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Abstract
Although from its origin metagenomics was concerned with composition of communities 
of microbial OTUs (operational taxonomic units) living in a given habitat and their diversity 
and functional heterogeneity (concepts already well rooted in ecology), the new field was 
more ‘environmentally’ than ‘ecologically’ oriented. Probably by circumstantial reasons, 
metagenomics and ecology followed rather independent trajectories and conceptual and 
methodological gaps appeared. Recently, calls for the need of integrating the theoretical 
basis and methodologies coming from metagenomics (and other meta-omics) and ecology 
have been made. Here I will address some of the principles and methods of field ecology 
that, although useful in the context of environmental metagenomic studies, have been rather 
disregarded. In particular, I will emphasize the contribution of some well established con-
cepts and methods of field ecology to an appropriate field sampling and experimental design 
of environmental metagenomic studies.

Introduction
The early beginning of metagenomics can be traced back to the 1980s. The pioneering work 
of Pace et al. (1985) using ribosomal RNA to study natural microbial populations without 
cultivation (1985), the work from Woese and Fox (1977), proposing the usage of ribosomal 
RNA as a tool for establishing phylogenetic relationships among microbial kingdoms, and 
the formal definition of metagenome by Handelsman and colleagues in 1998 (Handelsman 
et al., 1998) are the main milestones in the development of one of the most innovative sci-
entific fields in the last decades. Since then, the number of works involving metagenomics 
and other meta-omics has grown exponentially, as a direct consequence of the advantages 
arising from the new ability of accessing microbial information bypassing cultivation, 
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and the development of new and cheaper sequencing techniques. The variety of habitats 
explored with metagenomics and other meta-omics has also increased exponentially, with 
virtually no limits in the diversity of samples taken, from field to microcosm experiments 
through organism-specific microbiomes. In parallel, the number of useful applications of 
metagenomics and meta-omics studies has also increased greatly, from agriculture to medi-
cine passing through obtention of bioproducts like new enzymes.

A typical pipeline for metagenomic studies (Fig. 1.1) begins with the delimitation of the 
microbiome of interest, the field and/or experimental sampling design, and the extraction 
of the genetic material.

Extracting the desired material from an ever increasing range of metagenomic samples 
involves developing new and suitable methodologies. In the case of metagenomics, obtain-
ing the metagenomic data requires more and more sophisticated and cheaper sequencing 

Figure 1.1 A typical pipeline for metagenomic studies.
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methods, and even sequencing-free strategies are being developed. But at present, one of the 
biggest challenges lies in the next steps of organizing, classifying, analysing and interpreting 
the vast number of data generated by metagenomics and meta-omics. The other great chal-
lenge, and perhaps the most disregarded, is however at the very beginning of the pipeline. 
While new statistical and bioinformatic techniques to treat the increasing number of data 
produced are continuously appearing (see elsewhere this vol.), the matter of how to get reli-
able data from an adequate sampling either from field, microcosm or other types of habitats 
is still largely overlooked. Several authors have drawn attention to this aspect during the last 
years, especially on the need for statistically adequate replicates for metagenomic studies 
(Prosser, 2010; Fierer et al., 2012; Knight, 2013; Creer et al., 2016), although with some 
controversy (Lennon, 2011). 

This calls for adequate, replicated sampling designs and the subsequent controversy 
may be related to the very beginning of the metagenomics approach, from the molecular 
biology field applied to microbial genomics (Pace et al., 1985; Woese and Fox, 1997) to 
the challenge of linking the genomic information with the organism or ecosystem from 
which the DNA was isolated (Handelsman, 2004). Although from its origin metagen-
omics was concerned with composition of communities of microbial OTUs (operational 
taxonomic units) living in a given habitat and their diversity and functional heterogeneity 
(concepts already well established in ecology), the new field was more ‘environmentally’ 
than ‘ecologically’ oriented (O’Malley and Dupré, 2009). By the time metagenomics 
emerged as a new field, ecology was an already well established discipline with a high 
degree of formalization and a powerful theoretical and methodological background. 
However, probably by circumstantial reasons, the two disciplines followed rather inde-
pendent trajectories and conceptual and methodological gaps appeared. ‘Environmental 
genomics’, ‘microbial population genomics’, ‘ecogenomics’, were some of the new terms 
coined to refer to metagenomics (DeLong, 2004), all of them resembling or alluding to 
ecological concepts. Some well-defined ecological concepts like ‘biodiversity’ or ‘niche’ 
were adopted in metagenomics studies, although with different meanings or interpreta-
tions to those already established in ecology. In particular, the term ‘niche’ began to be 
used in metagenomic and environmental genomics studies, in spite of its original defini-
tion in ecology, centred on the traditional concept of species (Marco, 2008), and it is still 
being applied without further revision. In another, methodological example, the usage of 
statistical multivariate analyses, appropriate for multivariate data common in metagen-
omics and ecology, was still in its infancy in metagenomics as late as the beginning of the 
twenty-first century (Ramette, 2007), while they constituted one of the most used sta-
tistical methods in ecology since the middle of twentieth century (Goodall, 1954). Thus, 
among others, the before mentioned controversy over the matter of taking replicates for 
metagenomic studies clearly appears as a consequence of the parallel trajectories followed 
by environmental genomics and ecological fields.

