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Abstract: Polypharmacy is a global healthcare concern, especially among the elderly, leading to drug
interactions and adverse reactions, which are significant causes of death in developed nations. How-
ever, the integration of pharmacogenetics can help mitigate these risks. In this study, the data from
483 patients, primarily elderly and polymedicated, were analyzed using Eugenomic®’s personalized
prescription software, g-Nomic®. The most prescribed drug classes included antihypertensives,
platelet aggregation inhibitors, cholesterol-lowering drugs, and gastroprotective medications. Drug-
lifestyle interactions primarily involved inhibitions but also included inductions. Interactions were
analyzed considering gender. Significant genetic variants identified in the study encompassed ABCBI,
SLCO1B1, CYP2C19, CYP2C9, CYP2D6, CYP3A4, ABCG2, NAT2, SLC22A1, and G6PD. To prevent
adverse reactions and enhance medication effectiveness, it is strongly recommended to consider
pharmacogenetics testing. This approach shows great promise in optimizing medication regimens
and ultimately improving patient outcomes.

Keywords: pharmacogenetics; drug adverse reactions; polypharmacy; gender; cholesterol; antihyper-

tensive; platelet aggregation; gastroprotective; lifestyle; g-Nomic®

1. Introduction

The definition of “polypharmacy” or “polymedicated patient” remains a subject of
debate, with varying interpretations. While the World Health Organization (WHO) broadly
defines it as the administration of multiple medications simultaneously, the most commonly
used definition involves the use of five or more medications daily [1,2]. Polypharmacy
is a prevalent issue among elderly individuals with multimorbidity, which refers to the
coexistence of two or more chronic health conditions. It poses significant challenges in
healthcare settings worldwide, leading to medication non-adherence, increased risk of
drug duplication, drug—-drug interactions, adverse drug reactions (ADRs), and heightened
healthcare costs. Drug—drug interactions occur when one drug, known as the precipitating
drug, modifies the pharmacological or pharmacokinetic properties of another drug, known
as the object drug [1-4].

ADRs are a leading cause of mortality in developed countries, with over 100,000 deaths
reported annually in the United States alone, even among individuals adhering to pre-
scribed medication protocols. ADRs are more common among the elderly population and
can be attributed to a combination of factors such as reduced organ function, comorbidities,
polypharmacy, age-related pharmacokinetic changes, and pharmacodynamics variations.
Integration of pharmacogenetics criteria could potentially anticipate and prevent 30% to
60% of ADRs [5-7].

Pharmacogenetics focuses on how variations in single genes affect an individual’s
response to a specific drug [8-10].
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When a drug is administered, it undergoes processes of absorption, distribution,
metabolism, and excretion (ADME). Pharmacogenetics effects can influence pharmacoki-
netic (PK) and pharmacodynamics (PD) factors. PK factors involve the absorption, distri-
bution to the site of action, metabolism, and elimination of a drug. Genetic polymorphisms
can lead to changes in drug concentrations at the target site [8,9,11]. PD factors encompass
the drug’s target and the downstream signaling cascades. Genetic variations in drug targets
can result in measurable differences in an individual’s response to a drug, altering the
biological or physiological response, and these variations can be associated with one or
more specific genes [8,9].

Genomic differences between individuals occur approximately every 300 to 1000
nucleotides, leading to more than 14 million single nucleotide polymorphisms (SNPs)
distributed throughout the human genome, contributing to human variability. Pharma-
cogenetics research has highlighted the significant role played by these genetic variants,
particularly in genes encoding drug-metabolizing enzymes, drug transporters, and thera-
peutic targets, in producing diverse responses to treatment among individuals [5,10,12].

Genetic variations in drug-metabolism-related genes contribute to the observed dif-
ferences in drug efficacy and the occurrence of ADRs, particularly among the elderly
population. Whole-genome mapping techniques, including SNP array testing and next-
generation sequencing, have enabled researchers to identify and validate genetic markers
associated with serious ADRs. These markers facilitate the screening of patients at risk
and the integration of molecular and clinical information, leading to the development of
precision medicine approaches. Besides genetic factors such as mutations (including SNPs),
gene deletions, and duplications, other factors influencing medication response include
physiological conditions (age, gender, body size), environmental influences (diet, lifestyle
habits), and pathological factors (liver and renal function, diabetes).

Precision medicine considers all these factors on an individual patient basis and aims
to understand the biological basis of diseases, enabling the prescription of customized
treatments tailored to each patient’s unique conditions [12,13]. This discipline also plays a
crucial role in the development of medications with improved outcomes for patients.

The g-Nomic® software, developed by Eugenomic®, was utilized to analyze polyphar-
macy in this study. This software offers a thorough examination of medications, including
their substrates, primary and secondary metabolic pathways, inhibitory and inductive ef-
fects (categorized as weak, moderate, or strong according to FDA criteria), drug interactions,
interactions with lifestyle habits, associated risks, guideline alerts, and individual genetic
information such as single nucleotide polymorphisms (SNPs). When patient genetic data is
available, g-Nomic® assists in categorizing individuals as normal metabolizers (NM), inter-
mediate metabolizers (IM), ultra-rapid metabolizers (UM), or poor metabolizers (PM). With
access to a patient’s genetic profile, g-Nomic® provides comprehensive pharmacogenetic
interpretations, covering over 1100 genetic markers associated with drug response types,
including normal response, toxicity, and therapeutic failure. The software encompasses
genetic variations of drug-metabolizing enzymes, transmembrane transporter proteins
(impacting drug pharmacokinetics), and therapeutic targets (affecting pharmacodynamics).
Each gene’s level of evidence is indicated based on established guidelines, technical sheets,
and relevant scientific publications. g-Nomic® receives regular updates and reviews based
on drug labels from official entities at national and international levels (such as FDA,
EMA, and AEMPS) and guidelines from organizations like CPIC, DWPG, and PharmGKB.
Periodic reviews with specialized publications ensure the software’s information remains
current and accurate.

