
Citation: Su, M.-C.; Lee, A.M.; Zhang,

W.; Maeser, D.; Gruener, R.F.; Deng, Y.;

Huang, R.S. Computational Modeling

to Identify Drugs Targeting Metastatic

Castration-Resistant Prostate Cancer

Characterized by Heightened

Glycolysis. Pharmaceuticals 2024, 17,

569. https://doi.org/10.3390/

ph17050569

Academic Editor: Melissa

LaBonte Wilson

Received: 29 March 2024

Revised: 22 April 2024

Accepted: 26 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Computational Modeling to Identify Drugs Targeting Metastatic
Castration-Resistant Prostate Cancer Characterized by
Heightened Glycolysis
Mei-Chi Su 1 , Adam M. Lee 1, Weijie Zhang 2 , Danielle Maeser 2, Robert F. Gruener 1, Yibin Deng 3

and R. Stephanie Huang 1,2,*

1 Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota,
Minneapolis, MN 55455, USA; su000055@umn.edu (M.-C.S.); leeam@umn.edu (A.M.L.);
rgruener@umn.edu (R.F.G.)

2 Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA;
zhan6385@umn.edu (W.Z.); maese005@umn.edu (D.M.)

3 Department of Urology, Masonic Cancer Center, University of Minnesota Medical School,
Minneapolis, MN 55455, USA; dengx103@umn.edu

* Correspondence: rshuang@umn.edu; Tel.: +1-612-625-1372

Abstract: Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a
lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is
a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis.
Here, we established a computational framework to identify new pharmacological agents for mCRPC
with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation.
First, using our established computational tool, OncoPredict, we imputed the likelihood of drug
responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient
cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total,
77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These
drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and
P276-00, were selected for subsequent vitro validation based on the highest measured drug responses
associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level
in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis
condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this
condition (p < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted
to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis
activities (AR(low)Gly(high)). In addition, we integrated a protein–protein interaction network and
topological methods to identify biomarkers for these drug candidates. EEF1B2 and CCNA2 were
identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent
biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond
traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis.

Keywords: metastatic castration-resistant prostate cancer; glycolysis; oxidative phosphorylation;
cancer metabolism reprogramming; drug repurposing

1. Introduction

Prostate cancer (PC) is the second leading cause of cancer deaths in men in the United
States [1]. Many late-stage patients develop castration-resistant prostate cancer (CRPC).
CRPC is marked by a serum testosterone level below 1.7 nmol/L and the existence of
disease progression [2]. Although androgen receptor-signaling inhibitors (ARSI), such as
abiraterone [3,4] and enzalutamide [5,6], have significantly improved clinical outcomes of
CRPC patients, nearly all CRPC patients inevitably develop further resistance to ARSI [7].
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However, therapeutic options are very limited for ARSI-resistant CRPC, highlighting an
unmet need for CRPC patients.

Metabolic reprogramming constitutes a hallmark of cancer [8]. In PC, metabolic repro-
gramming is significantly associated with disease progression to CRPC [9,10]. Previous
studies have shown that patients with CRPC exhibited higher levels of glycolysis and
oxidative phosphorylation (OXPHOS) compared with those having primary PC tumors [9].
Also, enzalutamide resistance has been linked to increased glycolysis [11], highlighting
metabolic adaptation as a versatile survival strategy of cancer cells. This suggests a po-
tential drug resistance mechanism through metabolism reprogramming. Additionally, a
clinical study revealed that mCRPC patients with high glycolysis had worse survival rates
compared to those with low glycolysis [12]. Furthermore, the study found that AR negative
combined with high glycolysis was related to a higher risk of death, underscoring the
prognostic value of metabolic profiling in therapeutic decision making [12]. Taken together,
the presence of altered metabolism in CRPC progression and treatment resistance may in-
troduce a new target for designing therapies against this deadly disease. However, finding
drugs to efficiently inhibit high glycolysis tumor growth is challenging due to metabolic
plasticity, including an interplay between glycolysis and OXPHOS [13,14]. For instance,
strategies to target a single metabolic enzyme often lead to therapeutic resistance [13],
while a drug (e.g., a glutamine antagonist, JHU083) that is primarily designed to target
glutamine metabolism but also impacts multiple metabolic targets has shown reasonable
antitumor effects due to the weakened ability of cancer cells to rewire metabolic path-
ways [15], indicating the importance of a holistic approach in targeting cancer metabolism.
Therefore, targeting mCRPC with either high glycolysis activities (scores) or both with
high glycolysis/OXPHOS activities (scores), instead of targeting a single enzyme, could
potentially achieve better disease control and preclude drug resistance.

Traditional drug discovery and development are time-consuming and costly. The
preclinical discovery phase, including disease target identification and validation, com-
pound screening assay development, lead compound identification, and optimization,
often takes years before getting to the human study stage [16,17]. Drug repurposing, on
the other hand, is an appealing alternative way to identify new indications from approved
or investigational drugs in a shorter period [18]. In fact, drug-repurposing approaches
have contributed to about 30% of newly FDA-approved drugs [19]. Many successful drug
repositioning cases have shown promising value in the treatment of various cancers. For
instance, thalidomide, originally indicated for morning sickness in pregnant women, was
repositioned for combination treatment with dexamethasone for multiple myeloma [20].
Aspirin and raloxifene, originally indicated for pain relief and osteoporosis prevention [21],
respectively, have found new roles in reducing colorectal cancer risk [18,22] and breast
cancer incidence [23], demonstrating the transformative potential of repurposing in on-
cology. In recent years, machine learning approaches have been extensively applied in
various fields of drug discovery [24] (including for drug repurposing). This data-driven
predictive analytics enables us to capture and explore the relationship between predic-
tive variables and target variables. For example, models have been constructed between
predictive variables ranging from omics data (e.g., DNA, RNA, protein) [25] to clinical
data [26] and target variables like drug responses [25], disease progression [27,28], and side
effects [29]. Among these approaches, the availability of substantial in vitro measured drug
response data from a large collection of cancer cell lines (CCLs) and multi-omics data has
enabled the integration of machine learning tools in drug discovery efforts, facilitating a
more efficient and targeted approach to drug development. We have previously reported
a computational method, OncoPredict [30], based on a machine learning framework to
facilitate drug repurposing. Briefly, this approach first learns drug–gene relationships from
measured CCL drug responses and CCL transcriptome profiles. The learned relationship
is subsequently utilized to project patient responses to a large collection of drugs using
patient tumor gene expression profiles. Predicted patient sensitivity to various drugs can
then be examined with phenotypic data to propose candidate compounds addressing
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different therapeutic needs. This pipeline has been successfully applied to a number of
clinical datasets to accurately project patient responses to drugs [31].

