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Abstract
Malaria is caused by species in the apicomplexan genus 
Plasmodium, which infect hundreds of millions of people 
each year and kill close to one million. While malaria is 
the most notorious of the apicomplexan-caused diseases, 
other members of the eukaryotic phylum Apicomplexa 
are responsible for additional, albeit less well-known, 
diseases in humans, economically important livestock, and 
a variety of other vertebrates. Diseases such as babesiosis 
(hemolytic anemia), theileriosis and East Coast Fever, 
cryptosporidiosis, and toxoplasmosis are caused by the 
apicomplexans Babesia, Theileria, Cryptosporidium and 
Toxoplasma, respectively. In addition to the loss of human 
life, these diseases are responsible for losses of billions 
of dollars annually. Hence, the research into new drug 
targets remains a high priority. Ribonucleotide reductase 
(RNR) is an essential enzyme found in all domains of 
life. It is the only means by which de novo synthesis of 
deoxyribonucleotides occurs, without which DNA replication 
and repair cannot proceed. RNR has long been the target of 
antiviral, antibacterial and anti-cancer therapeutics. Herein, 
we review the chemotherapeutic methods used to inhibit 
RNR, with particular emphasis on the role of RNR inhibition 
in Apicomplexa, and in light of the novel RNR R2_e2 subunit 
recently identified in apicomplexan parasites.

Introduction
The Apicomplexa are a group of single-celled, eukaryotic 
organisms that, together with the ciliates and dinoflagelates, 
form the major lineages in the Alveolates. All Apicomplexa, 
save the predatory flagellates Colpodellida, are pathogenetic, 
obligate, intracellular parasites (Adl et al., 2005; Morrison, 
2009). They are characterized by the presence of an apical 
complex, a structure involved in host-cell invasion, which is 
located at the anterior end of the cell. Most apicomplexans 
also possess a specialized organelle called the apicoplast, 
a secondary endosymbiotic plastid believed to be of red 
algal origin (Blanchard and Hicks, 1999; Fast et al., 2001; 
Janouškovec et al., 2010). Within the apicoplast occur 
processes essential for the parasite's survival, such as 
heme and lipid biosynthesis. Another defining characteristic 
of apicomplexans is their inability to synthesize purine rings 
de novo and hence their need to salvage exogenous purines 
via a variety of different pathways (Booden and Hull, 1973; 
Chaudhary et al., 2004; de Koning et al., 2005; Cassera 
et al., 2008; Madrid et al., 2008). These organisms have 
complex (indirect) life cycles, and they often exploit multiple 

hosts/vectors and transition between life cycle stages is 
dependent upon a diverse array of environmental cues.
 The biological characteristics that differentiate 
apicomplexans from their vertebrate hosts have often been 
considered optimal targets of new therapeutics to control 
these eukaryotic pathogens. Alternatively, essential and 
strongly conserved proteins can be targeted, provided that 
they differ from their vertebrate homologs in such a way that 
minimizes potential cross-reaction and toxicity.
 The enzyme ribonucleotide reductase (RNR) is one 
such example. RNR utilizes free radical chemistry to catalyze 
the reduction of ribonucleotides to deoxyribonucleotides 
(Thelander and Reichard, 1979; Reichard, 1988). It provides 
the only de novo means of generating the essential building 
blocks for DNA replication and repair across all domains 
of life and, as such, it is the rate-limiting step in DNA 
synthesis (Jordan and Reichard, 1998; Lundin et al., 2009). 
Additionally, RNR is critical for maintaining a balanced pool 
of DNA precursors during chromosome replication (Herrick 
and Sclavi, 2007). An unbalanced deoxyribonucleotide 
triphosphate pool may lead to an increase in mutation and 
disease (Lin and Elford, 1980; Reichard, 1988; Chabes et 
al., 2003; Wheeler et al., 2005; Gon et al., 2006; Mathews, 
2006; Kumar et al., 2010).
 Here we review the chemotherapeutic methods used to 
inhibit the essential enzyme RNR, with particular emphasis 
on the novel RNR R2_e2 subunit recently identified in 
apicomplexan parasites (Munro et al., submitted) and on the 
malaria-causing genus Plasmodium. The R2_e2 subunit is 
unique to the Apicomplexa and as such, it can potentially be 
used to specifically target apicomplexan pathogens.

Apicomplexan parasites are responsible for devastating 
infectious diseases
The phylum Apicomplexa consists of more than 4,000 
described species (Levine, 1988), many of which are of 
medical, agricultural, and economic importance and whose 
adverse impact on human society cannot be overstated. 
Among the most notorious are Plasmodium, Babesia, 

Theileria, Cryptosporidium, and Toxoplasma the causative 
agents of malaria, babesiosis, theileriosis and East Coast 
fever, cryptosporidiosis, and toxoplasmosis, respectively. 
They are responsible for causing millions of human deaths 
and billions of dollars in productivity and material losses 
each year (Sachs and Malaney, 2002; Corso et al., 2003; 
Rowe et al., 2006; Spielman, 2009). Currently, five species 
of Plasmodium are known to cause malaria in humans, P. 

falciparum, P. knowlesi, P. malariae, P. ovale, and P. vivax 
(Rougemont et al., 2004; Singh et al., 2004; Cox-Singh et 
al., 2008), of which P. falciparum is the most deadly and 
P. vivax the most geographically widespread. The life cycle 
of Plasmodium alternates between a vertebrate host and 
mosquito vector and involves four major developmental 
stages in the vertebrate host: sporozoites, merozoites, 
trophozoites, and gametocytes (Bledsoe, 2005; Brown and 
Catteruccia, 2006).
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Prioritization of apicomplexan drug targets
There is currently no fully efficacious vaccine on the market 
against any apicomplexan species and drug treatment is 
the method of choice in the management of apicomplexan 
diseases. Modern approaches to drug design, made 
possible with the advent of genome sequencing, emphasize 
defining and targeting metabolic and molecular differences 
between host and parasite to avoid host side effects (Croft, 
1997). This may be achieved with the selective targeting of 
parasite-specific enzymes or by targeting those which are 
highly divergent or have distinct binding sites and are thus 
sufficiently different to be selectively targeted (Coombs, 
1999; Cerqueira et al., 2007). Also important is that the 
protein target be essential to the growth, reproduction, or 
survival of the parasite. Finally, knowledge of the gene 
expression pattern of potential target proteins is necessary to 
link drug administration with the critical and relevant stages 
of the pathogen's life cycle. This is particularly pertinent to 
organisms characterized by differentially expressed, stage-
specific, and often stage-unique gene expression, such as 
apicomplexans (Coulson et al., 2004). It has been suggested 
that targeting the intraerythrocytic life stages of Plasmodium 
(the ring forms, trophozoites, schizonts, and merozoites), 
when clinical symptoms are manifested, is of particular 
interest (Yeh and Altman, 2006). However, targeting multiple 
life stages, for example controlling both the liver and blood 
stages of Plasmodium, may be more conducive to the 
ultimate goal of disease eradication (Alonso et al., 2011).