The main objectives of this study encompass a multifaceted analysis of drug utiliza-
tion patterns, gender-specific trends, interactions among medications, and the influence
of lifestyle habits on drug metabolism in the liver [14]. Firstly, we aimed to determine
the most frequently utilized active ingredients of drugs, highlighting categories such as
antihypertensive agents, cholesterol-lowering medications, and analgesics. Secondly, we
investigated gender-specific utilization patterns, delineating differences in drug preferences
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between female and male populations. Thirdly, we explored the interplay between medica-
tions and lifestyle habits, identifying common active ingredients and potential interactions.
Additionally, we reviewed potential interactions among the most frequently used drugs,
focusing on their combined effects and possible side effects. Lastly, we looked into the genetic
aspects associated with drug metabolism, identifying relevant genes and haplotypes poten-
tially influencing drug responses. Through these comprehensive analyses, our study aims
to provide valuable insights into medication utilization patterns, gender disparities, lifestyle
influences, and genetic factors affecting drug metabolism within the studied population.

2. Results
2.1. Determination of Most Frequent Active Ingredients of Drugs

The patient database contains 329 active drug ingredients, categorized based on their
therapeutic effect or treatment type; it is presented in Table 1, which provides the corre-
sponding percentages of the population that utilized at least one drug from each category.
The most used drugs and treatments include antihypertensives, platelet aggregation in-
hibitors and anticoagulants, cholesterol-lowering medications, gastroprotective agents,
treatments for sleep disorders, diuretics, and analgesics. Furthermore, a gender-based anal-
ysis reveals that the use of analgesics, anxiolytics, thyroid hormone therapy, treatment for
osteoporosis, and sleep disorder medications is more prevalent among female patients, while
treatments for gout and overactive bladder (OAB) are more frequent among male patients.

Table 1. Most common type of drugs or treatment with percentage of use by gender.

Type of Drug/Treatment Frequency of Use (%)  Male Frequency of Use (%)  Female Frequency of Use (%)
Antihypertensives 72.26% 78.60% 67.16%
ﬂﬁﬁﬁﬁéi@gﬁﬁ?ﬁﬁ;lms 65.84% 68.37% 63.81%
Cholesterol lowering drugs 55.49% 56.74% 54.48%
Gastroprotective agents 52.17% 50.23% 53.73%
Sleep disorder treatment 34.78% 24.19% 43.28%
Diuretics 32.92% 32.56% 33.21%
Analgesics 32.30% 22.33% 40.30%
Anxiolytics 30.85% 20.47% 39.18%
Antihyperglycemics/anti-diabetic agents 27.33% 32.56% 23.13%
Antidepressants 24.02% 17.21% 29.48%
Prostate treatment 17.39% 37.67% 0.00%
Anti-inflammatories 17.18% 14.88% 19.03%
Thyroid hormone therapy 15.73% 7.44% 22.39%
Osteoporosis/osteoarthritis treatment 10.35% 2.79% 16.42%
Anticonvulsants 9.94% 8.37% 11.19%
Gout treatment 8.90% 16.74% 2.61%
Antiarrhythmics 8.70% 7.44% 9.70%
Asthma treatment 8.70% 7.44% 9.70%
Bronchodilators 8.49% 9.30% 7.84%
Vasodilators 8.49% 9.30% 7.84%
Overactive bladder (OAB) treatment 7.45% 11.16% 4.48%
Anti-allergics 6.83% 6.51% 7.09%
Arthritis treatment 6.42% 4.65% 7.84%
Corticosteroids 6.00% 6.98% 5.22%

Glaucoma/ocular hypertension treatment 5.80% 5.58% 5.97%
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Below we present Figure 1 representing the most prevalent active ingredients. Omepra-
zole was utilized by 39.75% of the population, followed by acetylsalicylic acid (28.36%),
atorvastatin (24.84%), bisoprolol (20.08%), simvastatin (18.22%), acetaminophen, and the
combination of acetaminophen with tramadol (16.77% and 6.83%, respectively). Levothy-
roxine ranks seventh in terms of usage, with a prevalence rate of 15.73%, followed by
amlodipine (13.66%), metformin (13.04%), hydrochlorothiazide (12.84%), enalapril (11.59%),
valsartan (9.73%), lorazepam (9.32%), allopurinol (7.45%), furosemide (7.45%), pantoprazole
(7.25%), dipyrone (7.04%), citalopram (6.63%), and olmesartan (6.21%).
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Figure 1. Most frequent active ingredients of the drugs used by the total study population.

2.2. Analysis of Gender-Specific Utilization of Active Ingredients

To explore gender perspectives, we investigated the most frequently used active
ingredients among the female and male populations. Figure 2 displays the frequency
of use by women (blue) and men (red). Omeprazole is the most used active ingredient
by both genders, with a prevalence of 40.67% among women and 38.60% among men.
Acetylsalicylic acid follows closely, with a utilization rate of 23.51% among females and
34.42% among males.

For the female population, the most common drugs are: levothyroxine (22.39%),
simvastatin (21.27%), atorvastatin (20.90%), acetaminophen (19.78%), bisoprolol (15.67%),
enalapril (12.69%), hydrochlorothiazide (11.57%), metformin (10.45%), amlodipine (10.07%),
lorazepam (10.07%), acetaminophen combined with tramadol (9.70%), valsartan (8.96%),
dipyrone (8.96%), furosemide (8.21%), diazepam (8.21%), and chondroitin sulfate (7.46%).
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Figure 2. Most frequent drugs active ingredients used by female (blue) and male (red) population.

For the male population, the most prevalent drugs are as follows: atorvastatin (29.77%),
bisoprolol (25.58%), amlodipine (18.14%), metformin (16.28%), simvastatin (14.42%), hy-
drochlorothiazide (14.42%), allopurinol (13.49%), acetaminophen (13.02%), tamsulosin
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(11.63%), valsartan (10.70%), enalapril (10.23%), dutasteride combined with tamsulosin
(9.77%), lorazepam (8.37%), acenocoumarol (8.37%), and levothyroxine (7.44%).