Beyond drug nomination, many biomarker-directed treatments have clearly demon-
strated a significant clinical outcome improvement in patients with mCRPC. For example,
patients with mCRPC carrying germline and somatic mutations in homologous recombi-
nation repair genes (e.g., BRCA1, BRCA2, ATM) show improved outcomes when treated
with poly-ADP ribose polymerase (PARP) inhibitors [32] and platinum-based chemother-
apy [33,34]. Furthermore, mCRPC patients who exhibit an androgen receptor splice variant
(AR-V7) in their circulating tumor cells showed better overall survival outcomes when
treated with taxanes compared to ARSI treatments [35]. This evidence supports the critical
role of biomarker-based treatment approaches in optimizing therapeutic outcomes for
mCRPC patients.

Here, we aim to employ such a machine learning method to identify and repurpose
drugs with potent efficacy in mCRPC characterized by heightened glycolysis activity. We
applied the computational pipeline to two independent mCRPC patient cohorts to nominate
drugs of interest and subsequently validate them in PC cell lines. These drugs, once
clinically validated, can improve the treatment outcomes of deadly diseases like mCRPC.
To facilitate the optimal application of the newly nominated drug(s), we also carried out
biomarker discovery to refine patient selection criteria for treatment, emphasizing the move
toward personalized medicine in oncology.

2. Results
2.1. Identifying Candidate Drugs for mCRPC with High Glycolysis

We built drug response prediction models using our OncoPredict (version 0.2) pipeline [30].
For the training data, we employed two primary sources of CCL drug sensitivity screens:
CTRPv2 and PRISM. CTRPv2 contains measured responses to 545 drugs, covering about
375 mechanisms of action, in approximately 829 CCLs. In comparison, PRISM contains
measured responses to 1419 drugs, covering about 464 mechanisms of action, in about
481 CCLs, notably including a wide array of non-oncology drugs, thereby broadening
the potential for repurposing existing medicines for oncology applications. We imputed
patient tumor drug response scores in the two independent clinical studies of CRPC
patients (SU2C/EC and SU2C/WC). The imputed drug response scores were correlated
with calculated tumor glycolysis scores to identify the drugs of interest (DrugHG), which
are drugs whose imputed sensitivity scores are significantly and negatively associated
with tumor glycolysis scores. Similarly, dual-effect drugs (DrugDE) were identified as
those drugs whose imputed sensitivity scores were significantly and negatively associated
with both glycolysis and OXPHOS scores. Only drugs identified in both SU2C/EC and
SU2C/WC studies were considered potential drug candidates for subsequent analyses
(Figures 1 and S1).

A summary of the findings of drug nomination can be found in Table 1. Specifically, for
DrugHG, there are 4 and 54 drug candidates nominated in both SU2C/EC and SU2C/WC
clinical studies using either CTRPv2 or PRISM drug screens as training datasets, respec-
tively. For DrugDE, there are 0 and 19 drug candidates nominated in both clinical studies
from these two sources of training datasets. We narrowed down the final candidate list
by focusing on drugs that share the same mechanism of action (MOA). Across DrugHG,
nine drugs show an over-representation of one of these MOAs: aurora kinase inhibitors,
CDK inhibitors, EGFR inhibitors, HSP inhibitors, mTOR inhibitors, and topoisomerase
inhibitors. Indeed, some of these mechanisms have been reported to be related to cancer
glycolysis. For instance, EGFR signaling and CDKs have been associated with elevated
aerobic glycolysis [36]. Also, aurora kinase A inhibitors have demonstrated glycolysis
suppression in glioblastoma [37]. Similarly, HSP90 inhibitors exhibited glycolysis reduction
in advanced PC [38]. Table S1 provides a full list of the drug candidates, including DrugHG
and DrugDE.
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Figure 1. Lead compound nomination pipeline for mCRPC patients with high glycolysis activity.
OncoPredict was used to impute sensitivities of mCRPC patient tumors to various drugs. GSVA
was used to compute glycolysis and OXPHOS scores for each mCRPC patient tumor. Subsequently,
regression analysis was conducted. Drugs with predicted drug response significantly and negatively
correlated with glycolysis scores or both glycolysis and OXPHOS scores were selected as drugs
for high glycolysis (DrugHG) and dual-effect drugs (DrugDE), respectively. Only drugs identified
in both SU2C/EC and SU2C/WC studies were included for subsequent filtering steps to select
final drug candidates. The four filtering steps included (1) clinical translational focus, (2) consis-
tency confirmation across datasets, (3) sensitivity trend confirmation in pan-cancer cancer cell lines,
and (4) metabolism activation prevention. Abbreviations: mCRPC: metastatic castration-resistant
prostate cancer; SU2C/EC: Standard Up to Cancer East Coast; SU2C/WC: Standard Up to Cancer
West Coast; GSVA: Gene Set Variation Analysis; β1: a coefficient of predicted drug response of
mCRPC tumors; OXPHOS: oxidative phosphorylation.