Current control strategies and challenges
Drug targets for control of apicomplexans have focused on 
parasite metabolic processes. These include processes 
within the cytosol, mitochondrion, digestive vacuole, 
synthesis of macromolecular and metabolic enzymes, and 
processes involved in membrane synthesis and signaling 
(Olliaro and Yuthavong, 1999; Padmanaban, 2003; Fidock 
et al., 2004; El Bissati et al., 2006). Enzymes in the purine 
salvage pathways, essential to these pathogens, are also 
potential drug targets (Tracy and Sherman, 1972; Krug 
et al., 1989; Parker et al., 2000; Gardner et al., 2002; 
Raman and Balaram, 2004; Striepen et al., 2004; Ting 
et al., 2005; Downie et al., 2008), as are all proteins and 
processes related to the apicomplexan-specific organelle, 
the apicoplast (Foth et al., 2003; Sato and Wilson, 2005; 
Wiesner et al., 2008; Lizundia et al., 2009). Antibiotics like 
doxycycline, which specifically target plastid pathways and 
impair the expression of apicoplast genes, can be used 
to target apicomplexans (Ralph et al., 2001; Leander and 
Keeling, 2003; Dahl et al., 2006). Apicoplast drug targets 
have included the apicoplast's metabolic pathways (e.g. 
DNA replication, transcription, protein translation, fatty acid 
biosynthesis, and isoprenoid biosynthesis), or targeting 
proteins encoded by the host's nuclear genes that are 
destined for the apicoplast (McFadden and Roos, 1999; 
Roos et al., 1999; Roos et al., 2002; Ralph et al., 2004; 
White, 2004; Waller and McFadden, 2005; Dahl and 
Rosenthal, 2008; Prusty et al., 2010).
 The availability of genome sequences from several 
species and isolates of Plasmodium and other Apicomplexa 
facilitates the identification of novel, potential drugs for the 
control of apicomplexan parasites (Doolan et al., 2003; Yeh 
et al., 2004; Carvalho and Ménard, 2005; Winzeler, 2008; 
Mu et al., 2010). For example, evolutionary patterning has 

been proposed as a means to combat the emergence of 
drug resistance (Durand et al., 2008). Genes with high rates 
of nonsynonymous changes have been associated with 
drug resistance in P. vivax (Dharia et al., 2010), and may be 
responsible for vaccine evasion in P. falciparum (Takala and 
Plowe, 2009). In contrast, evolutionary patterning focuses 
on finding and targeting protein residues that are under 
strong purifying selection, which will in principle reduce the 
instances of drug resistance mutations.
 The tremendous health burden imposed by malaria 
has made Plasmodium the primary target for many of these 
approaches. Despite a diversified arsenal of potential tools 
to combat malarial infection, multiple drug resistance to 
existing anti-malarial compounds is becoming increasingly 
common in Plasmodium (Greenwood and Mutabingwa, 
2002; Anderson, 2009; Bustamante et al., 2009; Takala and 
Plowe, 2009). A case in point is the antifolate drugs used to 
treat malaria. Antifolate drugs bind enzymes necessary for 
folate biosynthesis, thus targeting essential precursors for 
purine and pyrimidine synthesis. Antifolates have been used 
against Plasmodium with success, but resistance to these 
drugs has become widespread (Gregson and Plowe, 2005; 
Mkulama et al., 2008; Sridaran et al., 2010). Currently, the 
primary treatment for malaria is based on artemisinin, which 
is administered in combination with other drugs in order to 
prevent, or delay, the onset of resistance. However, there 
are clear indications that artemisinin resistance is emerging 
(Chrubasik and Jacobson, 2010; Dondorp et al., 2010; 
Enserink, 2010; Fidock, 2010). Therefore, the development 
of new chemotherapeutic and prophylactic antimalarial 
drugs and vaccines remains a priority (Greenwood and 
Mutabingwa, 2002; Anderson, 2009; Bustamante et al., 
2009; Takala and Plowe, 2009).

RNR classification and distribution
RNRs are classified into one of three classes, I-III (Jordan 
et al., 1994; Reichard, 1997; Fontecave, 1998; Nordlund 
and Reichard, 2006). All three classes use a thiyl radical 
to remove the ribose OH-group. The distinction between 
these classes relies on differences in radical generation 
chemistry and the cofactor needed to produce the organic 
radical. Class I RNRs are oxygen-dependent, typically 
require a tyrosyl radical and a diiron center, and are 
characteristic of eukaryotes and common among bacteria. 
Class II RNRs are indifferent to oxygen, form a thiyl radical 
via adenosylcobalamin, and are characteristic of Archaea 
and bacteria. Class III RNRs are anaerobic, form a glycyl 
radical using an iron-sulfur center in the presence of 
S-adenosylmethionine and reduced flavodoxin, and are 
also characteristic of Archaea and bacteria.
 Class I RNRs have been further categorized as class 
Ia, Ib, or Ic. Class Ia is typical in eukaryotes and bacteria, 
while bacteria and Archaea primarily encode classes Ib and 
Ic RNRs (Harder, 1993; Sjöberg, 2010). Class Ic RNRs 
are further categorized as R2c proteins and while the 
R2-homolog R2lox proteins are described as “R2c-like”, 
they are not believed to form active RNR holoenzymes 
(Högbom et al., 2004; Andersson and Högbom, 2009). 
This classification, based on structural and chemical 
properties, has shortcomings since classes Ia and Ic are 
not monophyletic clades, i.e., discrete, mutually exclusive 
groups, which contain a most recent common ancestor and 
all of its descendants. Instead, class Ia is polyphyletic and Ic 
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is paraphyletic. This problem was been addressed by Munro 
et al. (submitted) (Figure 1) who recognized four distinct 
class I RNR clades, namely the eukaryotic-specific clades 
R2_e1 and R2_e2, and the clades containing primarily 
archaeal and bacterial RNRs, namely R2_ab and R2c. The 
study also revealed that the newly discovered clade R2_e2 
is unique to the Apicomplexa (Munro et al., submitted). In 
fact, the most significant mammalian-infecting Apicomplexa 
genera, such as Plasmodium, Cryptosporidium, and 
Babesia, all encode one R2_e2 subunit.