2.3. Analysis of Most Frequent Active Ingredients in Lifestyle Habits

The role of lifestyle habits in combination with medications is crucial to consider.
Among the total population, 96 patients (19.88%) did not report the use of active ingredients
related to lifestyle habits, while 148 (30.64%) confirmed the use of between one and four
active ingredients. The remaining 239 patients (49.48%) consumed a minimum of five
active ingredients from lifestyle habits, with 131 of them (27.12%) using between 10 and
34 ingredients at the time of the study. Lifestyle habit products are substances consumed
regularly by patients that are not classified as conventional pharmaceutical drugs but
can still interact with medication. These include dietary supplements, food items, and
herbal remedies. Active ingredients, on the other hand, are compounds present in both
pharmaceutical drugs and lifestyle substances.

Using g-Nomic® personalized prescription software, we identified the active ingre-
dients associated with prescribed lifestyle habits. In Figure 3 it is shown the twenty most
frequently consumed lifestyle habit product by the studied cohort. Caffeine was the most
common, reported by 31.68% of the population, followed by green tea (26.92%), alcohol
(26.50%), grapefruit (24.22%), iron (23.19%), vitamin C (22.15%), calcium (21.53%), vitamin
E (21.33%), dairy products (19.05%), pineapple (17.39%), cinnamon (16.98%), antacids
(16.77%), chamomile (16.56%), omega 3 (15.53%), magnesium (14.70%), potassium (14.08%),
oat bran (13.25%), vitamin D (11.80%), turmeric (11.39%), and ginger (11.18%).

Figure 3. Most frequent lifestyle habits of the general population.

To analyze the gender perspective, we determined the most frequent active ingredients
related to lifestyle habits in the female and male populations. Figure 4 displays the fre-
quency of use by women (blue) and men (red). The consumption of most active ingredients
related to lifestyle habits is similar between males and females, except for calcium, vitamin
D, and calcifediol, which are significantly higher in women compared to men.

For the female population, the most frequent lifestyle habit products are as follows:
calcium (30.97%), caffeine (28.36%), green tea (27.61%), grapefruit (22.39%), alcohol (21.64%),
iron (21.64%), vitamin C (20.15%), vitamin E (19.03%), chamomile (19.03%), dairy products
(18.21%), pineapple (18.21%), magnesium (16.79%), vitamin D (16.79%), oat bran (16.28%),
cinnamon (16.04%), antacids (14.18%), potassium (13.43%), turmeric (12.69%), omega 3
(12.31%), and calcifediol (11.19%).
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Figure 4. Most frequent active ingredients of lifestyle habits used by female (blue) and male (red)
population.

For males, the most frequent lifestyle habit products are caffeine (35.81%), alcohol
(32.56%), grapefruit (26.51%), green tea (26.05%), iron (25.12%), vitamin C (24.65%), vi-
tamin E (24.19%), dairy products (20.00%), antacids (20.00%), omega 3 (19.53%), cinna-
mon (18.14%), pineapple (16.28%), potassium (14.88%), chamomile (13.49%), magnesium
(12.09%), ginger (11.63%), calcium (9.77%), turmeric (9.77%) oat bran (10.82%), and vitamin
B12 (6.72%).
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2.4. Interactions among the Most Frequent Drugs

To explore potential interactions between the 20 most frequent drugs (listed in Sec-
tion 2.1), we utilized the g-Nomic® software, which generated a comprehensive analysis of
reported interactions from the existing literature. Table 2 presents the potential side effects
that may arise from combining these drugs. The “Objective Drugs” refer to the commonly
used drugs in the study population, while the “Precipitating Drugs” are those that can
interact and influence the metabolism of the objective drugs.

Table 2. Potential side effects that may arise from combining these drugs.

Objective Drug Precipitating Drug Occurrences Type of Interaction
Omeprazole 71 Moderate inhibitor of the enzyme CYP2C9.
Acetylsalicylic Dinpvrone 5 Competes for the binding to COX-1, reducing the antiplatelet
Acid 24 effect of aspirin.
Citalopram 2 May potentiate the inhibition of platelet aggregation caused
P by aspirin.
Omeprazole 27
Atorvastatin 18 Weak inhibitors of the CYP3A4 enzyme.
Acetaminophen 14
Amlodipine Dipyrone 4 Weak inducer of the gene CYP3A4.
Acetaminophen 14 Weak inducer of the gene CYP3A5.
Bisoprolol 13 Can cause atrioventricular conduction disorders, left
P ventricular failure, and hypotension.
Bisoprolol a4 Potent inhibitor of efflux protein Pgp-MDR1, encoded by
Atorvastatin gene ABCBL.
Dipyrone 10 Weak inducer of the gene CYP3A4.
Omeprazole 37
Acetaminophen 16 Weak inhibitors of the CYP3A4 enzyme.
Atorvastatin 34
Bisoprolol Dipyrone 5 Weak inducer of the gene CYP3A4.
Acetaminophen 16 Weak inducer of the gene CYP2D6.
Amlodipine 13 Can cause atrioventricular conduction disorders, left
P ventricular failure and hypotension.
Simvastatin 1 Weak inhibitors of efflux transport protein Pgp-MDRI1, encoded
Atorvastatin 2 by gene ABCBL.
Atorvastatin 2
Omeprazole 2 Weak inhibitors of the CYP3A4 enzyme.
Acetaminophen 3
Bisoprolol 1 Potent inhibitor of efflux protein Pgp-MDR1, encoded by
Citalopram gene ABCB.
Omeprazole 2 Moderate inhibitor of the enzyme CYP2C19.
Dipyrone 2 Weak inducer of the gene CYP3A4.
Acetylsalicylic acid 2 Weak inducer of the gene CYP2C19.
Acetaminophen 3 Weak inducer of the gene CYP2D6.
Tramadol 2 Can cause serotonin syndrome.
Hydrochlorothiazide 3 Increases risk of hyponatremia and associated symptoms

(confusion, disorientation, weakness).
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Table 2. Cont.

