HBAs) and donors (HBDs) in the ligand’s
structural design [16]. Post-screening analyses revealed interactions such as conventional
hydrogen bonds, carbon–hydrogen bonds, and pi–cation, pi–anion, pi-pi stacking, alkyl,
and pi–alkyl bonds. The binding affinities and docking scores obtained for each of the best
hits were considerably influenced by interactions. Compound 118614633, the best hit from
the screening with a binding energy of −9.1 kcal/mol, has nine HBAs and two HBDs, which
were responsible for the three hydrogen bond formations at the amino acid residues at the
StOASS active site (Figure 2). The hydrogen bonds were formed with Ser307 and Arg304
residues. Other interactions include pi-pi stacking with Leu102 and Phe38, and pi–anion
interaction with Glu303. Compound 135715279, with a binding energy of −8.9 kcal/mol,
was the second best amongst this series of compounds. The interactions with the amino acid
residues at the StOASS active site included five hydrogen bond interactions with Asn69,
Pro67, Asn71, Lys41, and Gly228, and Pi–Carbon and Pi–Alkyl interactions with Met119
and Lys41, respectively (Figure 2). Compound 155773276 showed the third best binding
affinity, with three HBAs and two HBDs making three hydrogen bonds with Lys41, Asn71,
and Thr72 (Figure 2). The strength of the complex produced is significantly increased by
the intermolecular hydrogen bonds formed between the ligand and amino acids in the
active sites, and this improves the docking scores [17]. Therefore, Lipinski’s rule of five,
which states that a drug candidate should contain HBA ≤ 10 and HBD ≤ 5, emphasizes the
importance of hydrogen bond acceptors (HBAs) and donors (HBDs) in the ligand structure.
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135715279, and (C) compound 155773276 in active site residue of StOASS showing moieties involved
in the interaction.

2.4. Structural Activity Relationship (SAR) of Best Hits from Docking Study

The SAR of the best three hits was examined to highlight the scaffolds and functional
groups that were involved in its interaction with StOASS, and hence, its corresponding
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binding affinity, as these were considered in the optimization of the hit compounds to lead
compounds. Compound 118614633, with the highest binding affinity, has a dihydropyrolloim-
idazole heterocycle with an amido group linked directly to it. The amido carbonyl interacted
with the StOASS active site residue Arg99 via hydrogen bonding and amido NH with Ser307
via an unfavorable donor–donor interaction. Dihydropyrollo N interacted with Arg99 and
Arg304 via unfavorable donor–donor and conventional hydrogen bonds, respectively. An-
other scaffold present in this compound is difluorophenyl, with the phenyl ring interacting
with Arg304, Glu303, and Phe38 via two Pi–cation and one alkyl interaction. The central car-
bon of the tertiary butyl substituent introduced an alkyl interaction with Leu102. Compound
135715279 has a diazepine-fused oxadiazole linked to a nitrofuran. The oxadiazole-fused
heterocycle interactions were as follows: NH at position one interacted with Pro67 via con-
ventional hydrogen bonding; O at position 2 interacted with Thr68, Met119, and Asn69 via a
carbon–hydrogen bond, a pi–alkyl interaction, and a conventional hydrogen bond, respec-
tively; and NH at position 3 interacted with Asn69 via conventional hydrogen bonding. The
nitro group of the nitro furan interacted with Asn71 and Lys41 via a conventional hydrogen
bond, the furan O interacted with Gly228 via a carbon–hydrogen bond, and the Pi system of
the furan ring interacted with Lys41 via carbon–hydrogen bonding. Compound 155773276 has
a thiazole ring as its major heterocyclic compound, which formed a carbon–hydrogen bond
and a Pi–alkyl interaction with Met119. Another moiety of interest within this compound is
the cyclohexanone fused ring, whose carbonyl interacted with Lys41, Thr72, and Asn71 via
conventional hydrogen bonding.