Class Ia holoenzyme regulation and formation
Apicomplexans encode Class Ia RNRs, which are thus the 
focus of this review. Class Ia RNR enzymes are composed 
of two distinct subunits, R1 and R2. Subunit R1, the larger 
of the subunits, contains a catalytic site (substrate binding) 

and two allosteric effector-binding sites. dATP and ATP bind 
to the first allosteric site, the A-site, and serve as inhibitor 
and stimulator, respectively, while binding of dATP, ATP, 
dGTP and dTTP to the S-site determines substrate-binding 
preference (Brown and Reichard, 1969; Reichard et al., 
2000). Allosteric regulation is accomplished by changes 
in the conformation of loop 2 which spans both the A- and 
S-sites, and which is determined by the molecule bound to 
the A-site (Reichard, 2010). Reviews and additional details 
can be found in (Eriksson et al., 1979; Reichard et al., 2000; 
Reichard, 2002; Crona et al., 2010; Logan, 2011).
 Subunit R2, the smaller subunit, contains an amino acid 
residue that harbors the organic radical (Nordlund et al., 
1990; Nordlund and Eklund, 1993). A long-range electron-
coupled pathway connects the R2 radical to a cysteine 
in R1 (the thiyl radical) via hydrogen-bonded amino acid 
residue side chains (Nordlund et al., 1990; Stubbe et al., 
2003; Kolberg et al., 2004). Binding of the R2 subunit to 
the R1 subunit involves the C-terminus residues of the 
R2 subunit interacting with a hydrophobic cleft in the R1 
subunit and it has been suggested that oligomerization of 
R1 is a prerequisite (Climent et al., 1992; Rova et al., 1999; 
Uppsten et al., 2006).
 The most current model for RNR in eukaryotes suggests 
a holoenzyme with eight subunits and is of the form α6β2, 
where alpha stands for the R1 subunit and beta for R2 
(Rofougaran et al., 2006). It has been proposed that in the 
absence of the effectors dATP, ATP, dGTP and dTTP, the 
R1 subunit is an inactive monomer; however, once dTTP 
or dGTP are bound to the S-site, an α2β2 heterodimer is 
formed (Ingemarson and Thelander, 1996). With increasing 
dATP concentration (which induces enzyme inhibition), R1 
monomers form dimmers and eventually inactive hexamers 
(formation of intermediate tetramers remains in question), 
while in the presence of the enzyme activator ATP, the 
holoenzyme adopts an α6β2 conformation (Fairman et al., 
2011).

Paralogous copies of the R2 subunit
Many eukaryote genomes encode two or more distinct 
copies of the small R2 subunit (Lundin et al., 2009). For 
example, humans have the R2 and p53R2 paralogs 
and S. cerevisiae the Y2 and Y4 paralogs. It is clear that 
these copies have different functional roles, be it de novo 
creation of deoxyribonucleotides, maintenance of the 
deoxyribonucleotide pool, mitochondrial DNA replication, 
or DNA damage repair (Elledge and Davis, 1990; Huang 
and Elledge, 1997; Tanaka et al., 2000; Lin et al., 2004; 
Bourdon et al., 2007). In such instances, a ββ' configuration 
is believed to contribute to the active holoenzyme, although 
ββ and β'β' configurations have been reported (Wang et al., 
1997; Nguyen et al., 1999; Chabes et al., 2000; Ge et al., 
2001; Guittet et al., 2001; Voegtli et al., 2001; Perlstein et 
al., 2005; Ortigosa et al., 2006).
 While most eukaryotes encode two R2 genes belonging 
to the typical eukaryotic clade R2_e1, apicomplexans encode 
one R2_e1 subunit and one R2_e2 subunit. Toxoplasma 
appears to be an exception, as so far two R2_e1-encoding 
genes have been identified but no R2_e2 has been found in 
its genome.
 The conservation of functionally important R1 active 
site cysteines, and electron transfer cysteine and tyrosine 
residues, as well as the conservation of R2 residues involved 

R2_ab

R2c

R2lox

R2_e1

R2_e2

Figure 1. Unrooted phylogenetic relationships between the 
RNR class Ia and Ic subunits and the R2lox R2 homolog 
proteins (Munro et al., submitted). Class Ic includes the 
R2c proteins; however, this classification proved to be 
paraphyletic as it failed to include the clade of proteins 
now designated as R2_ab. Former class Ia proved to be 
polyphyletic, including the novel R2_ab clade, which does 
not share a recent common ancestor with the monophyletic 
R2_e1 and R2_e2 clade. Reference to the clades R2c, 
R2_ab, R2_e1, and R2_e2 now allows for unambiguous 
reference to these RNR subunits.
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in iron binding, electron transport, free radical transfer, 
and the formation of the hydrophobic pocket around the 
radical, implies that both eukaryotic pathogens and their 
hosts utilize the same free radical chemistry to synthesize 
deoxyribonucleotides (Hofer et al., 1997; Roshick et al., 
2000; Akiyoshi et al., 2002; Shao et al., 2006). As such, 
it would appear that targeting apicomplexan RNR by 
chemotherapeutic means might have an adverse effect on 
the human host. This is not necessarily so.
 While prokaryotic and eukaryotic R1 and R2 subunits are 
highly conserved at, and around, the functionally important 
residues (Chakrabarti et al., 1993; Sjöberg, 1997; Roshick et 
al., 2000; Voegtli et al., 2001; Högbom et al., 2004; Högbom, 
2010), there is considerable variation in the sequences at 
both the N- and C-termini (Ingram and Kinnaird, 1999). 
In particular, the eukaryotic orthodox R2 subunit, R2_e1, 
presents distinct differences between apicomplexans and 
mammals, including differences in key functional regions of 
the R2 protein; perhaps most notable are those differences 
between C-terminal sequences (Bracchi-Ricard et al., 
2005). Furthermore, and more pertinent to this review, is 
the fact that the apicomplexan-specific R2 subunit, R2_e2, 
offers additional unique regions for drug-targeted inhibition 
(Munro et al., submitted). It is these differences between 
apicomplexan and mammalian host sequences that may 
best be exploited when designing chemotherapeutic drugs 
to specifically target the Apicomplexa, making RNR an 
appealing option as a drug target.