To further narrow down our candidate drug list, a filtering strategy depicted in
Figure 1 was employed. First, the candidate drugs were filtered based on their develop-
ment status. Only the 22 drugs that were either already approved by the FDA or were in
clinical trial stages were carried forward (Figure S2A). Then, we checked consistency across
datasets. A total of 17 of the 22 drugs were consistently predicted to be efficacious in both
high-glycolysis and OXPHOS conditions across datasets (Figure S2B). Since these drugs
were nominated using their imputed values in patient tumors, we went back to the initial
CCL drug screen data to confirm the measure drug sensitivity was also correlated with
glycolysis and OXPHOS scores. A total of 15 of the 17 drugs showed higher sensitivity
among CCLs with higher glycolysis and OXPHOS features, consistent with our predictive
model’s outcomes in mCRPC tumors (Figure S2C). To anticipate and avoid the potential
development of drug resistance, we also examined the drug-induced glycolysis and OX-
PHOS activities in a mCRPC cell line (PC3) using the LINCS L1000 dataset. Specifically,
the glycolysis and OXPHOS scores in PC3 cells before and after each drug treatment were
gauged. A total of 6 of 15 drugs did not have perturbation information; of the remaining
9 drugs, 3 would lead to higher glycolysis or OXPHOS after treatment and therefore were
removed from the candidate list (Figure S2D).
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In summary, a total of 12 drug candidates were obtained after a four-step screening
process. These drug candidates are either FDA-approved or in the late stage of drug
development and were predicted to be efficacious in conditions of high glycolysis and
OXPHOS. They exhibited consistently predicted activities across different clinical datasets
and in measured drug response profiles of CCLs; perturbation analysis further suggested a
lower risk of metabolism activation after drug treatments. Figure 2 shows the coefficient and
relative p-value of regression analyses between glycolysis/OXPHOS scores and measured
drug response AUC across CCLs for these 12 drug candidates. Compared to other drugs,
P276-00 and CNF2024 showed higher significantly negative associations between glycolysis
scores and measured drug responses (p = 0.0005, p = 0.0008), while ivermectin showed
the most significantly negative association with OXPHOS scores (p = 0.0012) along with
decreased glycolysis scores (p = 0.0093, Welch’s t-test) and OXPHOS scores (p = 0.014,
Welch’s t-test) in PC3 cells post-treatment (Figure S3). Taken together, we prioritized P276-
00, CNF2024, and ivermectin for experimental validation. These three candidate drugs
were all significantly and negatively associated with glycolysis scores (Figures 3A–C and
S4A–C) and OXPHOS scores (Figures 3D–F and S4D–F) in two independent clinical studies,
suggesting enhanced drug efficacy under conditions of high glycolysis and OXPHOS in
clinical samples.

Table 1. Summary of number of drug candidates. (A) Drugs for high-glycolysis mCRPC; (B) dual-
effect drugs.

(A) Drugs Showing High Efficacy in High-Glycolysis mCRPC Patients (DrugHG)

Clinical study SU2C/EC SU2C/WC SU2C/EC SU2C/WC

Training Drug database CTRPv2 CTRPv2 PRISM PRISM

Drugs predicted to show high efficacy
in high-glycolysis mCRPC patients 41 5 260 67

DrugHG
(SU2C/EC ∩ SU2C/WC) 4 54

DrugHG
in primary MOA #,* 0 9 &

(B) Dual-Effect Drugs (DrugDE)

Clinical study SU2C/EC SU2C/WC SU2C/EC SU2C/WC

Training drug database CTRPv2 CTRPv2 PRISM PRISM

Drugs for high glycolysis mCRPC (G) 41 5 260 67

Drugs for high-OXPHOS mCRPC (O) 80 59 530 492

DrugDE (G ∩ O) 13 0 156 27

DrugDE
(SU2C/EC ∩ SU2C/WC) 0 19

Notes: #: Primary MOA is characterized by a MOA that appeared at least twice across these 54 DrugHG from
PRISM. *: Primary MOAs include aurora kinase inhibitors, CDK inhibitors, EGFR inhibitors, HSP inhibitors,
mTOR inhibitors, and topoisomerase inhibitors. &: Drugs were obtained from overlapping the top 50% significant
drugs identified from SU2C/EC and SU2C/WC studies. Abbreviations: mCRPC: metastatic castration-resistant
prostate cancer; DrugHG: drugs for high-glycolysis mCRPC; DrugDE: dual-effect drugs; SU2C/EC: Standard Up
to Cancer East Coast; SU2C/WC: Standard Up to Cancer West Coast; CTRPv2: Cancer Therapeutics Response
Portal Version 2; PRISM: Profiling Relative Inhibition Simultaneously in Mixtures; MOA: mechanism of action;
OXPHOS: oxidative phosphorylation.
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Figure 3. The correlation between glycolysis scores or OXPHOS scores with the predicted drug
response in mCRPC patients in SU2C/EC clinical studies. (A–C) Correlations between the glycolysis
score and the predicted patient response to P276-00, CNF2024, and ivermectin. (D–F) Correlations
between the OXPHOS score and the predicted patient response to P276-00, CNF2024, and ivermectin.
For each correlation plot, the correlation coefficient and its p-value are given. The statistical analysis
was performed by Spearman rank correlation and Student’s t-test with a significance level of α = 0.05.
Abbreviations: OXPHOS: oxidative phosphorylation.
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2.2. Experimental Validation

To evaluate the efficacy of selected drug candidates in advanced PC with high glycoly-
sis activity, we generated in vitro experimental models that stimulate differential glycolysis
conditions (Figure 4A). To be consistent with our drug discovery pipelines and data sources,
we used the CRPC cell line PC3 cells to establish glycolysis conditions. We input a signifi-
cantly lower amount of glucose (1 mM of glucose) in cell culture media to mimic nutrition
deprivation under the tumor microenvironment and to stimulate glycolysis activity [39],
while a 5.5 mM glucose concentration was used to mimic normal physiological glucose
level [40]. After 72 h, glycolytic flux (p < 0.05, Student’s t-test) and glycolytic capacity
(p < 0.05, Student’s t-test) were significantly higher in PC3 cells cultured in low-glucose
media compared to those cultured in normal glucose media (Figure 4B,C). This confirmed
that decreasing glucose concentration, akin to the concentration within the tumor microen-
vironment in vivo, was able to stimulate glycolysis in PC3.

To evaluate drug efficacy, we exposed control and glycolytic PC3 cells to the three
drugs of interest independently (Figure 4D). Our findings validated the predicted higher
sensitivity of all three drugs in mCRPC with high glycolysis activity. Specifically, the
dose–response curve of ivermectin in glycolytic PC3 cells was significantly different com-
pared to that observed under normal conditions (p < 0.0001, two-way ANOVA) (Figure 4E).
Similarly, we observed the same trend for CNF2024 between glycolysis and control groups
(p < 0.0001, two-way ANOVA) (Figure 4F) as well as P276-00 (p < 0.0001, two-way ANOVA)
(Figure 4G). No difference in the dose–response curve was observed when cells were treated
with docetaxel (a negative control) (p = 0.0544, two-way ANOVA) (Figure S5). In addition,
the half-maximal inhibitory concentration (IC50) of ivermectin in glycolytic PC3 cells was
lower compared to its value under normal conditions (4.2 µM versus 6.4 µM), and a similar
lower IC50 was observed for CNF2024 (40.3 nM versus 85.4 nM). In the case of P276-00, a
relatively smaller difference was observed in the IC50 (554.5 nM versus 636.1 nM). These
findings demonstrated the enhanced efficacy of the identified drug candidates when PC3
cells were subjected to a high-glycolysis condition, as opposed to a normal glycolysis status,
further validating our computational drug nomination.