2.5. In Silico Toxicity and Druglikeness Prediction

The pharmacokinetic characteristics and toxicity hazards of all the top hits as predicted
by OSIRIS Property Explorer are shown in Table 2. The standard of 500 g/mol was
established because substances with lower MWs tend to be distributed more easily than
those with greater MWs [18]. The MWs of the best hits were between 341.0 and 437.5 g/mol,
which is within the acceptable range. The logarithm of the partition coefficient between
n-octanol and water yielded the clog P value. Values below 5.0 are acceptable; however,
values above 5.0 denote low hydrophilicity or poor absorption [19]. The best 10 hits had
clog P values below 5.0, indicating that all the compounds have good absorption capacity.
A TPSA score less than 160 Å2 is regarded acceptable, indicating that the compounds will
have good oral bioavailability [20], all 10 best hits’ TPSA scores were acceptable. Solubility
(log S) influences both absorption and distribution; values more than −4 are regarded
acceptable, as this corresponds to a score of more than 80% of marketed drugs. The best
three hits all had logS values greater than −4. The higher the drug score value, the higher
the compound’s chance of being considered a drug candidate. Compound 123531073 had
the highest drug score with a value of 0.56. The toxicity properties of the three best hits,
118614633, 135715279, and 155773276, suggest mild toxicity tendencies of these compounds,
implying their predictive drug conformity, compatibility, and safety in vivo.

Table 2. Druglikeness and toxicity profiles of best hits using OSIRIS Property Explorer.

PubChem ID MW
(g/mol) Clogp Tpsa

(Å2) logS Drug Score Mutagen Tumorigenic Irritant Reproductive
Effective

118614633 491 2.29 102.5 −3.04 0.36 Low Low Low Low
135715279 345 1.27 139.3 −3.49 0.43 Low Low Low Low
118505490 453 1.99 134.0 −3.73 0.32 Low Low Low Low
123531073 397 2.37 72.48 −3.60 0.57 Low Low Low Low
155773276 445 3.48 96.89 −4.37 0.30 Low Low Low High
153409783 431 −0.59 99.08 −1.93 0.27 Medium High Low Medium
136030136 406 2.62 73.8 −6.18 0.35 Low High Low Low
153368440 461 1.23 111.7 −5.08 0.19 High Low Low Low
156238864 447 1.9 111.7 −5.40 0.29 Low Low low Low
PLP 247 −3.2 126.7 −1.20 0.29 High Low low Low
Gentamicin 477 −4.21 199.7 −0.59 0.77 Low Low low Low
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2.6. Lead Optimisation via Scaffold Hopping

Further optimisation of the best three compounds, 118614633, 135715279, and 155773276,
was performed using ADMETopt [21], which optimizes via scaffold hopping. This gen-
erated a total of 189 compounds which were docked against StOASS. Lead compound 1
(Figure 3), with a binding energy of −9.3 kcal/mol, has similarity to compound 155773276
as its parent compound. The thiazole moiety was maintained, and the other component
was substituted, having an amido group and a phenol group. The amido carbonyl in-
teracted with the StOASS active site residues Arg99 and Gly70 via a carbon–hydrogen
bond and conventional hydrogen bond. The phenolic OH interacted with Gln142 and
Thr72 via conventional hydrogen bonding. The presence of these groups can be said to
have contributed a synergistic effect as there was a noticeable increase in binding affinity
when the two compounds were compared. Lead compounds 2 and 3 had binding energies
of −9.1 kcal/mol and −8.8 kcal/mol, respectively, having similarities with compound
135715279 as their parent compound, with a binding energy of −8.9 kcal/mol. The scaffold
that was constant for all three compounds is nitrofuran. Lead compound 2 (Figure 3) had its
diazepine-fused oxadiazole substituted with an imidazolopyrimidine-based moiety, which
interacted via conventional hydrogen bonding with Ile229, and the imidazole pi system
interacted with Gly228 via pi–donor hydrogen bonding. These interactions introduced a
synergistic effect, and hence, an increase in the binding affinity of the compound. Lead
compound 3 (Figure 3) had its diazepine-fused oxadiazole substituted with an indene-fused
quinolinone. The indene pi system interacted with Phe233 via pi-pi stacking, and the car-
bonyl of the quinolinone interacted with Ser144 via conventional hydrogen bonding. These
interactions introduced an antagonistic effect as the binding affinity of this compound was
reduced when compared to the parent compound.