Recently, a call to environmental sequencing studies to adhere to robust ecological study 
design, allowing for an adequate number of sites/replicates to provide statistical power, as 
well as ensuring the collection of a robust set of environmental metadata (e.g. climate vari-
ables, soil pH) has been made (Creer, 2016). Clearly, there is a strong need to integrate the 
theoretical basis and methodologies coming from metagenomics (and other meta-omics) 
and ecology, and early it was recognized that metagenomics’ power would be realized when 
it is integrated with classical ecological approaches (Reisenfield et al., 2004).

Curr. Issues Mol. Biol. Vol. 24



Marco4 |

Here I will address some of the principles and methods of field ecology that, although 
useful in the context of environmental metagenomic studies, have been in my opinion 
rather disregarded. In particular, I will emphasize the contribution of some well established 
concepts and methods of field ecology to an appropriate field sampling and experimental 
design of environmental metagenomic studies. For space reasons I will not extensively 
address here other ‘meta-omics’ approaches, although clearly for metatranscriptomics, 
metaproteomics, metametabolomics, lipidomics, and other emerging approaches (Meir-
ing et al., 2011), the considerations made here about metagenomics studies are, with some 
caveats, amply valid. I will refer mainly to soil studies for examples, since soil is one of the 
habitats where environmental metagenomics is firstly showing integration with ecologi-
cal concepts and methods.

Some concepts and methods of field ecology useful in the 
context of environmental metagenomic studies

Looking for composition and function
Metagenomic studies usually have two main purposes, asking ‘who is there?’ (composi-
tion approach) or ‘what are they doing?’ (functional approach). The first approach aims to 
answer questions about OTUs/genes like phylogenetic relationships, community structure 
(composition and relative abundances), diversity, etc. The second approach is oriented to 
the study of genes performing specific functions. The two approaches may be assimilated to 
the proposed classification of metagenomic studies into ‘open’ and ‘closed’ formats (Zhou 
et al. 2015). The ‘open’ format does not require a previous knowledge of the metagenomic 
community, and it is more used in exploratory studies of composition and diversity, but 
allowing anyway for gene discoveries (that may be later related to functions). Massive 
sequencing techniques are the most conspicuous methodologies used in this approach. 
The ‘closed’ format, in contrast, is focused on already known genes performing functions of 
interest, and their detection is, for example, performed by functional gene arrays.

In the same way, in ecological studies the focus may be on community structure (spe-
cies composition and abundance) and diversity (commonly, α, within community, and β, 
between communities), or on function, through the definition of functional guilds (groups 
of species performing similar functions) (Simberloff and Dayan, 1991). The functional 
approach in ecology is mainly based on functional traits of the species in a community 
allowing to group them in guilds or functional groups (Wilson, 1999), for example, birds 
with similar beak morphology are expected to feed on the same resources. In metagenomics, 
from the beginning, studies focused on community composition and diversity. However, 
by quantification of particular genes intervening in a given metabolic route, functional 
metagenomic studies allow to infer the existence of specific microbial functional guilds 
in the metagenomic community. One well-known example is the determination of genes 
intervening in denitrification pathways from soil microbiomes (Demanèche et al., 2009). 
Recently, fungal functional diversity has began to be investigated through a bioinformatic 
tool, FUNGuild, that allows to taxonomically parse fungal OTUs by ecological guild from 
high-throughput sequencing data (Nguyen et al., 2016). In recent years, a comprehensive 
approach combining metagenomics and other meta-omics like metatranscriptomics and 
metaprotreomics has allowed us to understand the functioning of the methylotroph guilds, 
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to discover new pathways and new players in the methane and other methylated compounds 
cycle, and to understand its relations with the N cycle (see elsewhere this volume).