2.3. Candidate Drug Biomarker Discovery

To further facilitate the potential development of identified drug candidates, we
conducted biomarker discovery, informing patient groups that may benefit from these ther-
apeutics. Here, we presented two ways to identify patient populations for our experimental
validated candidate drugs. One method was based on the phenotypic features of patients;
the other was based on the expression abundance of specific genes.
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Figure 4. Experimental validation of candidate drugs in PC3 models with normal- and high-glycolysis
conditions. (A) Workflow of development of glycolytic PC3 cells and stress test assays. (B) Glycolytic
flux and (C) glycolytic capacity of PC3 after culturing in conditional media (CM) for 72 h. * p < 0.05,
Student’s t-test. Representative results of three independent experiments with 8 to 10 replicates
per group. (D) Workflow of drug sensitivity evaluation. (E–G) Dose–response curve of PC3 after
ivermectin, CNF2024, and P276-00 treatment for 48 h, respectively, in either normal-glucose or low-
glucose media. There were 3 replicates per group, and the experiments were repeated 3 times. The
statistical analysis was performed using two-way ANOVA. Abbreviations: CM: conditional media;
ECAR: extracellular acidification rate.
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mCRPC Patients with Low AR Expression and High Glycolysis Were Predicted to Be More
Sensitive to Ivemectin and P276-00

AR low/negative subtypes of CRPC often display reduced sensitivity to androgen-
deprivation therapy (ADT) [41] or ARSI therapy [42]. In addition, a previous study sug-
gested an interplay between AR and glycolysis where patients displaying AR independence
and high glycolysis had a higher risk of mortality [12]. To this end, our identified drugs may
offer new therapeutic opportunities for these patients. Therefore, we examined whether a
patient subgroup with such phenotypic features would be more responsive to our exper-
imentally validated drugs. We categorized patients into two groups: AR(low)Gly(high)
and all others. The distribution of patients based on their AR and glycolysis activity is
displayed in Figure S6. We then conducted Welch’s t-test to investigate differences in
predicted sensitivity to ivermectin between the two strata (Figure S7). Compared to all
others, AR(low)Gly(high) patients were predicted to be more sensitive to ivermectin in both
SU2C/EC (p = 0.032) and SU2C/WC (p = 0.002) clinical studies (Figure S7A,D). Similarly,
P276-00 was predicted to be more efficacious for AR(low)Gly(high) patients as well, with
statistical significance in both SU2C/EC (p = 0.018) and SU2C/WC (p = 0.018) studies
(Figure S7B,E). However, we did not observe significant differences in predicted drug
responses to CNF2024 between the two groups (Figure S7C,F). These findings suggested a
potential therapeutic advantage for ivermectin and P276-00 in the specific AR(low)Gly(high)
patient population.

While stratification based on AR and glycolysis features associated with the predicted
patient response to ivermectin and P276-00, to further identify key molecular components,
we also set out to identify drug-specific marker genes for each of the drug candidates,
namely, ivermectin and CNF2024, by utilizing a PPI network and topological methods. We
identified a small collection of hub genes as drug-specific biomarkers based on centrality.
Centrality indicates the likelihood of a gene being functionally capable of holding com-
municating nodes together in a biological network. Due to the pivotal role in maintaining
the structural and functional integrity of the network, the expression change of hub genes
likely affected therapeutic responses. For ivermectin, we observed that hub genes identified
from 12 independent topological methods were highly overlapped, as shown in Figure 5A.
We further refined our selection of hub genes to the top four-tier consensus genes, choosing
only those identified by at least 6 out of 12 topological methods. Figure 5B presents the
correlation coefficients between the expression of hub genes and the measured response to
ivermectin. Among them, RPLP0, RPS18, NPM1, RPS2, RPS27A, and EEF1B2 exhibited sig-
nificantly negative correlation coefficients between gene expression and drug responses in
CCLs, suggesting a higher predicted efficacy of ivermectin in CCLs with higher expression
of these genes. In addition, these biomarker genes also showed significant correlations with
OXPHOS scores in patients from the SU2C/EC clinical study (Figure S8), supporting con-
nections between marker genes, OXPHOS scores, and the response to ivermectin. We found
that patients with a high expression of EEF1B2 exhibited a worse survival rate compared to
the low-EEF1B2 expression group (p = 0.033, log-rank test) (Figure 5C). This implied that
mCRPC patients with a worse outcome stratified by EEF1B2 expression abundance may
benefit from ivermectin treatment.
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Figure 5. Biomarker discovery for ivermectin. (A) Bar plot about a number of consensual hub
genes identified across 12 topological analyses. The red bars indicate the top four-tier consensus
genes. (B) Spearman correlation analysis between gene expression and measured area under the
drug-response curve (AUC) in pan-cancer CCL. p = 0.05 (dashed red line). The statistical analysis was
performed using Spearman rank correlation and Student’s t-test with a significance level of α = 0.05.
(C) Survival analysis of patients stratified based on EEF1B2 expression level in the SU2C/EC clinical
cohort. The statistical analysis was performed using the log-rank test with a significance level of
α = 0.05. Abbreviations: SU2C/EC: Standard Up to Cancer East Coast.

For CNF2024, we identified a number of highly overlapped hub genes across
12 topological methods (Figure 6A). We further narrowed down the selection of hub genes
to the top four-tier consensus genes, which were identified in at least 8 out of 12 topological
methods. Figure 6B presents correlation coefficients between the expression of hub genes
and the measured response to CNF2024 in CCLs. Among them, CCNB1, RPS2, CCNA2, and
CDT1 exhibited significantly negative correlation coefficients between gene expression and
drug responses in CCLs, suggesting higher predicted efficacy of CNF2024 for CCLs with
higher gene expression. Additionally, the gene expression of CCNB1, CCNA2, and CDT1
was corrected with glycolysis scores in patients from the SU2C/EC clinical study, implying
their expression is informative of the drug response (Figure S9). Notably, when stratified by
the median CCNA2 expression, mCRPC patient tumors with a high expression of CCNA2
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exhibited worse survival compared to those with a low expression (p = 0.00081, log-rank
test) (Figure 6C). Given its correlation with drug response, patients with high CCNA2 and
a worse clinical outcome may benefit from CNF2024. Overall, this biomarker identification
approach not only proposed drug-specific marker genes but also indicated patient groups
that may benefit from our drug candidates.
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Figure 6. Biomarker discovery for CNF2024. (A) Bar plot about a number of hub genes identified
across 12 topological analyses. The red bars indicate the top four-tier consensus genes. (B) Spearman
correlation analysis between gene expression and measured area under the drug-response curve
(AUC) in pan-cancer CCLs. p = 0.05 (dashed red line). The statistical analysis was performed by
Spearman rank correlation and Student’s t-test with a significance level of α = 0.05. (C) Survival
analysis on patients stratified based on CCNA2 expression level in SU2C/EC clinical cohort. The
statistical analysis was performed using the log-rank test with a significance level of α = 0.05.
Abbreviations: SU2C/EC: Standard Up to Cancer East Coast.