Druglikeness and Toxicity Profiling of Optimized Compounds

The medicinal chemistry scores of the best three hits amongst the optimized compound
and toxicity profiles were compared to their parent structures, shown in Table 3. ADMETlab
was used in toxicity and druglikeness profile prediction [22]. The results showed that the
optimized compounds as compared to their parent compound were not blood–brain barrier
permeants, and the AMES toxicity, which is an indication of mutagenic potential [23],
was reduced for lead compound 1 compared to its parent compound 155773276 and re-
mained the same for lead compounds 2 and 3 when compared with their parent compound
135715279. The quantitative estimated druglikeness (QED) scores of the optimized best hits
were predicted to be >0.34, with all values within the range of 0.51–0.62, indicating that
their structures are not too complex based on the concept of desirability [24]. The synthetic
accessibility score, which is a measure of the ease of synthesis of the compounds, was <6
for all three compounds, indicating that optimized compounds are easy to synthesize [25],
with lead compound 3 having a score of 0.35. The medicinal chemistry evaluation (MCE-18)
scores, where MCE-18 ≥ 45 is a suitable value, were 121.97, 95.92, and 98.57 for 118614633,
135715279, and 155773276, respectively.

Table 3. Druglikeness of optimized compounds compared with their parent compound.

Compound ID
Medicinal Chemistry Score Toxicity Profile

QED Synthetic
Accessibility MCE GSK Pfizer HHT AMES hERG

Blocker BBB

PubChem
155773276

Compound 1

0.68 4.92 142.09 Rejected Rejected - --- +++

0.51 4.56 121.97 Rejected Accepted -- -- - --

PubChem
135715279

Compound 2
Compound 3

0.62 3.95 81.14 Accepted Accepted + +++ --- +++

0.62 3.49 95.92 Accepted Accepted ++ +++ --- --

0.61 0.35 98.57 Accepted Accepted - +++ --- ---

Prediction probability value range: 0–0.1 (---), 0.1–0.3 (--), 0.3–0.5 (-), 0.5–0.7 (+), 0.7–0.9 (++), 0.9–1.0 (+++).
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2.7. Molecular Dynamics Simulation
2.7.1. Root Mean Square Deviation and Root Mean Square Fluctuation

The Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF)
of the MD trajectories were used to comprehend the stability of and possible fluctuations in
the complexes [26]. The RMSF is used for quantifying local changes/amino acid fluctuations
along the protein chain, with less RMSF fluctuation indicating less flexibility. The RMSD of
the c-alpha protein backbone fluctuated between 1.5 and 3 Å, with an average RMSD of
2.67 Å for lead compound 1 and 2.33 Å for its parent compound 155773276 when bound
to the active site of protein. This suggests that target conformation was relatively stable
during the simulation even when bound to ligands; this is depicted in a plot of RMSD
against frame number (Figure 4).
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A plot of RMSF against the residue position of the c-alpha protein backbone is shown
in Figure 5, with the fluctuation ranging between 0 and 2 Å. When lead compound 1 and
compound 155773276 were present at the active site of target, the range was lower for
compound 155773276, indicating that it forms a more stable complex with target.

2.7.2. Principal Component Analysis

StOASS protein atoms are converted to a group of uncorrelated principal components
(PC), with a plot showing how these components are correlated (Figure 6) [12]. PC1 for
compound 155773276 accounted for 26.77% of the cumulative variance, while PC2 and PC3
were responsible for 18.12% and 12.44%, respectively, giving a total of 57.3% for the first
three PCs, as shown in the eigenvalue rank plot. The total of the first three PCs for lead
compound 1 was 53.8% of the cumulative variance, with PC1 alone accounting for 32.7%.
This suggests that the molecular dynamics simulation captured the major or dominant
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motions rather than the less dominant ones, considering the first three PCs were greater
than 50% of the total principal components for both complex systems.
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2.7.3. Radius of Gyration

The radius of gyration (Rg) is a parameter used to indicate the total size of a chain
molecule [27]. It can be used to quantify the degree of structural variation in proteins during
molecular dynamics simulations. It assesses the protein’s flexibility and compactness within
a biological context, comparing the protein’s structure over time to the hydrodynamic
radius that may be observed through experimentation [28]. The StOASS_lead compound 1
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complex had a higher radius of gyration and the values were relatively stable throughout
the simulation run. This implies that the StOASS_lead compound 1 complex had more
flexibility/lower rigidity, compared to the StOASS_compound 155773276 complex, which
had observable variation in its Rg value throughout the simulation run (Figure 7).