Objective Drug Precipitating Drug Occurrences Type of Interaction
D Omeprazole 18 Moderate inhibitor of the enzyme CYP2C19 and CYP2C9.
ipyrone
by Acetylsalicylic acid 5 Weak inducer of the gene CYP2C19.
Reduction in the efficacy of diuretics because opioids induce the
Tramadol 4 - .
antidiuretic hormone secretion.
Furosemide : .
. May lead to severe hypotension and deterioration in
Enalapril 7 .
renal function.
Lorazepam Acetaminophen 10 Weak inductor of the enzyme UGT2B7.
Omeprazole 26
Atorvastatin 14 Weak inhibitors of the CYP3A4 enzyme.
Acetaminophen 10
Dipyrone 5 Weak inducer of the gene CYP3A4.
Enalapril
Valsartan 0
Can cause renal failure, hypotension, and hypokalemia.
Olmesartan 0
Furosemide 7 Can cause precipitous fall in blood pressure in some patients.
T Increases the blood pressure by inhibiting the renal synthesis of
Acetylsalicylic acid 20 prostaglandins and antagonizes the effect of enalapril.
Omeprazole 26
Levothyroxine Reduce the absorption of levothyroxine.
Pantoprazole 5
. Inhibitor of influx transport protein OCT2, encoded by
Bisoprolol 18 SLC22A2 gene.
Olmesartan 4
Metformin May increase the effect of metformin and facilitate hypoglycemia.
Valsartan
Levothyroxine 12 Can destabilize the control of blood glucose.
Hydrochlorothiazide 12 May impair the control of blood glucose in diabetic patients.
. Can lead to severe hypotension and deterioration in renal
Furosemide 6 S . -
Olmesartan function, including renal failure.
Acetylsalicylic acid 7 Can cause a reduction in the antihypertensive effect.
Simvastatin 32 Weak inhibitors of the efflux transport protein Pep-MDR1,
portp &p
Atorvastatin 49 encoded by the gene ABCBI.
Omeprazole Bisoprolol 37 Potent inhibitor of efflux protein Pgp-MDR1, encoded by
gene ABCBI.
Dipyrone 18 Weak inducer of the gene CYP3A4.
Acetylsalicylic acid 71 Weak inducer of the gene CYP2C19.
Simvastatin - Weak inhibitors of efflux transport protein Pgp-MDR1, encoded
by gene ABCBL1.
. Weak inhibitors of efflux transport protein Pgp-MDR1, encoded
Atorvastatin 14 by gene ABCB1. Weak inhibitors of the CYP3A4 enzyme.
Omeprazole 0 Weak inhibitor of the CYP3A4 enzyme.
Pantoprazole Acetaminophen 5 Weak inhibitor of the CYP3A4 enzyme.
. Potent inhibitor of efflux protein Pgp-MDR1, encoded by
Bisoprolol 10 gene ABCBL.
Omeprazole 0 Moderate inhibitor of the enzyme CYP2C19.
Dipyrone Weak inducer of the gene CYP3A4.
Acetylsalicylic acid 9 Weak inducer of the gene CYP2C19.
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Table 2. Cont.

Objective Drug Precipitating Drug Occurrences Type of Interaction
Omeprazole 32
Atorvastatin 0 Weak inhibitors of CYP3A4.
Acetaminophen 16
Simvastatin Dipyrone 4 Weak inducer of the gene CYP3A4.
Acetaminophen 16 Weak inducer of the enzyme UGT2B7.
.. Increases simvastatin blood concentrations, may increase risk
Amlodipine 13 -
of myotoxicity.
Omeprazole 15 Moderate inhibitor of the enzyme CYP2C9.
Valsartan Acetylsalicylic acid 14 Reduces the renal function.
Furosemide 2 Can cause severe hypotension and deterioration in
renal function.
Omeprazole 5 Weak inhibitor of influx transport protein OCT1, encoded by
P gene SLC22A1. Weak inhibitor of the CYP3A4 enzyme.
Pantoprazole 2 Weak inhibitor of influx transport protein OCT1, encoded by
p gene SLC22A1.
Tramadol Atorvastatin Weak inhibitor of the CYP3A4 enzyme.
Dipyrone 2 Weak inductor of the CYP3A4 and CYP2B6 genes.
6 Weak inductor of the CYP2D6 gene.
Acetaminophen
Weak inhibitors of the CYP3A4 enzyme.
Lorazepam 3 Can increase hypotension risk, respiratory depression, deep

sedation, coma, and death.

Upon reviewing Table 2, it becomes apparent that acetaminophen, allopurinol, and
hydrochlorothiazide do not appear in the list of drug active ingredients. This is because their
metabolism does not primarily rely on pathways affected by enzyme polymorphisms or
transporter proteins, thus not generating g-Nomic® messages. However, the “interactions”
section of the software provides information indicating that hydrochlorothiazide may
enhance allopurinol toxicity in some patients. Although the exact causal relationship or
mechanism of interaction has not been established, it is suspected to be associated with
decreased renal function.

According to the FDA and visualized in g-Nomic®, weak inhibitors may increase
the bioavailability of drugs by a factor ranging from 1.20 to 1.9. Moderate inhibitors may
increase the bioavailability by a factor of 2.0 to 4.9, while potent inhibitors may increase
it by a factor of more than 5. Molecular inhibitors pose a risk of overdose toxicity. The
software suggests that dose adjustments or modifications to the treatment regimen may be
necessary in such cases [15].

Furthermore, there are weak inducers that can accelerate the metabolism of other
drugs, potentially leading to treatment failure unless appropriate dose adjustments or
modifications are made. According to the software, patients may require higher doses of
the drug, typically an increase of 20% to 30%, to achieve the desired therapeutic effect.

2.5. Interactions between the Most Frequent Drugs and Lifestyle Habit Products

To investigate potential interactions between the 20 most frequent drugs (as men-
tioned in Section 2.1) and the active ingredients of lifestyle habit products (as described
in Section 2.2), we used the g-Nomic® software. This analysis generated a comprehensive
assessment of reported interactions from the existing literature and Table 3 presents the
possible side effects resulting from these combinations.
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Table 3. Possible side effects resulting from drug-lifestyle product combinations.