3. Discussion

In this study, we integrated computational and experimental approaches to quickly
identify efficacious drugs for mCRPC patients with elevated glycolytic activity within
the tumor microenvironment. We computationally predicted sensitivities to over one
thousand drugs in each of the mCRPC patient tumors from two independent clinical
cohorts. Our group was among the first to develop these computational approaches to
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construct relationships between molecular features and measured drug sensitivity data
using preclinical drug screening datasets and apply them to predict patient responses to
multiple drugs [31]. Since the publication of our work, many new approaches have sprung
out [43,44]. These approaches were built upon many different principles and employed
different strategies (some deep learning). Although small incremental improvements in
prediction accuracy can be found for specific drug(s)/dataset(s), overall, there is no clear
winner among all presented methods. Therefore, we chose to employ a relatively simple
but well-used method (OncoPredict) for our drug nomination pipeline.

By integrating tumors’ glycolysis and OXPHOS scores with the predicted drug re-
sponse, we identified efficacious candidate drugs targeting high-glycolysis conditions
while considering the risk of resistance caused by metabolism rewiring to high OXPHOS.
Specifically, 77 drug candidates (58 DrugHG and 19 DrugDE) were identified in both clinical
cohorts. We observed a wide spectrum of MOAs among these candidate drugs. Some of
them, such as aurora kinase inhibitors, CDK inhibitors, and HSP inhibitors, have been
shown to be mechanistically associated with cancer glycolysis [45,46]. Furthermore, we
narrowed down our candidate drug list by first assessing development status and screening
for drugs, which showed consistent results across various datasets to ensure the robustness
of our findings. Meanwhile, we examined connections between measured drug response
and glycolysis/OXPHOS among CCLs. Finally, we assessed the impact of drug treatment
on glycolysis and OXPHOS scores using perturbation-driven CCL transcriptomic profiles.
This step was used to ensure that therapeutic interventions do not inadvertently enhance
metabolic pathways that could exacerbate the disease or lead to treatment resistance. Finally,
based on the effect size between the measured drug responses and glycolysis/OXPHOS
scores in CCLs, three drugs were prioritized to be evaluated in mCRPC cells experimentally.
All three drugs showed higher efficacy in the high-glycolysis conditions in preclinical
testing, echoing our computational projections. Lastly, biomarker identification was carried
out. We found that ivermectin and P276-00 were predicted to be more responsive in the
AR(low)Gly(high) mCRPC patient population. Furthermore, patients with a high expres-
sion of marker genes EEF1B2 and CCNA2 expression displayed worse survival outcomes
and may benefit from ivermectin and CNF2024 treatment.

Ivermectin has been reported to achieve its anti-cancer effect through multiple diverse
paths [47], including the inhibition of multidrug resistance proteins [48], the Akt/mTOR
pathway [49], and other tumor progression pathways [50,51]. Relevant to this work,
ivermectin has been shown to achieve anti-cancer effects by impacting cancer energy
metabolism in several malignancies. In glioma, ivermectin inhibits glycolysis by decreasing
the expression of glucose transporter 4 (GLUT4), one of the key transporters in glycol-
ysis [52]. In renal cancer, ivermectin decreases the mitochondrial membrane potential,
mitochondrial respiration, and ATP generation, leading to mitochondrial dysfunction and
oxidative damage [53]. A similar effect was also observed in breast cancer cells [54]. All of
these results are consistent with our findings in mCRPC and support the use of ivermectin
to combat high-glycolysis mCRPC.

CNF2024 is an HSP90 inhibitor, a class of drugs that is known to modulate the sta-
bility of androgen receptor (AR) [55]. A study co-administrating the HSP90 inhibitor
17-allylamino-17-demethoxygeldanamycin (17-AAG) and enzalutamide has demonstrated
enhanced inhibition of PC tumors by disrupting AR protein stability, thereby presenting
a promising therapeutic intervention for mCRPC [56]. Despite in vivo tumor inhibition
results observed with 17-AAG, clinical trials have revealed challenges related to poor
bioavailability and significant toxicity [57]. Consequently, there has been a concerted effort
to explore alternative small-molecule HSP90 inhibitors, among which CNF2024 has shown
considerable promise [58]. In Hodgkin’s lymphoma, CNF2024 has exhibited efficacy, re-
sulting in a statistically significant decrease in tumor size [58]. Furthermore, in vitro cell
viability studies conducted on L540 and L540cy cell lines showed that CNF2024 had IC50
values more than 7.5 times lower than that of 17-AAG, underscoring its potential as a more
effective therapeutic agent [58]. Another HSP90 inhibitor, SU086, has been identified for its
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direct impact on glycolysis and its inhibitory effects on PC tumor invasion, migration, and
growth [38]. Combining SU086 with enzalutamide and abiraterone in CRPC cell lines has
revealed synergistic and additive effects, respectively [38]. In our pipeline, we initially iden-
tified two HSP 90 inhibitors (ganetespib and CNF2024) as drug candidates in both mCRPC
patient cohorts. As expected, both ganetespib and CNF2024 exhibited a negative correlation
between glycolysis scores and measured sensitivity toward these drugs in CCLs. However,
ganetespib sensitivity was positively correlated with OXPHOS scores in CCLs, suggesting
a weakened efficacy of ganetespib in a high-OXPHOS condition. Interestingly, docetaxel,
one of the standard care therapies for mCRPC, has been shown to induce metabolism repro-
gramming from glycolysis to OXPHOS in PC [59]. A previous clinical trial of ganetespib
in docetaxel-pretreated mCRPC patients showed a limited clinical benefit [60], implying
a potential drug insensitivity, likely in part, from high OXPHOS. Unlike ganetespib, our
findings suggest CNF2024 may retain its efficacy even under metabolic reprogramming to
high OXPHOS, further warranting clinical evaluation of this drug.