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 7. Rg plot of StOASS (black) and (A) StOASS_compound 155773276 (Red) (B) StOASS_lead 

compound 1 (Red). 

2.7.4. Solvent-Accessible Surface Area 

The percentage of a biomolecule’s surface that interacts with water is measured by 

the Solvent-Accessible Surface Area (SASA) [29]. An high SASA value indicates protein 

exposure to the surrounding solvent surface area, whereas a low SASA value indicates 

less exposure to the surrounding solvent and hence more stability [26]. The SASA calcu-

lation of StOASS_lead compound 1 complex decreased at around 10 ns and was relatively 

stable to the end of the simulation run (Figure 8). This indicates a stable conformation and 

that the complex was least exposed to the solvent as compared to its parent StOASS_com-

pound 155773276 complex, where a decrease in SASA was first observed around 10ns fol-

lowed by an increase in SASA observed at around 50 ns. 

 

Figure 8. SASA plot of StOASS (Black) with (A) StOASS_compound 155773276 (red) and (B) StO-

ASS_ lead compound 1 (red). 

2.7.5. Hydrogen Bond Analysis 

H-bond formations are important in the stability of complexes during MD simulation 

[30]. Multiple hydrogen bonds were identified between the active site of the protein and 

the ligand; these are shown in Figure 9. A total of four H-bonds were observed during the 

Figure 7. Rg plot of StOASS (black) and (A) StOASS_compound 155773276 (Red) (B) StOASS_lead
compound 1 (Red).

2.7.4. Solvent-Accessible Surface Area

The percentage of a biomolecule’s surface that interacts with water is measured by
the Solvent-Accessible Surface Area (SASA) [29]. An high SASA value indicates protein
exposure to the surrounding solvent surface area, whereas a low SASA value indicates less
exposure to the surrounding solvent and hence more stability [26]. The SASA calculation
of StOASS_lead compound 1 complex decreased at around 10 ns and was relatively stable
to the end of the simulation run (Figure 8). This indicates a stable conformation and that
the complex was least exposed to the solvent as compared to its parent StOASS_compound
155773276 complex, where a decrease in SASA was first observed around 10ns followed by
an increase in SASA observed at around 50 ns.
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2.7.5. Hydrogen Bond Analysis

H-bond formations are important in the stability of complexes during MD simula-
tion [30]. Multiple hydrogen bonds were identified between the active site of the protein
and the ligand; these are shown in Figure 9. A total of four H-bonds were observed during
the MD simulation of lead compound 1 at the active site of StOASS, and four H-bonds
were observed for compound 155773276. This corresponded with the observed H-bond
interaction in the molecular docking study either through conventional hydrogen bonds,
carbon–hydrogen bonds, or van der Waals interactions between the ligand and protein.
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3. Discussion