Objective Drug Lifestyle Habit Type of Interactions
Turmeric Weak inducer of the gene CYP2A6.
Acetaminophen Weak inducer of the gene CYP2EL.
Alcohol
conoe Can cause higher levels of the compound NADPQ1, which is very hepatotoxic.
Pineapple Potent inhibitor of the CYP2C9 enzyme.
o ) Ginger Inhibits the thromboxane synthase activity with which can interact with
Acetylsalicylic Acid & anticoagulants in a significant way.
Can increase aspirin-induced gastric mucosal damage and aspirin-induced
Alcohol . . ¢
prolongation of the bleeding time.
Allopurinol Turmeric Potent inhibitor of the efflux transport protein ABCG2, encoded by the gene BCRP.
Grapefruit Grapefruit is a potent inhibitor of the enzyme CYP3A4, increasing the bioavailability
P of the drug by a factor greater than five causing toxicity due to overdose.
. Chamomile Moderate inhibitor of the enzyme CYP3A4.
Amlodipine
Green tea Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Alcohol Weak inducer of the gene CYP3A4.
Regular cinnamon intake can lead to an exposure to one of its compounds, coumarin.
Cinnamon This may have hepatotoxic effects that could cause hepatitis when combine with
statins.
Oat bran Decrease the atorvastatin pharmacological effect.
Chamomile Moderate inhibitor of the enzyme CYP3A4.
Atorvastatin Potent inhibitor of the enzyme CYP3A4.
Grapefruit Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Potent inhibitor of the influx carrier protein OATP1B1, encoded by the gene SLCO1B1.
Potent inhibitor of the efflux transport protein ABCG2, encoded by the gene BCRP.
Turmeri
Hrmete Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Alcohol Weak inducer of the gene CYP3A4.
Grapefruit Potent inhibitor of the enzyme CYP3A4.
Chamomile Moderate inhibitor of the enzyme CYP3A4.
Bisoprolol Green tea
Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Alcohol Weak inducer of the gene CYP3A4.
Weak inhibitor of the efflux transport protein Pgp-MDR1, encoded by the
Green tea
gene ABCBI1.
Potent inhibitor of the enzyme CYP3A4.
Grapefruit Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the
gene ABCBI1.
Citalopram Chamomile Moderate inhibitor of the enzyme CYP3A4.
Green tea
Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Turmeric Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the

gene ABCBI.
Alcohol Weak inducer of the gene CYP3A4.
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Table 3. Cont.

Objective Drug Lifestyle Habit Type of Interactions
Dipyrone Pineapple Potent inhibitor of the CYP2C9 enzyme.
Grapefruit Potent inhibitor of the enzyme CYP3A4.
Chamomile Moderate inhibitor of the enzyme CYP3A4.
. Green tea
Enalapril Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Alcohol Weak inducer of the gene CYP3A4.
Potassium Can lead to a potassium retention that can cause hyperkalemia.
Calcium Increase the risk of hypercalcemia.
Hydrochlorothiazide
Alcohol Potentiates the appearance of orthostatic hypotension.
Magnesium Can reduce levothyroxine bioavailability; some patients may
Antacids develop hypothyroidism.
Levothyroxine Calcium Reduces the absorption of the drug by approximately 33%.
. Limited clinical evidence suggest that ingestion of coffee may reduce the
Caffeine . o
drug bioavailability
Iron Could reduce the drug bioavailability.
Lorazepam Alcohol Increases the hypotension risk, respiratory depression, deep sedation, coma, and death
Inhibitor of the influx transport protein OCT2 in the basolateral membrane of the
Green tea renal proximal tubule, encoded by the SLC22A2 gene; there will be less intestinal
absorption of the drug causing a lower bioavailability and possible therapeutic failure.
Metformi
erormn Ginger Can increase insulin levels and/or lower blood glucose levels that could lead
& to hypoglycemia.
Alcohol Could potentiate the risk of lactic acidosis.
Olmesartan Potassium May lead to increases in potassium in serum.
Pineapple Potent inhibitor of the CYP2C9 enzyme.
Green tea Weak inhibitors of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
) Potent inhibitor of the enzyme CYP3A4.
Omeprazole Grapefruit il :
p Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Chamomile Moderate inhibitor of the enzyme CYP3A4.
Turmeric Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Alcohol Weak inducer of the gene CYP3A4.
Green tea Weak inhibitors of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Potent inhibitor of the enzyme CYP3A4.
Grapefruit
Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.
Pantoprazole Chamomile Moderate inhibitor of the enzyme CYP3A4.
Green tea
Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Turmeric Potent inhibitor of the efflux transport protein Pgp-MDR1, encoded by the gene ABCBI.

Alcohol Weak inducer of the gene CYP3A4.
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Table 3. Cont.

Objective Drug Lifestyle Habit Type of Interactions
Regular cinnamon intake can lead to an exposure to one of its compounds, coumarin.
Cinnamon This may have hepatotoxic effects that could cause hepatitis when combine
with statins.
Oat bran Decreased simvastatin pharmacological effect.
Potent inhibitor of the enzyme CYP3A4.
Grapefruit
Potent inhibitor of the influx carrier protein OATP1B1, encoded by the gene SLCO1B1.
Simvastatin
Chamomile Moderate inhibitor of the enzyme CYP3A4.
Green tea Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Turmeric Potent inhibitor of the efflux transport protein ABCG2, encoded by the gene BCRP.
Alcohol Weak inducer of the gene CYP3A4.
Pineapple Potent inhibitor of the CYP2C9 enzyme.
Valsartan Grapefruit Potent inhibitor of the influx carrier protein OATP1B1, encoded by the gene SLCO1B1.
Potassium May lead to increases in potassium in serum.
Grapefruit Potent inhibitor of the enzyme CYP3A4.
Chamomile Moderate inhibitor of the enzyme CYP3A4.
Tramadol Green tea
Weak inhibitors of the CYP3A4 enzyme.
Caffeine
Alcohol Weak inducer of the gene CYP3A4.