ARSIs, such as enzalutamide and abiraterone, have significantly improved clinical
treatment outcomes of CRPC. Yet, intense treatments of ARSIs often result in therapy
resistance partially due to a reduction in AR signaling [61] or AR expression [62]. About
15–20% of CRPC patients treated with ARSIs eventually transdifferentiate into a more
lethal disease, neuroendocrine prostate cancer (NEPC) [63,64]. Previous studies have
suggested that metabolism reprogramming drives NEPC differentiation [65] and have
identified elevated glycolysis [66] and low AR signaling activity as biological features of
NEPC [61]. In our biomarker discovery based on the AR and glycolysis activities, we
identified ivermectin and P276-00 as possessing higher efficacy in the AR(low)Gly(high)
mCRPC population. This warranted a follow-up study of these drugs to delay the disease
progression of ARSI-pretreated CRPC to NEPC.

Many ivermectin-associated hub genes identified through our biomarker discovery
pipeline are ribosome synthesis-related genes, such as RPLP0, RPS18, RPS2, RPS27A, and
EEF1B2. Studies have shown ribosome synthesis is relevant to tumor progression and
therapeutic resistance [67]. Here, several ivermectin biomarkers identified in our work
have been reported to play a critical role in PC. For instance, RPLP0 has been identified
as a key regulator in PC [68], while RPS18 is linked to PC recurrence and prognosis [69].
RPS2 has been recognized as a highly selective therapeutic target for PC; knocking down
RPS2 expression using oligonucleotides in an in vivo PC3-3ML model led to a promising
PC eradication [70]. Beyond PC, one of the identified hub genes, NPM1, has significant
associations with glycolysis in lung cancer [71,72] and pancreatic cancer [73]. Among these
ribosome synthesis-related genes, we observed a correlation between these hub genes and
OXPHOS. Studies have found that OXPHOS caused MCF7 cells to be more sensitive to
ivermectin [54], and ivermectin exhibited a promising tumor growth inhibition through
inducing mitochondrial dysfunction and oxidative stress in renal cell carcinoma highly
reliant on OXPHOS for survival [53]. This evidence supported our identified predicted
drug response biomarkers for ivermectin. Taken together, hub genes identified by our
study are connected with ivermectin’s mechanism of action and play a crucial role in the
context of PC and cancer energy metabolism.

In biomarker discovery for CNF2024, cell cycle-related genes such as CCNB1, CCNA2,
and CDT1 were identified. Previous studies have shown that CNF2024 induced G2 cell
cycle arrest in Hodgkin’s lymphoma cells [58] and decreased cell cycle-related proteins,
including CDK1, CDK2, and cyclin D3, along with either G1 or G2 cell cycle arrest in
multiple lymphoma cell lines [74]. The relationship between HSP90 and the cell cycle
is highly connected since HSP90 directly regulates key cell cycle regulator proteins [75].
Beyond the cell cycle, we found that the identified biomarkers are relevant to glycoly-
sis. For example, CCNB1 has been identified as one of the top genes strongly correlated
with glycolysis in various cancers [76]. Additionally, Jiang et al. stratified patients with
hepatocellular carcinoma (HCC) into low and high risk based on a glycolysis signature
and found the cell cycle to be one of the enriched pathways from differentially expressed
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genes among high-risk patients [77]. Furthermore, under hypoxia, a factor that induces
glycolysis, CCNA2 expression was upregulated in acute myeloid leukemia [78], and a
similar relationship between hypoxia and CDT1 was found in lung cancer as well [79].
In addition, cyclin A (encoded by CCNA2) expression was suppressed when the platelet
isoform of phosphofructokinase 1 (PFKP), a key glycolysis enzyme, was knocked down in
colorectal cancer cells [80]. Notably, CCNA2 has been identified as a prognostic factor in
patients with PC [81]. Overall, these connections between glycolysis and hub genes align
with our research findings.

Biomarkers identified in the current study were derived independently from multiple
computational methodologies. Yet, they have not been experimentally validated. This
warrants subsequent studies to functionally study the role of genes and the drug of interest.

4. Materials and Methods
4.1. Data Acquisition and Preprocessing

The Cancer Therapeutics Response Portal Version 2 (CTRPv2) [82] drug response
database was obtained from the Cancer Target Discovery and Development (CTD2) Net-
work’s data portal, maintained by the National Cancer Institute’s Office of Cancer Genomics.
The database is accessible via the following website: https://ocg.cancer.gov/programs/
ctd2/data-portal (accessed on 19 December 2021). The normalized Profiling Relative In-
hibition Simultaneously in Mixtures (PRISM) area under the dose–response curve (AUC)
data was downloaded from https://oncotherapyinformatics.org/simplicity/ (accessed on
3 August 2021) [83]. CCLE gene expression data were sourced from the Broad Institute’s
Cancer Cell Line Encyclopedia (CCLE) through the Dependency Map (DepMap) portal [84].
The gene expression profile of mCRPC tumors from the Standard Up to Cancer East Coast
(SU2C/EC) study was accessed through the cBioportal [85]. Originally, the unit of gene
expression data for the SU2C/EC patients was fragments per kilobase per million (FPKM)
and was preprocessed as log2(FPKM + 1). Additionally, we obtained gene expression
data of mCRPC tumors from an independent clinical study, namely, the Standard Up to
Cancer West Coast (SU2C/WC) [86]. The unit of gene expression data for mCRPC tumors
from the SU2C/WC study was originally transcript per million (TPM) and was prepro-
cessed as log2(TPM + 1). Perturbation-driven gene expression profiles of PC3 cells were
downloaded from the Connectivity Map (CMAP) [87]. All computational analyses were
performed with R, version 4.1.0. The R scripts, along with the relevant data, can be accessed
at https://osf.io/nt4vu/.

4.2. Impute Drug Response in Patients with mCRPC

To impute drug responses in patients with mCRPC, we employed a computational
method OncoPredict [30,31], which leverages large-scale drug screens on CCLs to estimate
sensitivities to various drugs in patient tumor datasets through ridge regression. In this
study, we imputed drug responses for approximately 1900 agents, from CTRPv2 and
PRISM, in each mCRPC patient tumor from two different clinical cohorts (namely, the
SU2C/EC and the SU2C/WC). The following data preprocessing parameters were defined
for employing OncoPredict. First, common genes between mCRPC patients and CCLs
were selected and homogenized by ComBat [88] to remove batch effects. Second, power
transformation was applied to CCLs’ measured drug response data, and then feature
selection was performed to filter for the top 50% of the genes with the highest variation
across samples. After model training from CCLE gene expression (predictors) and drug
responses (dependent variables), the estimated coefficients of the trained model were used
to predict the likelihood of patients’ drug responses. A lower value of predicted drug
response (AUC) suggests increased sensitivity to the specific drug.