RNR has a long history as chemotherapeutical target
Much research has focused on the relationship between the 
class Ia R1 and R2 subunits in the context of human cancer. 
It has been hypothesized that normal or over-expression of 
R1 results in suppression of malignant cells (Yen, 2003) 
and Fan et al. (Fan et al., 1997) demonstrated that the R1 

subunit had tumor-suppressing activity. Cao et al. (Cao et 
al., 2003) utilized a recombinant adenovirus that encoded 
and over-expressed the human R1 gene, which reduced 
proliferation of human colon adenocarcinoma cells, yet had 
no effect on normal cells. On the other hand, inhibition of 
the R2 subunit may have an antineoplastic effect, serving 
to inhibit and combat the development of cancer cells. 
Expression of R2 in conjunction with activated oncogenes 
impacts a cell's malignant potential (Fan et al., 1998; Desai 
et al., 2005). Overexpression of R2 is linked to increased 
drug resistance and increased invasive potential in cancer 
cells (Yen, 2003).
 RNR inhibition has been applied to the control of viruses 
(Gaudreau et al., 1987; Moss et al., 1993; Bianchi et al., 
1994; Szekeres et al., 1997; Robins, 1999), bacteria (Yang 
et al., 1997; Mdluli and Spigelman, 2006; Ericsson et al., 
2010; Lou and Zhang, 2010; Torrents and Sjöberg, 2010), 
and certain cancers (Cory, 1988; Nocentini, 1996; Gwilt 
and Tracewell, 1998). Because inhibition of RNR ceases, 
or severely reduces, DNA replication, it has long been 
considered an ideal target for the control of pathogens. As 
such, inhibition of RNR to control eukaryotic pathogens has 
also been suggested (Dormeyer et al., 1997; Ekanem, 2001), 
in particular those belonging to Apicomplexa (Chakrabarti et 
al., 1993; Barker et al., 1996; Akiyoshi et al., 2002). In fact, 
RNR was included in a set of 57 “gold standard” essential 
enzymes with experimentally documented antimalarial 
effects (Huthmacher et al., 2010). These, and other studies, 
have resulted in a considerable array of approaches to 
inhibit RNR, which we briefly describe next.

Methods of RNR inhibition
RNR may be targeted at the translational or protein levels. 
RNR inhibitors are loosely categorized as those that prohibit 
the formation of an active holoenzyme or those that inhibit the 

translation inhibitor
prevent translation of mRNA

RNAi
antisense oligonucleotides

dimerization inhibitor
prevent holoenzyme formation

  sequences

no holoenzyme formed

catalytic & allosteric inhibitors
interfere with holoenzyme

nucleoside analogues (R1)
allosteric inhibitors (R1)

no subunits formed

holoenzyme inactivatedholoenzyme

subunits formed

holoenzyme formed

Figure 2. Means of RNR inhibition. A flowchart showing the progression from mRNA to the formation of the holoenzyme 
(ovals) and how translation, dimerization and catalytic and allosteric inhibitors act along this process.
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function of an already fully-formed holoenzyme (Cerqueira 
et al., 2007). At the translation level, synthesis of the enzyme 
subunits is blocked, while at the protein level, inhibitors may 
be employed to prevent the formation of the holoenzyme 
or inhibitors may be used to inactivate either the R1 or R2 
subunit, or both (Cerqueira et al., 2005) (Figure 2). The use 
of ribozymes, single strand antisense oligonucleotides, and 
small interfering RNA (siRNA) can all be defined as anti-
mRNA strategies, or subunit synthesis inhibitors (see (Aboul-
Fadl, 2005) for a review of the implementation, optimization, 
and practical application of these methodologies), while 
dimerization, catalytic, and allosteric inhibitors focus on the 
inhibition of formed proteins.

Subunit synthesis inhibitors

Ribozymes
Ribozymes are catalytic RNA molecules with distinct 
three-dimensional configurations, which principally exhibit 
trans-cleavage properties. Ribozymes can be specifically 
designed to cleave a targeted RNA sequence, thereby 
inactivating gene transcripts (Haseloff and Gerlach, 1988; 
Norris et al., 2000; Citti and Rainaldi, 2005). Ribozymes and 
their applications have been extensively reviewed (Puerta-
Fernández et al., 2003; Nayak and Kohli, 2005; Khan, 2006; 
Tedeschi et al., 2009). Ribozymes offer a productive avenue 
for gene therapy and have been designed for use against 
inborn metabolic disorders, viral infections, and cancer 
(Lewin and Hauswirth, 2001).
 Both in vitro and in vivo studies demonstrated promising 
use of ribozymes to target the survivin gene, which when 
expressed, leads to cell proliferation, typical in most human 
carcinomas (Choi et al., 2003). Ribozymes designed to target 
mouse telomerase RNA were successfully administered 
and systemically expressed in vivo, and served to reduce 
the metastatic progression of B16_F10 murine melanoma 
metastases (Nosrati et al., 2004). In vitro targeting of RhoC 
by ribozymes showed reduction of invasiveness in human 
breast cancer cells and thus demonstrated the utility of 
ribozymes in gene therapy (Lane et al., 2010). Similarly, 
ribozymes designed for targeting specific sites for cleavage 
in human telomerase RNA were demonstrated to be effective 
in arresting cell growth and induction of spontaneous cell 
apoptosis in colon cancer cells (Lu et al., 2011).
 In the context of apicomplexan control, ribozymes 
were successfully used to reduce malarial viability up to 
55% when targeting P. falciparum-specific inserts in the 
carbamoyl-phosphate II synthetase gene (Flores et al., 
1997). Accordingly, C-terminus insertions present in the 
R1 subunit enzyme of Plasmodium and Theileria offer sites 
uniquely different from those of their hosts, which may be 
specifically targeted by ribozymes (Ingram and Kinnaird, 
1999).