Like the previous section, lifestyle habit products can act as weak, moderate, or
potent inhibitors, thereby increasing the bioavailability of drugs and potentially posing
an overdose risk. It is crucial to consider these interactions between drugs and lifestyle
habits as they can have a significant impact on treatment outcomes. The g-Nomic® software
provides valuable insights and recommendations of the potential risks and adjustments
necessary to optimize patient care and therapeutic efficacy, when available.

2.6. Genes and Haplotypes Associated with the Metabolism of the Most Frequent Drugs in the
Study Population

g-Nomic® software was utilized to analyze the most frequent drugs and lifestyle habits,
with a resulting comprehensive report with the genes associated with the metabolism
of each drug, along with their corresponding level of evidence. This evidence level was
determined based on clinical annotations, providing a score that reflects the overall strength
of the underlying evidence. The evidence level classification according to g-Nomic® is
as follows:

1. Recommended: The marker is validated and recommended for guiding therapy,
with specific instructions available in technical data sheets or guides. 2. Validated: Good
quality information links the marker to relevant clinical effects, making it beneficial for
therapy guidance. However, exact doses and contraindications require further assessment.
3. Actionable: Good quality data link the marker to plasma levels, aiding in treatment
adjustment. However, evidence of clinical consequences is lacking, making it more useful
when the patient’s genotype is known. 4. Informative: The marker is important in drug
metabolism, but data linking it to efficacy, toxicity, or plasma levels are insufficient. It may
have limited or inconclusive data, and lack of consensus renders it less relevant.

Table 4 presents the genes linked to the metabolism of the following drugs: ac-
etaminophen, acetylsalicylic acid, allopurinol, amlodipine, atorvastatin, bisoprolol, citalo-
pram, dypirone, enalapril, lorazepam, omeprazole, simvastatin, tramadol, and valsartan.
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However, after searching the PharmGKB and CPIC databases, it was determined that
hydrochlorothiazide, pantoprazole, and furosemide do not possess relevant markers with
clinical impact for metabolism genes. The associated genes for hydrochlorothiazide and
furosemide had low levels of evidence and lacked clinical relevance. Regarding panto-
prazole, the level of evidence was classified as 1A according to PharmGKB. In CPIC, a
guideline for CYP2C19 and proton pump inhibitor dosing was found, recommending phar-
macogenomic testing to determine a patient’s phenotype to prevent the risks of therapeutic
failure or potential risk of toxicity [16].

Table 4. Genes linked to the metabolism of most used drugs.

Frequent Drug Evidence Gene
Acetaminophen 4 UGT1A9
Acetylsalicylic acid 3 CYP2C9
Allopurinol 1 HLA-B5801
Amlodipine 3 CYP3A4
3 BCRP
Atorvastatin 2 CYP3A4
2 SLCO1B1
Bisoprolol 4 CYP3A4
Citalopram ! ABCBI
2 CYP2C19
4 CYP2C19
Dypirone 1 G6PD
NAT2
Enalapril 1 G6PD
Lorazepam UGTB?7
Omeprazole 3 CYP2C19
4 BCRP
Simvastatin 2 CYP3A4
1 SLCO1B1
1 CYP2D6
Tramadol 4 CYP3A4
2 SLC22A1
Valsartan 4 SLCO1B1
3 (PharmGKB) PRKCA
Hydrochlorothiazide 3 (PharmGKB) NEDD4L
3 (PharmGKB) YEATS4
Pantoprazole 1A (PharmGKB) CYP2C19
Furosemide 3 (PharmGKB) ADD1

2.7. Total Number of Concurrent Medications

Among the patients, 15 individuals (3.11%) reported not using any prescription medi-
cation, while the majority of the population used between two and ten drugs. Specifically,
131 patients (27.12%) were using between one and four medications, while the remaining
337 patients (69.77%) were classified as polymedicated individuals, consuming a minimum
of five drugs. Among the polymedicated patients, 71 individuals (14.70%) were taking
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between 10 and 23 drugs, as shown in Figure 5. The anonymous given information docu-
mented the various medications consumed by each patient, including both commercial and
active ingredient names. Additionally, information on lifestyle-related products associated
with each patient was included when available.

23 drugs -h 0.21%
22 drugs ] 0.00%
21 drugs _l 0.21%
20 drugs | 0.00%
19 drugs _l 0.21%
18 drugs ] 0.00%
17 drugs ] 0.21%
16 drugs 0.21%
15 drugs 0.62%
14 drugs 0.83%
13 drugs
12 drugs
11 drugs
10 drugs
9 drugs

8 drugs

Number of concurrent medications

7 drugs
6 drugs 16.15%
5 drugs
4 drugs
3 drugs
2 drugs

1 drug

MNo treatment

0.00% 200% 4.00% 6.00% &00% 10.00% 1200% 1400% 16.00% 18.00%

% Frequency of use

Figure 5. Distribution of the frequency of concurrent medications in the study population.

3. Discussion

The study population predominantly used the following antihypertensive drugs—
bisoprolol, amlodipine, enalapril, valsartan, and olmesartan—collectively accounting for
61.27% of the prescriptions (Figure 2). A recent nationwide study conducted in Spain
revealed a prevalence of 42.6% for hypertension in the population, with a higher prevalence
among men (49.9%) compared to women (37.1%). These findings support the results
presented in Table 1 and Figure 2.
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Platelet aggregation inhibitors/anticoagulants and cholesterol-lowering drugs were
also frequently prescribed in the study population. These medications are commonly
administered to patients with cardiovascular disease in conjunction with antihypertensives.
This observation is not surprising, considering that cardiovascular diseases are the leading
cause of mortality in Spain, accounting for 28.3% of deaths in the country in 2018, according
to the Instituto Nacional de Estadistica [17].