However, although functional diversity is increasingly recognized as an important 
component of biodiversity, in comparison to taxonomic diversity, methods for quantifying 
functional diversity are less well developed. Petchey and Gaston (2002) proposed a measure 
of functional diversity (FD), defined as the total branch length of a functional dendrogram, 
constructed using species functional traits. Various characteristics of FD make it preferable 
to other measures of functional diversity, such as the number of functional groups in a com-
munity. This method has began to be used recently with metagenomic functional data as 
well. For example, Salles et al. (2015) found that for functions such as denitrification, the 
diversity of functional, nir gene sequences is a better predictor of functioning than the diver-
sity of sequences of phylogenetic markers. A unified, flexible and multifaceted framework to 
estimate microbial diversity based on taxonomic, phylogenetic or functional data and across 
temporal and spatial scales has been recently proposed (Escalas et al., 2013).

Spatial and temporal scales
Spatial scaling issues have been recognized since early in ecology, mainly because the spatial 
scale chosen for sampling may have profound effects on the patterns found (Wiens, 1989). 
Two interesting concepts to deal with the scaling problem are the extent and the grain 
of a study (O’Neill et al., 1986). Extent is the overall area encompassed by a study to be 
described by sampling. Grain is the size of the individual units of observation, for example 
the size of the grids used to count species in a plant community. Both extent and grain of 
a study should be defined by our knowledge of the system to study, for example discerning 
the effects of physical processes that could act at broader scales from more local, edaphic or 
biological interactions. Thus, while vegetation patterns at biogeographical scales are mainly 
determined by climatic variables, the extent of a distinctive grassland may be determined by 
local, edaphic variables.

Finding or not finding a pattern will depend on the homogeneity or heterogeneity of the 
extent considered, and on the grain size. As grain increases, a greater proportion of the spa-
tial heterogeneity of the system is contained within a sample or grain and is lost to the study 
resolution, while between-grain heterogeneity decreases (Wiens, 1989). If the occurrence 
of species in quadrats is recorded, rare species will be less likely to be recorded as grain size 
increases; this effect is more pronounced if the species are widely scattered in small patches 
than if they are highly aggregated (Levin, 1989). Fig. 1.2 shows the effect of choosing a given 
grain size when the variable of interest is distributed in patches (grey) in an homogeneous 
matrix (white).

Given an extent (large, black outer quadrat encompassing the study area), a given grain 
size (small red sampling quadrats), will reflect, for example, the smaller patchiness, but 
it will miss the heterogeneity at a broader scale (larger patches and matrix). Conversely, 
choosing a larger grain (larger red sampling quadrats) will result in missing the smaller patch 
heterogeneity, since now the sampling quadrat will encompass more spatial heterogene-
ity, while variance between sampling quadrats will decrease. In more technical terms, the 
variance (the degree of spatial autocorrelation among sampling points) will change with 
the extent and grain size chosen for the study. Of course, the election of the extent and the 
grain size (sampling quadrats for example) should depend on the hypothesis and aim of the 
study. Choosing the relevant scale, extent and grain size for a study requires some previous 
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knowledge about the spatial distribution of the variable under study and the habitat vari-
ables that could influence its distribution.

At field, there may be domains of scale, regions of the spectrum over which, for a particu-
lar phenomenon in a particular ecological system, patterns either do not change or change 
monotonically with changes in scale. Domains are separated by relatively sharp transitions 
from dominance by one set of factors to dominance by other sets. If the focus is on phe-
nomena at a particular scale domain, studies conducted at finer scales will fail to include 
important features of pattern or causal mechanisms; studies restricted to broader scales will 
fail to reveal the pattern or mechanistic relationships because such linkages are averaged 
out or are characteristic only of the particular domain (Wiens, 1989). Different methods 
have been early used in ecology to assess spatial heterogeneity and to detect scale domains. 
For a series of point samples, the average squared difference (semivariance) or the spatial 
autocorrelation between two points may be expressed in semivariograms as a function of 
the distance between them to estimate the scale of patchiness in a system (Sokal and Oden, 
1978). Other methods used are spectral analysis (Legendre and Demers, 1984; Legendre 
and Gauthier, 2014), dimensional analysis (Lewis and Platt, 1982) and fractal geometry 
(Burrough, 1983). All these early developed methods, although with some refinements, are 
still in use in field ecology, while new methods, like graph theory are beginning to be used 
(Fortin et al., 2012).