An effective way to combat AMR may be to utilize antibiotic adjuvants. Bacterial
metabolic pathways, such as the biosynthesis of cysteine, may be of particular importance
and were employed in this study. The enzyme being considered is the O-acetyl serine
sulfhydrylase of Salmonella typhimurium, which catalyzes the final step of cysteine biosyn-
thesis, implying high selectivity and safety of its specific inhibitors [31]. The 10 best hits
have higher binding affinities than the known co-ligand, pyridoxal 5’-phosphate, according
to the docking scores from the virtual screening of compounds from PubChem databases
against the StOASS. The binding interaction and moieties inducing the interactions were
identified via post-screening analysis of the best three hits (Table 1). Compound 118614633
had the lowest binding energy of −9.1 kcal/mol, and hence, the highest binding affinity.
The pharmacophore features of a compound are a determinant of the activity of the com-
pound against a target. The moieties and functional groups involved in the interaction
of compound 118614633 and the active site of StOASS were difluorophenyl, which cor-
responds to an aromatic and hydrophobic feature; the dihydropyrolloimidazole hybrid,
which corresponds to one of the two HBD and two of the nine HBA features; tertiary
carbon, which corresponds to the hydrophobic feature; and the amido group, which cor-
responds to hydrophobic and hydrogen donor features (Figure 2). Compound 135715279
had the next best binding affinity, with a docking score of −8.9 kcal/mol, with moieties
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that were involved in the interaction being the nitrofuran scaffold, which corresponds to
aromatic features, two hydrogen acceptors, and hydrophobic features, and the oxadiazole
moiety, which corresponds to two hydrogen donors and one hydrogen acceptor. The HBA
and HBD features of ligands provided a point of hydrogen bond interaction that formed
between ligands and the target (Figure 2). Compound 155773276, with a docking score of
−8.8 Kcal/mol, had two parts of its structure responsible for the interaction with the active
site of StOASS; they are the thiazole moiety, which corresponds to the hydrogen donor and
hydrophobic features, and the cyclohexane, which corresponds to the hydrogen acceptor
feature (Figure 2). These features also play a role in determining the pharmacodynamic and
pharmacokinetic properties of a compound; an example is hydrophobicity, which deter-
mines the distribution of compounds in the cell membrane [32]. Hit-to-lead optimization
via scaffold hopping was carried out on the best three hits, giving rise to compounds 1, 2,
and 3. Compounds 1 and 2 had an increased binding affinity when compared with their
parent compounds. The toxicity profile of optimized compounds was also compared with
their parent compounds. Lead compound 1 showed an improvement in its profile when
compared to its parent compound, 155773276, for AMES toxicity, implying that it has lower
mutagenic potential and BBB permeation probability (Table 3). The generated trajectories
from the MD simulation were used to analyze the behavior of each complex in the explicit
water environment. The RMSD plot of lead compound 1 and 155773276 at the target active
site suggests that the ligands are stable, as the average RMSD for each complex was below 3
Å (Figure 4). The RMSF plot showed the fluctuations of each ligand at the active site of the
protein, with similar fluctuation patterns during the MD simulation process (Figure 5). The
eigenvalue rank plot (Figure 6) shows the variance proportion resulting from each principal
component (PC), with the first three PCs (PC1, PC2, and PC3) of each complex accounting
for more than 50% of its total variance for both complexes. The radius of gyration (Rg)
showed the compactness of the complex, which in both complexes was higher in value
than the unbound protein (Figure 7), and the SASA values of both complexes (Figure 8)
were higher than the unbound protein, indicating that the presence of the ligand at the
active site of StOASS increases its exposure to the surrounding solvent. The hydrogen
bond analyses (Figure 9) showed that the ligands maintained stable conformation at the
active site of the protein during the simulation, which corresponded to the hydrogen bonds
observed during the molecular docking studies, suggesting the potential of these ligands
as inhibitors of StOASS.

4. Materials and Methods
4.1. Protein Structure Preparation

The crystal structure of StOASS (PDB ID: 1OAS) was collected from the Protein Data
Bank. Co-ligand pyridoxal 5 phosphate (PLP) was separated from the protein. The polar
hydrogen atoms and Kollman charges were added to the protein, and the water molecules
were eliminated; this was then minimized using UCSF Chimera software v 1.14 and saved
in PDB format for further analysis.

4.2. Pharmacophore Modeling

A ligand-based pharmacophore model based on the interaction of the crystalized 3D
structure of StOASS (PDB ID; 1OAS) and its co-crystallized ligand, pyridoxal 5-phosphate
(PLP), was carried out using the Pharmit server [33]. The key features used to construct an
effective pharmacophore query include hydrogen bond acceptors, hydrogen bond donors,
hydrophobicity, and aromaticity. These features were chosen based on the 2D interaction of
PLP and the binding site of 1OAS (Figure 1). The hit screening parameters were also set
to obey Lipinski’s rule of five [34]. These set parameters were used to search through the
updated PubChem database, returning a total of 5340 compounds.
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4.3. Ligand Library Preparation

The “sdf” file formats of the 5340 compounds obtained from the pharmacophore-based
screening were downloaded, and the OpenBabel panel [35] of the PyRx-0.8 software [36]
was used to view these compounds and convert them to their corresponding 3D structures.
The successful conversion of 4254 compounds to the docking format “pdbqt” as opposed
to all 5340 was because of the inability to set up a force field for the remaining compounds.
Pyridoxal 5-phosphate was also added to the ligand library of 4254 compounds for the
docking simulation; this is because the aim was to develop compounds that have higher
binding affinity compared to the co-ligand of StOASS and would readily bind to its active
site, thereby inhibiting the activity of the enzyme [37].