Among the platelet aggregation inhibitors, acetylsalicylic acid (28.36%) was the most
used. Acetylsalicylic acid is often combined with cholesterol-lowering drugs, such as
statins, to reduce the risk of vascular events and mortality in patients with cardiovascular
diseases [18].

Polypharmacy is often associated with adverse drug reactions (ADRs), with gas-
trointestinal bleeding and cardiovascular complications being the most common. These
complications are frequently linked to the use of nonsteroidal anti-inflammatory drugs
(NSAIDs) such as dipyrone, platelet aggregation inhibitors, anticoagulants like acetylsali-
cylic acid, and antihypertensive drugs [19].

To prevent or reduce gastrointestinal complications, gastroprotective drugs, partic-
ularly proton pump inhibitors (PPIs) like omeprazole and pantoprazole, are commonly
prescribed. In this study, the combined frequency of omeprazole and pantoprazole use was
47%, and a total of 51.17% of the study population took gastroprotective drugs.

When examining the gender perspective of the most prescribed medications (Figure 3),
it was observed that female patients exhibited a higher prevalence of analgesics and anti-
inflammatory drugs, including acetaminophen, acetaminophen combined with tramadol,
and dipyrone. Additionally, female patients showed a greater frequency of anxiolytics and
treatments for sleep disorders, such as lorazepam and diazepam, as well as thyroid hormone
therapy (levothyroxine) and osteoarthritis treatment (chondroitin sulfate), in comparison
to male patients. Conversely, gout and overactive bladder (OAB) treatments were more
frequent in men. Sandin Wranker et al. [20] explain that pain is more commonly reported by
women, especially in the vertebral column and legs, and is associated with a lower quality
of life among elderly women. Moreover, physiological changes that occur after menopause
can lead to symptoms related to postmenopausal syndrome, such as insomnia, osteoporotic
symptoms, depression, headache, and vasomotor symptoms, among others [21]. These
factors may explain the differences in the intake of analgesics, anti-inflammatory drugs, and
sleep disorder and anxiety treatments between female and male populations. Additionally,
females have a higher incidence of hypothyroidism and hyperthyroidism than males after
menopause [22]. OAB is a prevalent condition in both men and women, but men with a
history of prostate problems, such as benign prostatic hyperplasia, have a higher prevalence
of OAB [23]. The higher intake of prostate treatments among males (representing 37.67% of
the male population) may explain the differences in the use of OAB treatment between men
and women. As for gout treatment, evidence suggests that women are protected against it
due to the effect of female sex hormones, leading to a higher prevalence of gout in men
across all age groups [24].

Drug-drug interactions are not the only interactions that can affect the pharmacoki-
netics of a drug. Interactions can also occur between drugs and lifestyle habit products,
such as food—drug interactions and herb-drug interactions, as well as interactions between
drugs and other habits like tobacco and substance abuse. Therefore, it is crucial to consider
these factors to achieve personalized prescribing [5,25]. Consequently, one of the objectives
of this study was to determine the most frequent lifestyle habit products in the study
population and identify potential risks of drug-lifestyle habit product interactions.

Clinically relevant drug—drug and lifestyle product-drug interactions primarily affect
the bioavailability of the objective drug. Drugs like omeprazole or lifestyle habit products
such as green tea, caffeine, and certain fruits like pineapple and grapefruit are enzyme
inhibitors. These inhibitors primarily affect enzyme levels by either blocking or competing
at the site of metabolism. The types of inhibitors include competitive inhibitors (binding
to the active site of the enzyme), uncompetitive inhibitors (binding to the drug—enzyme
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complex to inhibit), and non-competitive inhibitors (binding to a different site other than
the site of metabolism). All these inhibitors can increase the bioavailability of drugs,
leading to a risk of overdose and toxicity. On the other hand, inducers act by increasing
gene transcription, resulting in higher enzyme content. Some commonly used drugs
like dipyrone or herbs like turmeric, as well as alcohol, are considered inducers that can
decrease the bioavailability of objective drugs and potentially lead to treatment failure.
Both inhibition and induction processes increase the overall metabolic rate and can cause
significant alterations in the patient’s health if not considered by the prescribing physician.
In the presence of inhibitors, drug exposure increases, requiring a decrease in dose, dosing
interval, or both [14,25].

Drug metabolism involves a complex process occurring in three phases. In phase
I, drugs are metabolized by the CYP450 superfamily of enzymes, converting them into
water-soluble products for excretion. Phase II involves the enzymatic conjugation of drugs
or metabolites from phase I with hydrophilic endogenous compounds, facilitated by trans-
ferase enzymes such as UDP-glucuronosyltransferases (UGTs) and N-acetyltransferases
(NATs). Finally, in phase III, transmembrane proteins known as drug transporters facilitate
the transport of molecules across cell membranes for excretion. ATP-binding cassette
(ABC) and solute carrier (SLC) transporters are the main proteins involved in phase III
pathways [10,14,26].

Considering that most of the study population consists of elderly individuals who
take more than five drugs per day, and some even consume between 10 and 23 drugs,
it is recommended to perform pharmacogenetic testing to prevent ADRs. The use of a
pharmacogenetics interpretation software could be beneficial in this context. g-Nomic®
allows the input of an unlimited number of drugs for a patient, providing information on
side effects, possible interactions (including interactions with lifestyle habits), and com-
prehensive reports. The software enables physicians to review the interactive list of drugs
and lifestyle habits with the patient, confirming their regular consumption and selecting
relevant items. This generates a report that includes the associated side effects of each drug,
drug-drug interactions, drug-lifestyle product interactions, and even interactions between
different lifestyle habit products (e.g., reduced calcium absorption when combined with
caffeine). The report also includes a section dedicated to identifying genes that may affect
drug response or metabolism. g-Nomic® can be implemented not only in medical doctors’
offices but also in hospitals, elderly care facilities, and other healthcare settings.