Intimately related with the spatial heterogeneity of many ecological systems in nature, 
there is the problem of spatial pseudoreplication. Pseudoreplication is defined as the use 
of inferential statistics to test for treatment effects with data from experiments where either 

Figure 1.2 The effect of choosing a given grain (sampling unit) size when the variable of interest 
is distributed in patches (grey) in an homogeneous matrix (white). Given an extent (black outer 
quadrat encompassing the study area), a given grain size (small red sampling quadrats), will 
reflect for example the smaller patchiness but it will miss the heterogeneity at a broader scale 
(larger patches and matrix). Conversely, choosing a larger grain (larger red sampling quadrats) 
will result in missing the smaller patch heterogeneity, and variance between sampling quadrats 
will decrease.
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treatments are not replicated (though samples may be) or replicates are not statistically 
independent (Hurlbert, 1984). In statistical terms, depending on the type of pseudor-
eplication incurred, two effects may arise, increase the probability of rejecting our null 
hypothesis when it is true (inflated type I error), or increase the probability of accepting 
the null hypothesis when it is false (inflated type II error) (detailed explanation elsewhere
this vol.). In ‘simple’ pseudoreplication, there are no true replicates of treatment, while in 
‘sacrificial pseudoreplication’, there is true replication of treatments but data from replicates 
are pooled prior to statistical analysis, or two or more samples or measurements taken from 
each experimental unit are treated as independent replicates. Information on the variance 
among treatment replicates exists in the original data, but is confounded with the variance 
among samples (within replicates) or else is effectively thrown away when the samples 
from the two or more replicates are pooled (hence ‘sacrificial’) (Hurlbert, 1984). Without 
entering into technical details, replication reduces the effects of ‘noise’ or random varia-
tion or error, thereby increasing the precision of an estimate of, for example, the mean of 
a treatment (or field variable) or the difference between two treatments (or field variables) 
(Hurlbert, 1984). Thus, coming back to the example in Fig. 1.2, to detect any spatial pattern 
of a given field variable, like for example, a soil contaminant that could be conditioning the 
presence and abundance of metagenomic communities of microbes able of metabolizing 
the contaminant, not only the extent and grain of the study must be taken into account but 
also an appropriate replicated sampling design is needed. A random sampling design, with a 
high number of sampling quadrats of the right grain covering a great part of the extent may 
be adequate, but a systematic design may be more convenient to reflect the spatial pattern. 
However, systematic designs run the risk that the spacing interval may coincide with the 
period of some periodically varying property of the experimental area (Hurlbert, 1984), 
taking us back to the scale issue.

The ecological principles and methods above mentioned are entirely valid for choosing 
the spatial scale, extent and grain in environmental metagenomic studies. Moreover, as 
metagenomic communities are increasingly being recognized as spatially heterogeneous, 
special care should be taken when choosing the spatial scale for a study. Although only 
from recently, the soil microbiome is one of the most studied at different spatial scales, from 
biogeographical extent to scales smaller than 1 m. At each length scale different drivers of 
microbiome community organization are expected to act. The soil main drivers acting at 
ecosystem (regional and biogeographic) scales (> m) are factors like climatic patterns and 
biogeochemical processes, at meta-community scales (cm to m) environmental gradients 
(pH, soil moisture, etc.) are the main factors, while at microbiome community level (10–
103 μm) very local ecological interactions shape the pattern and functioning of microbial 
aggregations characteristic of such small scales (Cordero and Datta, 2016). While some 
evidence of defined distribution patterns has been found at regional and continental scales, 
examples of clear patterns for smaller scales are scarce (O’Brien et al., 2016). However, as 
the issue of the grain size election in general has not clearly been addressed, it is not surpris-
ing that many studies have not been able to detect significant patterns in either OTUs or 
genes distribution, nor significant correlations among metagenomic community variables 
and habitat variables like soil pH, moisture, and other factors assumed to be potentially 
relevant in shaping soil microbiome distributions.