RNA interference
RNA interference (RNAi) utilizes segments of double-
stranded RNA to interfere with gene expression and it 
usually relies on the enzyme Dicer and the RNA-induced 
silencing complex (Scherr et al., 2004). Theoretically, the 
chemotherapeutic applicability of RNAi, and that of variants 
on the RNAi theme, is extensive; however, caution is 
advised as there are safety and specificity concerns (Grimm 
and Kay, 2007). There have been recent advances in the 
reduction of non-target effects and improved specificity in 

the silencing of target genes with chemically synthesized 
small interfering RNA (siRNA) (Lee and Sinko, 2006; Vaish 
et al., 2010), which typically utilizes much shorter lengths 
of double stranded RNA (20 to 25 bp). siRNA has proven 
useful in the suppression of p53R2 expression, leading to 
the inhibition of tumor growth and an increase in sensitivity 
to anticancer drugs (Yanamoto et al., 2005).
 Antisense RNA has been documented in Plasmodium 
(Militello et al., 2005) and there are numerous examples 
where RNAi has reportedly been successfully used to silence 
genes in Plasmodium (Kumar et al., 2002; Malhotra et al., 
2002; McRobert and McConkey, 2002; Mohmmed et al., 
2003; Dasaradhi et al., 2005; Gissot et al., 2005; Crooke et 
al., 2006; Sunil et al., 2008; Tuteja et al., 2008; Sriwilaijaroen 
et al., 2009). However, in stark contrast to these findings, 
are those where support for RNAi in Plasmodium is lacking. 
In fact, using both an experimental and bioinformatics 
approach, Baum et al. (Baum et al., 2009) suggested that 
Plasmodium lacks RNAi functionality and the conserved 
enzymes necessary for RNAi activity such as Dicer and 
Argonaute-like proteins, or their analogs. It has further been 
suggested that documented RNAi activity in Plasmodium 
may be the result of general toxicity to the introduced RNA, 
or an alternative (non-RNAi) antisense mechanism, and 
not the result of specific gene targeting by RNAi (Ullu et 
al., 2004). Additional authors have also questioned RNAi 
activity or the presence of a classical RNAi pathway in 
Apicomplexa, particularly in Plasmodium (Aravind et al., 
2003; Blackman, 2003; Cerutti and Casas-Mollano, 2006; 
Xue et al., 2008). Further calling into question the utility of 
RNAi is the fact that these studies show down-regulation, 
but not the elimination, of gene function, and the degree 
to which protein expression is suppressed depends of a 
variety of factors (Brown and Catteruccia, 2006).

RNA antisense oligonucleotide inhibitors
Antisense oligonucleotides (AOs) are short (10 to 30 
nucleotides), single strands of RNA or DNA that serve 
to inhibit gene expression. The sequence of an AO is 
complementary to a chosen target mRNA sequence, to 
which it will bind via canonical Watson-Crick base pairing. 
A variety of modifications to antisense oligonucleotides 
may be employed to prevent degradation, increase 
affinity and potency, and to reduce non-target toxicity 
(Chan et al., 2006; Sahu et al., 2007; Li et al., 2010). 
Further improvements come in terms of selective delivery 
systems for oligonucleotides (Ming et al., 2010). AOs may 
knockdown a target mRNA molecule by means of three 
distinct processes: (1) steric inhibition, where protein 
translation is inhibited once AOs are bound to the target 
mRNA, (2) the non-specific endonuclease, ribonuclease H 
(RNase H), may be activated and catalyze the cleavage of 
a DNA/mRNA duplex; alternatively, (3) pre-mRNA targeting, 
which includes inhibition of splicing, inhibition of the 5' cap 
formation, or de-stabilization of the pre-mRNA, would inhibit 
mRNA maturation (Ho et al., 1996; Baker and Monia, 1999; 
Achenbach et al., 2003; Sahu et al., 2007).
 Genes encoding both the large R1 RNR subunit and 
small R2 subunit have been targeted with antisense inhibition. 
Inhibition of expression of the Herpes simplex virus was 
achieved using AOs to target the R1 translation initiation 
site (Aurelian and Smith, 2000). The R2-directed AO, GTI-
2040, has shown promising selectivity and specificity in its 
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antitumor activity against a variety of human cancers (Lee et 
al., 2003; Desai et al., 2005). AOs were designed to target 
both the R1 and R2 subunits in oropharyngeal KB cancer 
cells; however, only the targeted inhibition of R2 expression 
reduced enzyme activity and inhibited cell growth (Chen et 
al., 2000).
 AOs have also proven to be effective against a variety of 
gene products in Plasmodium (Rapaport et al., 1992; Barker 
et al., 1998; Gardiner et al., 2000; Patankar et al., 2001; 
Kyes et al., 2002; Noonpakdee et al., 2003; Gunasekera 
et al., 2004). RNR activity was inhibited by targeting the 
region surrounding the translation initiation codon with AO 
phosphorothioates for the P. falciparum R2_e1 subunit, 
(Chakrabarti et al., 1993).