4.3. Regression Analysis to Identify Efficacious Drugs for mCRPC with High Glycolysis

The objective of this research study is to identify drugs efficacious for mCRPC patients
characterized by elevated glycolysis. To achieve that goal, data analysis was performed

https://ocg.cancer.gov/programs/ctd2/data-portal
https://ocg.cancer.gov/programs/ctd2/data-portal
https://oncotherapyinformatics.org/simplicity/
https://osf.io/nt4vu/
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to find two types of drugs: (1) drugs efficacious for high glycolysis (drugHG) and (2)
drugs efficacious for both high glycolysis and OXPHOS, called dual-effect drugs (drugDE).
The former one is intended to inhibit high-glycolysis tumor growth, and the latter one
is to inhibit both high glycolysis and OXPHOS tumor growth to minimize the risk of
drug resistance development from metabolism rewiring to OXPHOS. We first calculated
glycolysis scores of mCRPC tumor samples from both SU2C/EC and SU2C/WC studies
by using the R package GSVA [89] and then constructed linear regression models to probe
the relationship between patients’ glycolysis/OXPHOS scores and their predicted drug
response, as described in Equations (1) and (2). Of note, since the age of procurement is
significantly associated with OXPHOS scores in the SU2C/EC study (p = 0.0252, F-test), we
adjusted for the age of procurement in the OXPHOS linear regression model if information
on the age of procurement was given.

Glycolysis Score = β0 + β1 × Predicted Drug Response (1)

OXPHOS Score = β0 + β1 × Predicted Drug Response
+β2 × Age at Procurement

(2)

Here, Glycolysis Score represents a GSVA glycolysis signature score of each mCRPC
tumor based on 40 glycolysis-related genes [90] on a scale of 0–100; OXPHOS Score rep-
resents a GSVA OXPHOS signature score of each mCRPC tumor based on the hallmark
OXPHOS gene set [91] on a scale of 0–100; Predicted Drug Response indicates the predicted
sensitivity of a patient to a specific drug; Age at Procurement is the patient’s age when a
tumor sample was taken from them. β0 is the intercept of a linear regression model; β1 is
a coefficient of predicted drug response of mCRPC tumors; β2 is a coefficient of the age
of procurement.

Each drug has its linear regression model. Only the drugs that show a significantly
negative coefficient β1 with a false discovery rate (FDR) of less than 0.05 in both SU2C/EC
and SU2C/WC clinical studies were included for subsequent analysis (Figure S1). Herein, a
drug with a negative coefficient β1 implies that high-glycolysis/OXPHOS mCRPC tumors
are more sensitive to the drug compared to low-glycolysis/OXPHOS mCRPC tumors.

4.4. Selecting Drug Candidates with Higher Robustness for Validation

To narrow down our selection of drug candidates in two clinical studies, we im-
plemented four stringent filtering criteria to ensure the selection of robust and clinically
relevant drugs. First, priority was given to drug candidates that have received FDA ap-
proval or have been advanced into clinical trials, emphasizing had regulatory status and
the potential for rapid clinical application. Second, we eliminated drugs that exhibited
significantly opposing correlations between their predicted drug responses and glycolysis
or OXPHOS scores when analyzed across different datasets. Third, we focused on drugs
that consistently demonstrated a negative correlation between the measured drug response
AUCs and both glycolysis and OXPHOS scores in pan-cancer CCLs. Lastly, we minimized
the risk of metabolic activation post-treatment by excluding drugs that significantly increase
glycolysis or OXPHOS scores after 24 h of treatment in human prostate cancer cell line PC3
based on perturbation-driven gene expression profiles sourced from the Connectivity Map
(CMAP) [87].

4.5. Cell Culture and Reagents

PC3 cells (ATCC) were maintained in F-12K (ATCC) media with 10% FBS (Thermo
Fisher Scientific, Gibco, Waltham, MA, USA) at 37 ◦C with 5% CO2. PC3 models of
high and normal glycolysis were achieved by culturing PC3 cells in two different glucose
concentration media (1 mM and 5.5 mM). Glucose conditional medium was made using
DMEM (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. A1443001) supplemented
with 1 mM or 5.5 mM of glucose, respectively, with 2 mM of glutamine and 10% FBS.
Ivermectin (CAS No. HY-15310), CNF2024 (CAS No. HY-10212), P276-00 (CAS No. HY-
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16559), and docetaxel (CAS No. HY-B0011) for drug candidate experimental validation
were sourced from MedChem Express (Monmouth Junction, NJ, USA) and dissolved in
dimethyl sulfoxide (DMSO) to achieve 5 mM drug stock solutions. The kit for the Glycolysis
Stress Test was obtained from Seahorse Bioscience (Billerica, MA, USA).

4.6. Cell Growth and Viability

PC3 cells were harvested and stained with Hoechst prior to seeding at a density of
8000 cells per well into 96-well tissue culture plates. Cells were allowed to attach for
24 h while incubating at 37 ◦C with 5% CO2 prior to changing the culture medium to
either a low-glucose (1 mM) or a normal-glucose (5.5 mM) conditional medium. Culture
plates with the two conditional media were incubated for 24 h prior to the addition of
candidate compounds at concentrations ranging from 2.3 µM to 10 µM for ivermectin,
1.6 nM to 400 nM for CNF2024, 0.2 µM to 6 µM for P276-00, and 10 nM to 500 nM for
docetaxel (as a negative control). Over the duration of the drug exposure, 1 mM of glucose
was added every 24 h to maintain the same level of glucose difference between the two
conditional media and prevent cell death under nutrition stress conditions. Cell counts
were obtained longitudinally every 24 h through the 96 h drug exposure utilizing the
Cytation I Live Cell Imaging System (Agilent BioTek, Santa Clara, CA, USA). To account
for cell seeding differences, prior to the addition of the candidate drug, cell counts were
transformed by subtracting the baseline cell count obtained 24 h after the addition of the
conditional glucose media (delta cell count). Delta cell counts for each drug exposure
condition at each time point were normalized to the no-drug control condition to obtain
the percentage of normalized cell count. A two-way ANOVA was conducted to analyze
the significance of the percentage of normalized cell count differences at 48 h between low-
and normal-glucose groups.