In addition, but related to the issue of the small spatial scales typical of the microbiome 
communities, their highly patchy distribution, attributable to different factors in each 

Curr. Issues Mol. Biol. Vol. 24



Marco8 |

habitat, complicates even more the election of the grain size for sampling. For example, the 
soil appears to be a rather homogeneous habitat at cm scales, but it is extremely heterogene-
ous and patchy at smaller scales of μm, more relevant to the microbiome. As described by 
Vos et al. (2016), at these small scales, the soil is composed of microaggregates (at 10 μm 
scale) with micropores filled with water, clustered into macro-aggregates with meso- and 
macro-pores (at 100 μm scale) filled with water or air, depending on the moisture status of 
the soil. Thus, the patchy distribution of resources, large distances between bacterial cells 
and incomplete connectivity often restrict nutrient access and the ability to interact with 
other cells. Cell division also results in a short distance dispersal, and thus many bacteria 
remain in microaggregates where micropores offer refuge against predators and dehydra-
tion, contributing to the microscale patchiness of microbial communities. This small-scale 
patchiness appears to be inherent to the widely extended microbial activity of creating bio-
films. Biofilms are ubiquitous, spatially heterogeneous systems that have high cell densities, 
and typically comprise many microbial species. Biofilm heterogeneity may arise through 
local conditions of the substrate. Further sources of heterogeneity are the ability of cells in 
biofilms to undergo differentiation, and ecological interactions (competition, facilitation) 
among microbes in the biofilm, sometimes creating heterogeneity from homogenous initial 
conditions (Nadell et al., 2016; Flemming et al., 2016).

The same principles behind extent and grain selection, and replication for a classical eco-
logical study should be taken into account when formulating the hypothesis and designing 
a spatial sampling for a metagenomic study (Cordero and Datta, 2016). Scales of domain 
and spatial heterogeneity can be assessed at field in environmental metagenomics, using the 
same methods already used in field ecology for decades (Gonzalez et al., 2012). In recent 
years an increasing number of environmental metagenomic studies on spatial distribution 
of metagenomic communities at different extents and grains have appeared, from cm to 
hundreds of km (Correa-Galeote et al., 2013; Shi et al., 2015). On smaller scales, using a 
microcosm approach, Reim et al. (2012) sub-sampled the top 3 mm of a water-saturated 
soil at near in situ conditions in 100 μm steps, focusing on pmoA as a functional and phylo-
genetic marker in methane-oxidizing bacteria.

Unfortunately, the lack of adequate replication in environmental metagenomic studies 
is still very common, either by ‘simple pseudoreplication’ (no true replicates), but in many 
cases by ‘sacrificial pseudoreplication’ (by pooling samples from true replicates). However, 
an increasing number of researchers are taking into account the necessity of design experi-
ments and field studies with adequate replication. A global initiative, the Earth Microbiome 
Project (EMP; www.earthmicrobiome.org), seeks to systematically characterize microbial 
taxonomic and functional biodiversity across global ecosystems through the standardiza-
tion of the protocols used to generate and analyse the data between studies. EMP is fully 
aware of the problem of pseudoreplication and is working towards a standardized protocol 
for sampling design to be adopted by all the research groups contributing samples (Knight 
et al., 2013).

Temporal scales are inherently connected with spatial scaling in ecology, and the ten-
dency is to integrate both scales in ecological studies (Legendre and Gauthier, 2014). 
Increasing the spatial scale, the time scale of important processes also increases because 
processes operate at slower rates, time lags increase, and indirect effects become increasingly 
important (Wiens, 1989). The dynamics of different ecological phenomena in different 
systems follow different trajectories in space and time. For example, relevant processes to 
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perennial plants in grasslands, like species competition and grazing, may occur in hundreds 
of square metres and through decades, while processes relevant to soil arthropods, restricted 
to smaller, local spaces and with much more shorter lives, may be defined in days and hours. 
In soil characteristic short timescales occur over hours to seasons. Soil microbes greatly vary 
their abundance and activity over timescales of hours to days (Bardgett et al., 2005). This 
variation is related to factors such as predation of microbes by bacteriophages, soil animals, 
the action of abiotic stresses (e.g. wet–dry and freeze–thaw cycles) (Mikola et al., 2002), 
and, importantly, temporal variation in the supply of carbon and other nutrients from roots 
to soil (Bardgett et al., 2005). Such variations also occur at seasonal time scales. There is a 
general idea that soil microbes are inactive during the winter. However, Schadt et al. (2003) 
found in alpine soils that the biomass of microbes reached its annual maximum when soil 
is still frozen in late winter, and showed a significant decay thereafter. Between winter and 
summer there is an almost complete turnover of the microbial community, with many 
novel DNA sequences (Schadt et al., 2003) with different functional attributes (Lipson and 
Schmidt, 2004). Thus, and at least in alpine soils, one snapshot sampling in a given time of 
the year may underestimate microbial diversity. Following temporal microbiome dynamics 
recently allowed to address the important role in community diversity of taxa that are typi-
cally in very low abundance but occasionally achieve prevalence (Shade and Gilbert, 2015).