Protein inhibitors

Dimerization (polymerization) inhibitors
Dimerization inhibitors bind to one or more partners in a 
protein-protein interaction and hence prevent formation 
of the holoenzyme. In the case of RNR, they are small 
peptidomimetic sequences that mimic the R2 subunit 
C-terminal residues. As such, they competitively bind to the 
hydrophobic cleft in the R1 subunit, to the exclusion of R2, 
and prevent formation of the holoenzyme (Paradis et al., 
1988; Gaudreau et al., 1990; Yang et al., 1990; Cosentino 
et al., 1991). It is the differences between host and parasite 
R2 C-terminal sequences that have so far lent themselves 
to specific targeting of a parasite's RNR.
 RNR enzyme activity was inhibited in the Herpes simplex 
virus with the introduction of a peptide that corresponded to 
the C-terminus amino acid residues of the viral R2 subunit 
(Gaudreau et al., 1992; Liuzzi et al., 1994). In addition to 
the Herpes simplex virus, RNR dimerization inhibitors have 
been extensively studied in E. coli, hamster, mouse, yeast, 
and human cells (Cohen et al., 1986; Dutia et al., 1986; 
Climent et al., 1991; Cosentino et al., 1991; Fisher et al., 
1993; Davis et al., 1994).
 Likewise, in the case of apicomplexans, it is the 
difference in the C-terminal sequences of the R2 subunits 
between parasites and their hosts that may be best exploited 
by chemotherapeutic means (Chakrabarti et al., 1993; 
Fisher et al., 1993; Cerqueira et al., 2005). Peptidomimetic 
inhibitors based on the C-terminus of the small subunit have 
been proposed as a means of disrupting the formation of 
the RNR heterodimer complex in P. falciparum (Bracchi-
Ricard et al., 2005). In fact, targeting malarial RNR activity 
of P. falciparum-infected erythrocytes was accomplished by 
use of synthetic peptidomimetic peptides, which prevented 
binding of the R1 and R2 subunits (Rubin et al., 1993).

Catalytic and allosteric inhibitors
Catalytic protein inhibitors target the active RNR holoenzyme 
and may act on either the R1 or R2 subunits, or both. 
Catalytic inhibitors may function by a variety of means, be 
it: (1) the destruction of the R2 subunit radical by radical 
scavengers or iron chelators, (2) inactivation of the R1 
subunit active site, or (3) via substrate/nucleoside analogs, 
thus primarily acting on the R1 subunit. Allosteric inhibitors, 
which are also nucleoside analogs, target the R1 effector 
binding sites.
 Radical scavengers such as hydroxyurea, irreversibly 
destroy the tyrosol radical of the R2 protein (Krakoff et al., 
1968; Lepoivre et al., 1991; Szekeres et al., 1997; Fontecave 

et al., 1998; Guittet et al., 1999). Hydroxyurea was shown to 
stop DNA synthesis in P. falciparum (Inselburg and Banyal, 
1984). Improved control of malaria utilizing a combination 
therapy of erythropoietin and iron sulfate in conjunction with 
hydroxeurea has been hypothesized (Saei and Ahmadian, 
2009). In contrast to the scavenging of radicals, iron 
chelators, which may destroy or prevent the formation of 
the radical (Nyholm et al., 1993; Richardson, 2002; Hodges 
et al., 2004; Whitnall et al., 2006), do not necessarily cause 
permanent inhibition. Iron chelators target cellular iron, 
leading to iron deprivation, which has been suggested to 
result in RNR inhibition (Pradines et al., 1996). Iron chelators 
have been demonstrated to be effective against the P. 

falciparum trophozoite and ring stages, which, unlike host 
cells, demonstrated a limited to irreversible loss of capacity 
for recovery after the chelator was removed (Lytton et al., 
1994).
 Substrate analogs are also referred to as suicide 
inhibitors and were recently reviewed (Perez et al., 2010). 
They are recognized as “normal” ribonucleotide substrates; 
however, their interaction with the holoenzyme's active 
site leads to inactivation of the enzyme. A case in point 
is inactivation of the R1 active site by use of nucleoside-
diphosphate analogs, which bind and result in alkylation 
of the protein (Pereira et al., 2004; Pereira et al., 2006). 
Note that some substrate analogs such as gemcitabine and 
tezacitabine have additional inhibitory effects on the R2 
subunit (Salowe et al., 1993; Shao et al., 2006).
 As noted earlier, nucleoside-triphosphates bind to the 
allosteric effector sites and serve to either activate or inhibit 
the reduction of nucleoside diphosphates (Thelander and 
Reichard, 1979). Allosteric effector analogs, which are 
typically nucleoside-triphosphate analogs, thus interact with 
the two R1 allosteric effector-binding sites, i.e. the A- and 
S-sites. dATP normally acts as an inhibitor; however, some 
deoxyadenosine analogs have an even more powerful 
affect due to their higher affinity for the R1 effector site 
(Cory and Mansell, 1975; Harrington and Spector, 1991; 
Jeha et al., 2004; Shao et al., 2006). Interference of the 
allosteric binding sites will have an influence on the activity 
and substrate binding affinity of the R1 subunit. While the 
structure of the allosteric sites in the R1 subunit may be 
similar between the RNR of an eukaryotic parasite and that 
of its host, there are usually unique substitutions between 
the two, which in turn may lead to differences in allosteric 
regulation. That is the case of the RNR of humans and 
of Trypanosoma brucei, the causative agent of sleeping 
sickness (Hofer et al., 1997). Chakrabarti et al. (Chakrabarti 
et al., 1993) suggested that differences in the N-terminus 
sequence of the R1 subunit of P. falciparum might indicate 
that it too utilizes a different allosteric regulation mechanism 
relative to humans. The authors suggested that conservation 
across other protozoans, in terms of the residues whose 
function it is to bind dTTP, indicates that they too may 
employ an allosteric regulation mechanism that differs from 
mammalian hosts. Such a difference has the potential to 
be exploited via suicide substrate inhibitors or nucleoside 
analogues (Ingram and Kinnaird, 1999).