4.7. Seahorse XFp Glycolysis Stress Test Assay

To measure the glycolysis activity of PC3 cells in low- and normal-glucose conditional
media, we used a Seahorse XF cell glycolysis stress test kit and conducted the test using
Agilent Seahorse XFe96 analyzer (Seahorse Bioscience, Agilent Technologies, Inc., North
Billerica, MA, USA) according to the manufacturer’s protocol. After cells were pre-cultured
in conditional media for 48 h where 1 mM of glucose was added per 24 h to prevent cells
from dying under the nutrition stress condition, 1.4 × 104 cells were plated directly onto
Seahorse XFp plates to a final volume of 80 µL overnight to reach total 72 h in conditional
medium before measuring glycolysis activity. Until cells reached 72 h of culturing in a
conditional medium, the medium was replaced with a 2 mM of glutamine-supplemented
Seahorse base medium, pH 7.4, and incubated in a deoxygenated 37 ◦C incubator for one
hour. Additionally, flux cartridges and wells were prepared by hydrating them overnight in
a deoxygenated incubator before conducting the assays. Immediately before conducting the
Seahorse glycolysis stress test, the medium was replaced with a final volume of 180 µL of the
fresh Seahorse medium according to the manufacturer’s protocol. To prepare the Seahorse
glycolysis stress test, 20 µL of glucose (10 mM), 22 µL of oligomycin (1 µM), and 25 µL of
2-DG (50 mM) were first loaded into ports A, B, and C of the flux cartridge according to the
manufacturer’s recommendations. The first hour in the glucose-free XF Seahorse medium
is for measuring the basal level of medium acidification. After that, glucose was injected to
measure glycolysis medium acidification, followed by oligomycin to measure maximum
glycolytic capacity and 2-DG to calculate glycolytic reserve sequentially. In the end, cells
were stained with Hoechst 33342 (118 µg/mL final concentration), and the fluorescence
field was scanned by a Cytation 1—Cell Imaging Multimode Reader (Agilent BioTek, Santa
Clara, CA, USA) and normalized based on cell counts. This glycolysis-relevant metabolism
activity was described by using the extracellular acidification rate (ECAR). Glycolytic flux
is the ECAR value of glucose-treated cells minus the baseline (time point 6 minus time
point 3). Glycolytic capacity was determined by subtracting the baseline ECAR value at
time point 3 from the ECAR value at time point 9 after treatment with oligomycin. A
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Student’s t-test was used to analyze the significance of the glycolysis flux and the glycolysis
capacity differences between low- and normal-glucose groups.

4.8. Stratifying Patients Based on AR and Glycolysis Status for Biomarker Discovery

We stratified patients into two distinct groups: those with low AR activity and high
glycolysis (AR(low)Gly(high)) and all others. Subsequently, we compared the predicted
drug responses of the experimentally validated candidate drugs (ivermectin, CNF2024,
and P276-00) between these two groups.

To determine AR activity, for each patient, an AR activity score was calculated using a
set of signature genes [92]. The log2-FPKM values (for the SU2C/EC study) or log2-TPM
values (for the SU2C/WC study) of each signature gene were normalized across all tumor
samples to z-scores. A patient’s AR activity score was then derived by summing up all
z-scores. Scores across patients were scaled to range between 0 and 1, with a higher value
indicating higher AR pathway activity. AR(low) was characterized by an AR score lower
than the median of AR scores across all patients, while Gly(high) was defined as a glycolysis
score higher than the median of glycolysis scores. A Student’s t-test was used to analyze
the significance of predicted drug response differences between AR(low)Gly(high) and
other groups.

4.9. Biomarker Discovery through PPI Network

To identify the potential biomarkers for validated drug candidates, we initially iden-
tified genes that exhibited a strong correlation with predicted drug responses using a
correlation coefficient of 0.4 as a threshold to ensure a focus on the most relevant genetic in-
teractions. Afterward, a protein–protein network (PPI) comprising these highly correlated
genes was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING v12: https://string-db.org/ (accessed on 20 September 2023)) [93], with a confi-
dence score of ≥0.7 and a maximum number of interactors set to zero. The constructed PPI
network was subsequently analyzed using Cytoscape software (version 3.9.1) [94] with the
cytoHubba plugin [95] to identify the top 50 hub genes from 12 topological analysis meth-
ods independently. The 12 topological analysis methods include Betweenness, Bottleneck,
Closeness, Clustering Coefficient, Degree, Density of Maximum Neighborhood Component,
EcCentricity, Edge Percolated Component, Maximal Clique Centrality, Maximum Neigh-
borhood Component, Radiality, and Stress. The resultant 50 hub genes from independent
topological methods were then overlapped to derive consensual hub genes. To further
prioritize the consensual hub genes relevant to drug sensitivity, Spearman’s rank correlation
analysis between gene expression level and measured drug response AUC in CCLs was
conducted. Genes exhibiting a significantly negative Spearman correlation (p < 0.05) were
chosen as potential biomarkers for drug candidates. This selection indicates that higher
expression levels of these genes correlate with higher drug efficacy in CCLs.

4.10. Survival Analysis

Since biomarker discovery is identified based on the level of connectedness of highly
correlated genes in the PPI network, there is a high chance of the identified biomarkers
possessing an important functional feature, such as relevance to disease progression. To
investigate that, patients with mCRPC from the SU2C/EC clinical study were categorized
into two groups, a low-expression group and a high-expression group based on the median
of gene expression levels. Survival analysis was then conducted, comparing these two pa-
tient subpopulations. Survival probabilities were calculated by the Kaplan–Meier method,
and group comparisons were performed using the log-rank test.

5. Conclusions

In summary, we efficiently identified and validated multiple drugs, each with dif-
ferent MOAs, demonstrating efficacy in treating mCRPC characterized by heightened
glycolysis in the tumor microenvironment. Our biomarker study also revealed several

https://string-db.org/
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potential biomarkers for patient stratification when using these newly nominated drugs.
The significance of this study is to expand new efficacious therapeutics beyond traditional
androgen deprivation therapies by precisely targeting the mCRPC patient population with
a unique biological feature, high glycolysis. These newly nominated drugs and biomarkers,
once clinically validated, can improve the treatment outcomes of patients with mCRPC.
Looking ahead, the insights gained here could inform the development of more targeted,
effective, and personalized treatment strategies, revolutionizing the care for patients with
this aggressive form of PC.
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