In ecological studies, often a series of observations on the abundance of the species or 
variable of interest is made at equal intervals over a period of time, to detect any hidden 
temporal pattern through statistical procedures. Most of these statistical methods are based 
on time-series analysis, which allow to extract information and to identify scales of temporal 
patterns. One of the essential tools in time-series analysis is the periodogram or spectrum, 
in what is called spectral analysis. The signal (the time series) is decomposed into harmonic 
components based on Fourier analysis, similarly to a partition of the variance of the series, 
into its different oscillating components with different frequencies (periods). Peaks in the 
periodogram or in the spectrum indicate which periods contribute most to the variance 
of the series (Cazelles et al., 2008). Spectral analysis has a long way in ecology, back to the 
work from Bartlett (1954) that analysed lynx temporal abundances using periodograms, 
and since then, it has been amply used in ecology and population dynamics.

Although the analysis of temporal variability has an old tradition in ecology only recently 
has it begun to be implemented with metagenomic data. Classical time series and other 
related techniques are increasingly used to study microbiome data obtained by metagenom-
ics and other meta-omics approaches to assess diversity, function and ecological interactions 
(exhaustively reviewed in Faust et al., 2015). These techniques have some specific require-
ments, that should be taken into account at the time of planning the field or experimental 
design. Increasing sampling frequencies in general provide higher resolution on metagen-
omic community dynamics although at an increased cost, thus a compromise should be 
reached. Sampling regularity is another important requirement for analysis techniques 
involving autocorrelation. Estimates for time points missing in samplings with irregular 
intervals can be used, but this technique can mislead conclusions if specific statistical model-
ling assumptions are not met. Another issue is that, although most of the time series analyses 
require long time records with short and regular sampling intervals, in general metagenomic 
time series tend to have few time points, with many sampling point gaps and many records 
with zero values, characteristics that create challenges for statistical analyses. Besides these 
problems, in metagenomic studies, just as in many ecological systems, linear correlation 
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analyses are difficult to justify since non-linear dynamics seems to be the norm and not 
the exception. Rapidly changing relationships between variables in microbial community 
dynamics cause transient correlations that may result in spurious patterns. To overcome this 
problem, techniques like convergent cross-mapping can be applied to time-series data by 
examining the degree to which temporal components of a given variable are useful to predict 
the state of another variable (Sugihara et al., 2012). Another important issue in temporal 
metagenomic studies is, again, pseudoreplication. However, as replicates in time are not 
easily available for temporal metagenomic studies, combining information across replicate, 
multiple time series can improve the inference of interactions from observations, and help 
to distinguish stochastic fluctuations from real temporal patterns (Hekstra et al., 2012).

One more point on the temporal scales framework in ecology and metagenomics. Clas-
sically, evolutionary time and ecological time have been differentiated. Evolutionary time 
operates on a longer time scale, over which changes in gene frequencies in species popu-
lations can be described as trends. Ecological time operates on a shorter time scale, over 
which changes in populations occur with little or no gene frequency changes (Schneider, 
1994). These concepts have been developed in the context of plant and animal ecology 
and evolution, based on general and well-known mechanisms of changes in gene frequen-
cies: mutation, migration, genetic drift, and natural selection. However, it is not clear if this 
distinction can directly be extrapolated to microbial ecology and evolutionary time scales. 
Bacteria and fungi acquire genetic heterogeneity through other mechanisms besides muta-
tion, like horizontal gene transfer by plasmids, transport of genetic material by phage, and 
capture of nucleic acids from the environment (Zaneveld et al., 2008; Fitzpatrick, 2011). 
The horizontally (not genealogically) acquired genes in general contribute to the adaptation 
of bacteria to local competitive or environmental pressures (Cohan, 2002), encoding for 
antibiotic resistance, novel metabolic functions, toxin production, symbiotic abilities, and 
other functions. Thus, this horizontally acquired genetic material confers a fitness advan-
tage to receipt bacteria in the appropriate circumstances (Dobrindt et al., 2004), acting as a 
true evolutionary force. The horizontal transfer or acquisition of this extra genetic material 
occurs over very short times and may establish a new lineage with new functional abilities in 
few years (Sullivan et al., 1995). This creates a conflict with the classical distinction between 
ecological and evolutionary time, that should be taken into account when considering the 
issue of time scales in metagenomic studies.