4.4. Virtual Screening and Post-Screening Analyses

Autodock vina was used to carry out the molecular docking studies [38]. Firstly, the
protein was converted to “pdbqt” format and a grid box was set to cover the active site of
the crystal structure with the following dimensions in Å: center (X, Y, Z) = (13.42, 7.19, 35.65);
dimensions (X, Y, Z) = (5.72, 6.39, 14.01) with an exhaustiveness of 8. The Discovery Studio
2021 Client was used in post-docking analysis [39]. An extensive qualitative structural
assessment and examination of the structural representations of the three best hits were
carried out to examine the scaffolds and functional groups responsible for the binding
interactions observed in the post-screening analysis.

4.5. Hit-to-Lead: Best Hit Optimization

The best 3 hit compounds were optimized using Admetopt to achieve structures that
are novel with good synthetic accessibility scores and improved pharmacodynamics and
pharmacokinetics profiles. The scaffolds and features responsible for interactions in the
best 3 hits were taken into consideration in building the optimized lead compounds.

4.6. In Silico Druglikeness Prediction

The failure of drug candidates at the testing or clinical trial stage or their call back
after they have entered the market due to toxicity, poor pharmacodynamic or pharma-
cokinetic properties, or reported side effects, amongst others, are problems that come to
play during the drug development process [40]. Hence, a predictive ADMET study was
conducted using the OSIRIS Property Explorer tool [41] to estimate the toxicity profile and
druglikeness of the best 10 hits to propose whether they can pass as being orally active
drugs [42]. The following pharmacokinetic properties were examined: molecular weight
and solubility (log S), which are determinants of the degree to which a compound can
penetrate the biological membrane [39]; hydrophilicity (log P) to estimate the dissolution
of compounds in a liquid membrane; topological polar surface area (TPSA) associated with
membrane permeability [43]; and drug score, a single value from the combination of all the
properties listed above [44] and toxicity risk combining irritant, tumorigenic, mutagenic,
and reproductive risks [45]. Druglikeness, a value that determines the consistency in prop-
erties of a compound as a drug candidate, was also examined [46]. The higher the drug
score value, the higher the chance of the compound being considered a drug candidate [44].

4.7. Molecular Dynamics Simulation

Complexes of the target and best hit from the docking study, and best optimized
compound, were subjected to molecular dynamics simulation (MDS) using GROMACS in
Ubuntu 20.04.6. This was carried out to determine the stability of ligand(s) at the active
site of the target [42]. The ligand topology was generated using the Swiss Param web
server [47] and target topology generated using the CHARMM27 forcefield. The ligand and
target were merged to form the complex; then, triclinic water boxes with a distance of 1nm
and a transferable intermolecular potential (TIP) 3-point water model were deployed for
the solvation of the complexes. Energy minimization of 10,000 steps was performed, and a
production simulation run was carried out for 50,000,000 steps (100 ns) at a temperature of



Pharmaceuticals 2024, 17, 543 17 of 19

300 K as defined in the script alongside other parameters [48]. Analysis of the simulation
results was performed to determine the Root Mean Square Deviation (RMSD), Root Mean
Square Fluctuation (RMSF), radius of gyration (RoG), Solvent-Accessible Surface Area
(SASA), and hydrogen bond (h-bond) analysis. The Galaxy Europe platform Bio3D tool
was then used to perform Principal Component Analysis (PCA).

5. Conclusions

In this study, a ligand library was generated from the PubMed database based on
the interactions of co-ligand PLP at the active site of StOASS. These ligands were docked
against the same target. The best 10 hits were recorded and were in the order 118614633
> 135715279 > 118505490 > 123531073 > 155773276 > 132083481 > 153409783 > 136030136
> 153368440 > 156238864, and all performed favorably when compared to the binding
energy of PLP. The best three hits were then optimized, giving lead compounds 1, 2, and
3, with lead compound 1 being the best-optimized compound based on binding affinity,
druglikeness, and toxicity profile, performing better than its parent compound. These
compounds were also predicted to be stable at the active site of the target based on MD
simulation result analysis. These results infer that all 10 best hits and lead compound 1
could be possible specific inhibitors of StOASS, and hence, possible adjuvants that can
be used in combination with antimicrobial agents, as they possess higher inhibitory and
drug-like properties than the cofactor pyridoxal 5’-phosphate. This combination therapy
might also pave the way for solving the drug resistance issue in old existing antimicrobial
agents.
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