4. Materials and Methods
4.1. Study Setting and Data Collection

A database of patients undergoing pharmacological treatments was provided by
a health resort located in the province of Valencia, Spain. The data was transferred to
Eugenomic®, a leading company specializing in genomic medicine and pharmacogenetics.
To ensure patient confidentiality, all information was anonymized prior to transfer. Each
entry in the database was assigned a unique accession number, and any identifiers linking
these numbers to patient identities were removed. As a result, the anonymized database
contained no identifiable information that could be used to trace back to individual patients.

4.2. Study Population

The study population consisted of 483 patients, comprising 215 males (44.51%) and
268 females (55.49%) of the total population, respectively. The age range of the study
population spans from 40 to 92 years.

4.3. Data Analysis

The information from the database was manually input into the g-Nomic® personal-
ized prescription software (version 2.7.2723). This software encompasses a comprehensive
collection of more than 2400 active ingredients, which includes medications, food items,
dietary supplements, natural herbs, and even substances of abuse. Among these active
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ingredients, 1205 have associated pharmacogenetics information, as either substrates, in-
ducers, or inhibitors of classic pharmacogenetics pathways.

4.4. Determination of the Most Frequent Active Ingredients of Drugs

After uploading all patient data to g-Nomic®, the software provided the correspond-
ing active ingredient for each commercial name of the drug. Based on this information,
the commercial names in the Excel database were replaced with their respective active
ingredients. This allowed us to analyze the frequency of general drug use and assess any
gender disparities by determining the proportion of men and women using the twenty
most prescribed active ingredients.

4.5. Determination of the Most Frequent Active Ingredients of Lifestyle Habit Products

Regarding lifestyle habits, it should be noted that, once the drug-related informa-
tion for each patient was uploaded to g-Nomic®, the software automatically generated
a dynamic list of possible active ingredients associated with lifestyle habit products that
could potentially interact with the prescribed drugs. Physicians asked patients about the
use of these active ingredients and, if confirmed, the ingredient was added to the list of
consumed lifestyle habit products, to assess the potential side effects of the drug-lifestyle
habit product combination. Therefore, every active ingredient associated with a lifestyle
habit product appearing in the Excel database was linked to a drug-lifestyle habit product
interaction. The information obtained from g-Nomic® was transferred to the Excel database
for organization and analysis of the general frequency of use, as well as gender dispari-
ties, by determining the proportion of men and women using the twenty most frequent
lifestyle habits.

4.6. Determination of Molecular Interactions between the Most Frequent Drugs

After identifying the twenty most used drugs, a new record was created in g-Nomic®,

specifically selecting these drugs. The software includes a “PGX Report” section that pro-
vides a comprehensive overview of molecular interactions between the selected drugs. This
allowed us to observe all potential side effects associated with specific drug combinations,
as reported by g-Nomic®.

4.7. Determination of Molecular Interactions between the Most Frequent Drugs and Lifestyle
Habit Products

Following the determination of molecular interactions between the twenty most fre-
quently used drugs, the twenty most common active ingredients of lifestyle habit products
were added to the same record. Once again, the “PGX Report” section was utilized to
observe all potential side effects associated with the combinations of drugs and lifestyle
habit products.

4.8. Genes and Haplotypes Associated with the Metabolism of the Most Frequent Drugs in the
Study Population

After determining the molecular interactions between the most commonly used drugs
and lifestyle habit products, the associated genes involved in the metabolism of each drug
were examined in the “Genes” section of g-Nomic®. For drugs without genetic information
provided by the software, a thorough literature search was conducted using the Clini-
cal Pharmacogenetics Implementation Consortium (CPIC) and the Pharmacogenomics
Knowledgebase (PharmGKB). These freely available web resources provide comprehen-
sive information on how genetic variations influence drug responses and offer detailed
gene/drug clinical practice guidelines [8]. The most significant haplotypes were researched
in the Very Important Pharmacogene (VIP) summaries of PharmGKB, while allele frequen-
cies were obtained from dbSNP, the NCBI database of genetic variation.
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5. Conclusions

In conclusion, polypharmacy in the elderly population presents a significant risk for
adverse drug reactions (ADRs), which can be mitigated through two main approaches.
Firstly, identifying potential drug—-drug interactions using comprehensive databases can
prevent ADRs at a basic level. Secondly, considering patients” genetic polymorphisms
affecting drug metabolism, and applying pharmacogenetic criteria, can further personalize
prescriptions and reduce the risk of ADRs. Cardiovascular disease treatments are the most
prescribed in this population.

Both drug—drug and lifestyle product-drug interactions can affect drug metabolism.
Enzyme inhibition from these interactions may elevate drug bioavailability, potentially
leading to overdose, while enzyme induction may result in therapeutic failure.

Haplotypes and genetic variants related to drug metabolism significantly influence
ADRs by altering protein functions involved in drug metabolism, leading to various
phenotypes.

The g-Nomic® personalized prescription software integrates a comprehensive database
of drug interactions at various levels, including absorption, distribution, metabolism, and
excretion. By conducting pharmacogenetic analysis and considering lifestyle habits, g-
Nomic® ensures a comprehensive approach to personalized medicine.

The limitation of the study is that we relied solely on the g-Nomic database for
information regarding drug interactions and the interplay between drugs and lifestyle
factors, without conducting additional research. The primary outcome of the study is the
awareness of the risks of the polymedication administered to the patients, not only because
of the drug-drug interactions but also because of their lifestyles and genetic background if
known. Recommendations were positive and most likely avoided some ADRs. This study
also contributed to the implementation of pharmacogenetics at this elderly resort.

It should be noted that the study’s focus on only the interactions of the 20 most
frequently prescribed drugs constitutes a limitation. Although the studied cohort encom-
passed 330 active ingredients, considering all possible combinations would result in a
vast number of permutations, estimated at approximately 54,285 pairs. Consequently, for
practical reasons, we narrowed our analysis to the combinations involving the top 20 most
prescribed drugs, accounting for their respective frequencies.

Implementing strategies such as utilizing comprehensive drug interaction databases
and integrating pharmacogenetics analysis through tools like g-Nomic® can greatly con-
tribute to optimizing medication regimens and reducing the occurrence of ADRs.

Patents
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