The spatial and temporal scales of a study thus determine the range of patterns and pro-
cesses that can be detected. If we study a system at an inappropriate scale, we may not detect 
its actual dynamics and patterns but may instead either not detect any pattern at all or iden-
tify patterns that are artefacts of scale. One interesting concept, used in ecology for long, is 
multiscale analysis: performing an analysis with respect to multiples of a unit of measure-
ments (Schneider, 1994). By changing the unit of analysis, and thus changing the resolution, 
it is expected to find different patterns of the variable of interest. For example, changing 
the sampling quadrat size (the grain) and recording soil microbiome diversity in nested 
quadrats of 1 cm2, 10 cm2 and 100 cm2, probably diversity indexes or other metagenomic 
community variables will change. This is different from simply spanning many quadrats of 
any of this sizes in a greater space (changing the extent of the study). For example, Shi et 
al. (2015), in a study described as multiscaled, investigated the biogeographical patterns of 
microbial functional genes in 24 heath soils from across the Arctic using GeoChip-based 
metagenomics. Principal coordinates of neighbour matrices (PCNM)-based analysis was 
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used to analyse data across several spatial scales. However, although the sampling locations 
were scattered around the Canadian, Alaskan and European Arctic in a very broad extent, 
the grain used was the same (sampling quadrats of 12 × 12 cm). Thus, this approach can be 
interpreted as not truly multiscaled, since the correlations were measured between quadrats 
similar in size at different distances. Multiscale analysis can be used to assess changes in 
time as well, although studies with a temporal multiscale approach in metagenomics are 
only beginning to appear (Stempfhuber, 2016). Multiscale approaches, in combination 
with unified spatial and temporal frameworks for metagenomic studies, will soon allow to 
improve our understanding of the variability of microbial communities (Gonzalez et al., 
2012; Gilbert and Henry, 2015).

Finally, it should be stressed here that all the considerations made about sampling 
metagenomic data should be taken into account for the collection of environmental meta-
data (climate variables, soil parameters, etc.). There is an interesting tendency to integrate 
metadata information in integrative workflows for processing and analysing metagenomic 
data on most of the currently available platforms (Ladoukakis et al., 2015). The issue of 
metadata collection is an important and urgent problem, that should be taken into account 
by the metagenomics research community, to elaborate standardized samplings protocols 
and share them.

Mathematical modelling
An entire paper would be needed to address in detail the issue of mathematical modelling in 
ecology and its influence on the recent surge of microbial community modelling. However, 
as mathematical modelling is becoming an increasingly important topic in metagenomics, I 
will give a brief account here.

In a broad sense, a model is any abstraction of a system, built using a conceptual, math-
ematical, or logical, alone or combined, frameworks. In particular, mathematical modelling 
has been used since early in ecology. The origins of modern population ecology models can 
be traced back to the end of eighteenth century, with the model describing human popula-
tion exponential growth built by Thomas Malthus (1798), and to the middle of nineteenth 
century, with the logistic growth model formulated by Pierre-François Verlhust (1845), also 
for human populations. In the first decades of the twentieth century, these models were 
rediscovered by the first population ecologists, like John Gray McKendrick (for bacterial 
growth) and Alfred J. Lotka, who, together with Vito Volterra, are considered the founders 
of population ecology. Since then, mathematical modelling has been implemented in every 
ecological field and organization level, from population to ecosystem ecology.