Challenges to using RNR to control apicomplexan 
parasites
First and foremost, the function of the apicomplexan-specific 
R2_e2 subunit remains unknown and, in particular, whether 
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this subunit is essential to the formation of a functional 
RNR holoenzyme has yet to be determined. Munro et al. 
(submitted) have identified considerable variability among 
apicomplexans in the amino acid residue that purportedly 
harbors the free radical in the R2_e2 subunit, as well as in 
additional residues of functional importance. For example, 
the lack of conservation of one of the two phenylalanine 
residues in the C-terminus (Figure 3A) raises the possibility 
of a difference in the interaction between the R2_e2 and 
R1 subunits relative to that observed with R2_e1. Following 
the residue notation of Fisher et al. (Fisher et al., 1993), 
the C-terminal residues F1 and F7 appear to be particularly 
influential in dictating the interaction/binding-specificity to 
subsites of the R1 subunit (Pellegrini et al., 2000; Pender et 
al., 2001). While the R2_e2 C-terminal residue equivalent 
to F1 is maintained as phenylalanine and conserved 
across R2_e2, the residue equivalent to F7 is instead 
substituted for isoleucine in all sequences sampled, save 
the cryptosporidians. This may, however, not be a concern; 
it has been established that F7 need not be stringently 
conserved because the R1 subsite interacting with this R2 
subunit position can accommodate a variety of hydrophobic 
residues (Pender et al., 2001; Gao et al., 2002; Cooperman, 
2003). Also, Tyr370 in mouse R2 was determined to be 
essential in the radical transport pathway (Rova et al., 
1999) and yet an equivalent to this residue is lacking in the 
apicomplexan-specific R2_e2 subunit.
 There are further challenges to RNR chemotherapy. 
Two widely used anti-cancer RNR inhibitors, hydroxyurea 
and gemcitabine, are toxic to humans (Banach and Williams, 
2000; Santini et al., 2000). Additionally, resistance to RNR 
inhibition by some radical scavengers and iron chelators has 
been observed (Nocentini et al., 1990; Sneeden and Loeb, 
2004; Fu and Xiao, 2006). Further concerns with regard to 
the use of ribozymes include method of delivery, ribozyme 
stability, the secondary and tertiary structure of the target 
mRNA, and how these factors relate to accessibility of the 
region being targeted for cleavage (Turner, 2000).

Bolstering support for use of RNR inhibition to control 
apicomplexan parasites
Since its discovery in 1961 (Reichard et al., 1961), 
ribonucleotide reductase has been featured in almost 5,500 
publications in a variety of fields, such as biochemistry, 
molecular biology, oncology, cell biology, and chemistry. As 
such, there is a wealth of information regarding this protein. 
The literature is replete with studies of RNR inhibitor use in 
the control of cancer and of human pathogens. As detailed 
earlier, RNR has also received attention for its potential 
use as a target to control the apicomplexan parasite P. 

falciparum. RNR inhibitors have already been shown to 
have some antimalarial activity. Examples include RNA 
antisense oligonucleotide inhibitors (Chakrabarti et al., 
1993) and radical scavengers such as the substituted/
modified benzohydroxamic acids, specifically the vicinal 
dihydroxybenzohydroxamates (Holland et al., 1998).
 Knowledge of protein structure and localization can 
greatly aid in the design of chemotherapeutic drugs. For 
example, it is essential to determine if the region being 
targeted is exposed on the protein's surface, whether 
it is functional, and whether the residues surrounding 
the target region in its native conformation are similarly 
conserved (Durand et al., 2008). While the structure of the 
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Figure 3. RNR subunit R2 C-terminus. A) Sequence logo 
representation of human and apicomplexan R2_e1 and 
apicomplexan R2_e2 terminal residues. F1 and F7 are crucial 
phenylalanine residues that interact with the R1 subunit. 
The numbering of these residues follows (Fisher et al., 
1993), while subsequent authors appear to have reversed 
the order (Pellegrini et al., 2000; Pender et al., 2001; Gao 
et al., 2002; Cooperman, 2003). Created with WebLogo 3 
(Schneider and Stephens, 1990; Crooks et al., 2004). B) 
Terminal residues for human and apicomplexan R2_e1 and 
apicomplexan R2_e2 from which the logos were derived. 
Data derived from Munro et al. (submitted). Plasmodium and 
human sequences are underlined for comparative purposes 
(see text). Amino acid substitutions: . = semiconserved, : = 
conserved, * = identical.
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apicomplexan-specific R2 subunit is not known, structure of 
the orthodox R2_e1 subunit from Plasmodium vivax (2O1Z) 
and P. yoelii (2P1I) are deposited on the RCSB Protein Data 
Bank (www.pdb.org; Berman et al., 2000).
 Advances have been made in the production of 
apicomplexan recombinant proteins, a process that has 
been historically hampered by the A+T-biased nature of the 
plasmodial genome and uncommon codon usage (Weber, 
1987; Anonymous, 2006; Brombacher 2006). However, 
see Vedadi et al. (Vedadi et al., 2007) who found E. coli 
to effectively produce apicomplexan proteins on a large-
scale basis. Codon optimization (Hedfalk et al., 2008) 
and codon harmonization (Hillier et al., 2005; Angov et al., 
2008; Chowdhury et al., 2009) have been used to improve 
expression of Plasmodium proteins in E. coli. Further 
advances have been made in the area of the use of a 
phylogenetically similar, or “pseudoparasite”, expression 
system (Fernádez-Robledo and Vasta, 2010). Furthermore, 
in vitro protocols for P. falciparum are established, although 
in vivo animal models are based on the murine Plasmodium 
species P. berghei, P. chabaudi, P. vinkei, and P. yoelii, and 
not those that parasitize humans (Fidock et al., 2004).
 To a large degree, the utility of RNR as an antimalarial 
chemotherapeutic target is dependent upon the timing of 
the protein's expression. In mammals and yeast, the large 
subunit R1 has a half-life of 24 hours and is maintained 
at a constant level throughout a cell's life cycle, while the 
small subunit R2 has a half-life of around 3 hours and its 
expression is restricted from the S-phase through to late 
mitosis, at which time it is rapidly degraded (Eriksson et al., 
1984; Engström et al., 1985; Björklund et al., 1990; Elledge 
et al., 1992). The non-canonical human p53R2 protein is 
expressed during periods of DNA repair (Håkansson et al., 
2006). In mammalian cells, it has been demonstrated that it 
is the presence or absence of the R2 protein that regulates 
RNR activity (Chabes and Thelander, 2000). In contrast to 
this, in S. cerevisiae it is the R1 subunit whose transcription 
is increased during S-phase, thus controlling RNR activity 
(Ortigosa et al., 2006). The utility of RNR inhibition in the 
control of certain cancers has relied in part on the fact that 
RNR is most needed when cells are rapidly proliferating, 
rendering cancerous cells particularly vulnerable to 
RNR inhibition (Smith and Karp, 2003). In P. falciparum, 
ribonucleotide biosynthesis begins as early as the ring 
and early trophozoite stage; however, deoxyribonucleotide 
metabolism occurs later, with both R1 and R2_e1 subunit 
transcripts detected in the red blood cells (RBCs) at 10 
hours post RBC infection and peaking 31 to 33 hours 
post-infection, which coincides with the late trophozoite/
early schizont stage (Chakrabarti et al., 1993; Bozdech et 
al., 2003; Bozdech and Ginsburg, 2004). Comprehensive 
expression studies in P. falciparum show that the expression 
profile of R2_e2, albeit less intense, matches that of the 
other to subunits (Bozdech et al., 2003; Llinás et al., 2006). 
The timing of RNR expression is not surprising, since it is 
during the intraerythrocytic stages that the malarial parasite 
undergoes logarithmic growth and requires RNR for DNA 
synthesis (Yeh and Altman, 2006). Additionally, expression 
of PfR4 (R2_e2) has been detected in the sporozoite and 
gametocyte stages of the parasite life cycle (Bracchi-Ricard 
et al., 2005), and in the case of P. yoelii, both R1 and R2_
e1 transcripts were detected in the liver stage of infection 
(Nivez et al., 2000). These expression profiles are well-

suited for chemotherapeutical intervention, since it is the 
intraerythrocytic stages of Plasmodium that cause clinical 
symptoms (Yeh and Altman, 2006). Additionally, human 
RBCs are not nucleated, thus precluding an alternative 
means for the parasite to exploit host RNR (Rubin et al., 
1993).
 The utility of RNR as an antimalarial/antipathogen target 
depends upon the ability to specifically target the pathogen's 
RNR and not that of the host, as RNR is essential to both 
species. R1 and R2 subunits are highly conserved between 
prokaryotes and eukaryotes in the regions containing the 
functionally important residues (Chakrabarti et al., 1993; 
Roshick et al., 2000; Voegtli et al., 2001; Högbom et al., 
2004; Högbom, 2010); however, they differ in the N- and 
C-terminal sequences (Ingram and Kinnaird, 1999). Novel 
RNRs are additional potential targets for new drugs, 
especially if they provide distinct differences between host 
and parasite sequences. The necessity for target specificity 
to avoid side, or non-target, effects in humans cannot 
be overstated. The use of antisense oligonucleotides in 
the control of some cancers has shown that the drugs in 
question have favorable toxicity profiles, in part because 
of their ability to specifically target segments of RNA 
(Davies et al., 2003). The unorthodox R2_e2 apicomplexan 
subunit provides a distinct and additional opportunity for 
specific drug targeting. One example is the C-terminus of 
the R2 subunit, which differs considerably between the 
human R2_e1 subunits and both the R2_e1 and R2_e2 
apicomplexan subunits (Figures 3A and 3B). This difference 
in the C-terminal sequences of the R2 subunits between 
apicomplexans and their hosts can be ideally targeted by 
chemotherapeutic means (Rubin et al., 1993; Fisher et al., 
1995; Ingram and Kinnaird, 1999).
 Finally, it is worth noting that Plasmodium-infected 
erythrocytes demonstrate an increase in cell membrane 
permeability (Baumeister et al., 2011). In vitro uptake of 
small pieces of RNA becomes less of an issue as RBCs that 
are infected with malaria exhibit an enhanced and selective 
uptake of such molecules in comparison to non-infected 
RBCs (Rapaport et al., 1992), a difference attributed to 
the presence of a parasitophorous ducts in infected RBCs 
(Pouvelle et al., 1991).

Summary
Extensive research has already established that RNR 
has potential as an antimalarial drug. What is particularly 
appealing about RNR inhibition as a means of controlling 
Apicomplexa is the potential control of not one, but two, 
copies of the R2 subunit, both of which are distinct from that 
of the host. Additionally, in the case of the malarial parasite 
Plasmodium, RNR expression occurs from the sporozoite 
through the gametocyte life cycle stage, offering multiple 
opportunities for chemotherapeutic targeting. This may well 
be the case for other Apicomplexa parasites that undergo 
rapid clonal expansion in the host.
 Of the eight established methods of RNR inhibition 
discussed, RNAi seems the least promising in terms of 
controlling apicomplexan parasites as the necessary 
enzymes appear to be lacking. Ribozyme approaches have 
been successfully implemented in Plasmodium; however 
their use against RNR has not yet been demonstrated. In 
contrast, substrate analogs and allosteric effector analogs 
have been effectively used to inhibit RNR, but their use 
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in Plasmodium has yet to be demonstrated. Antisense 
oligonucleotide inhibitors, dimerization inhibitors, radical 
scavengers, and iron chelators have all been successfully 
used to target RNR in Plasmodium. Ribozymes, antisense 
oligonucleotide inhibitors, and dimerization inhibitors show 
the most promise in terms of future anti-apicomplexan drug 
development. On the other hand, resistance to some radical 
scavengers and iron chelators has been established, they 
can not be use to selectively target a peptide, and the fact 
that the effects of iron chelators are generally reversible, 
makes them less appealing prospects.
 The difference in sequence similarity between the 
parasite and human R2_e1 subunits is considerable, 
and the difference is even more accentuated when the 
parasite's R2_e2 subunit is considered (Munro et al., 
submitted). Assuming that this protein is essential for RNR 
function, ribozymes, antisense oligonucleotide inhibitors, 
and dimerization inhibitors can all be optimized for target 
specificity and thus used to take advantage of the unique 
R2_e2 protein. The fact that the R2_e2 gene is present 
in several apicomplexan genera, each of which contains 
species of significant health and socio-economic impact, 
holds promise that the results of any research would be 
translatable to several very important diseases.
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