An exhaustive review of the huge variety of mathematical models used in ecology (deter-
ministic, stochastic; discrete, continuous, mean-field, individually based, etc.) (Müller 
and Kuttler, 2015), is out of the scope of this work, but perhaps one of the most helpful 
classifications of ecological models is in phenomenological and mechanistic models. Phe-
nomenological (also called statistical) models are based on observed patterns in the data, 
while mechanistic models are built addressing directly the mechanisms generating observed 
processes and patterns. Phenomenological models provide no information about the under-
lying ecological mechanisms, since there is no a unique relationship between statistical 
patterns and mechanisms, and their predictive power is somewhat restricted to conditions 
comparable to those from which the data to build the model were taken. On the other 
hand, since mechanistic models attempt to understand the phenomenon modelled, they 
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are usually regarded as enclosing more explanatory and predictive powers than phenom-
enological models. For example, building a phenomenological model for a species dispersal 
distance using a regression model based on actual dispersal records taken at field does not 
tell much about the mechanisms underlying the dispersal pattern found, and the model 
would be applicable only to a similar scenario and within the ranges of dispersal actually 
recorded. Building a mechanistic model, however, including the main mechanisms involved 
in dispersal of, for example, wind-dispersed seeds, like seed morphology, wind direction 
and velocity, and elevation and topographic landscape, would inform about more general 
features of the dispersal, like interactions among the variables included, and allow for greater 
and more extrapolating predictive ability. However, in some cases, both kinds of models can 
be complementary, since some parts of a mechanistic model, not suitable for being backed 
by an explicit mechanism, may contain statistical relationships (Kendall et al., 1999).

For some time now, the tendency in ecology has been to move on from purely phenom-
enological models to more explanatory and predictive mechanistic models. This tendency 
is also beginning to permeate the work in microbial systems, thus contributing to the 
foundation of a modern microbial ecology (Gonzalez et al., 2012; Liberles et al., 2013). 
The development of mathematical models with a basis on mechanistic understanding, 
integrated with controlled experiments will allow to convert the huge empirical knowl-
edge gained through microbial metagenomics and other meta-omics into fundamental 
insights and testable predictions about microbiome composition, function and dynamics 
(Widder et al., 2016). In a succinct but informative review, Widder and colleagues show 
how metagenomic and other meta-omics data can be integrated with different modelling 
approaches. Dynamic models of deterministic and mechanistic nature (like difference equa-
tions and flux balance analysis), stochastic dynamical systems (like Markov chains, random 
walks), individual-based models, and other approaches can be used to find patterns at differ-
ent spatial and temporal scales, and at different ecological organization levels (from single 
cells to microbiomes at community and ecosystem levels), and to generate explanations 
and predictions about microbiome structure and function. Some modelling approaches, 
although essentially phenomenological, may however contribute to the generation of new 
hypotheses on microbiome structure and function. Network analysis has been used in 
ecology to study co-occurrence networks established by calculating correlations between 
the abundance of individual species to detect interactions among them in the community 
for long ( Jordano, 1987). This approach has recently began to be used in microbial ecol-
ogy. For example, Barberán and colleagues calculated associations between microbial taxa 
and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing 
dataset containing 4,160,000 bacterial and archaeal sequences from 151 soil samples from 
a broad range of ecosystem types. The analysis revealed habitat generalists and specialists, 
co-occurrence patterns including general non-random association, common life history 
strategies at broad taxonomic levels and unexpected relationships between community 
members. Thus, although regarded as not purely mechanistic, network analysis has the 
potential of exploring inter-taxa correlations to gain a more integrated understanding of 
microbial community structure and the ecological rules guiding community assembly (Bar-
berán et al., 2012). New modelling approaches tend to integrate different modelling tools 
to combine information from different sources. For example, Noecker et al. (2015), in a 
systems biology approach, propose a comprehensive framework to systematically link vari-
ation in metabolomic data with community composition by utilizing taxonomic, genomic, 
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and metabolic information. Their approach integrates available and inferred genomic data, 
metabolic network modelling, and a method for predicting community-wide metabolite 
turnover to estimate the biosynthetic and degradation potential of a given community.

Conclusions
Metagenomics and other meta-omics constitute, due to their inherent nature, a complex 
field placed at the intersection of many disciplines, like molecular biology, microbiology, 
ecology, chemistry, bioinformatics, among others, and new ones are hastily being impli-
cated. The theoretical and methodological complexity arising from this multifaceted and 
dynamic field requires the integration of useful theoretical basis and methodologies coming 
from already well established disciplines like ecology, and dealing with change of paradigms 
like the traditional organism-centred approach to a new, organism- and species-free context. 
Thus, while some concepts and methodologies coming from ecology should be revised for 
application on metagenomics and meta-omics fields, like niche theory, other do not require 
great changes and it is predicted to be increasingly adopted by environmental metagenom-
ics. Ecological principles behind spatial and temporal scales should be taken into account 
when formulating the hypothesis and sampling design for metagenomic and meta-omics 
studies, and the wealth of modelling approaches developed through decades by ecologists is 
being proven extremely useful in the context of metagenomics.
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