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Abstract: Gene co-expression network analysis has been widely used in gene function annotation,
especially for long noncoding RNAs (IncRNAs). However, there is a lack of effective cross-platform
analysis tools. For biologists to easily build a gene co-expression network and to predict gene function,
we developed GCEN, a cross-platform command-line toolkit developed with C++. It is an efficient
and easy-to-use solution that will allow everyone to perform gene co-expression network analysis
without the requirement of sophisticated programming skills, especially in cases of RNA-Seq research

check for and IncRNAs function annotation. Because of its modular design, GCEN can be easily integrated

updates into other pipelines.
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Long non-coding RNAs (IncRNAs) are generally defined as transcripts with more
than 200 nucleotides but without protein-coding potential. A variety of IncRNAs play
Academic Editor: Md Mehedi import roles in diverse biological processes, such as human diseases [1], innate immu-
Hasan nity [2], abnormal development [3], and so on. The recent advances in RNA-Seq technology
have immensely boosted the discovery of abundant IncRNAs across many species. The
characterization of the functions of IncRNAs are accruing but still lag behind expectations.
Unlike protein-coding genes, IncRNAs are often less conserved at the level of primary
sequence [4]. As a result, traditional gene annotation approaches, which are based on the
similarity of sequence or structure and have achieved great success in protein-coding genes,
have become impracticable in the exploration of IncRNAs function.

In contrast, the guilt-by-association approaches, which use associations or interactions
between genes to extract functional meaning rather than sequence similarity analysis,

provide a feasible strategy for IncRNAs function annotation [5]. The gene co-expression
network is one such method which is generally constructed according to high-throughput
gene expression profiles from microarray or RNA-Seq. The assumption of gene annotation
by a co-expression network is that genes with similar expression pattern are likely to share
This article is an open access article  Simnilar functions [6]. Existing studies have revealed that IncRNAs often execute functions
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an R-based tool for gene co-expression network construction and module identification
mainly for microarray data [9]. The server ncFANs is a co-expression-network based
webservice for IncRNAs function annotation [10]. However, there are certain new situations
to consider for RNA-Seq and coding-IncRNA gene co-expression network analysis, such as
data normalization and network construction methods [11], as well as the computational
challenges of much larger datasets when IncRNA genes are considered. In addition, it
is valuable to run such calculations efficiently on a local computer in many scenarios.
Thus, we require an effective cross-platform toolkit for providing all services with network
construction and module identification, which has been proven to be effective in many
applications on function prediction and annotation of IncRNAs [5,8].

In this work, we present GCEN, a cross-platform command-line toolkit developed
with C++, which can be used by biologists to easily build a gene co-expression network and
predict gene function. The toolkit GCEN is an efficient and easy-to-use solution that can
be easily integrated into other pipelines due to its modular design. It will allow everyone
to perform gene co-expression network analysis without the requirement of sophisticated
programming skills, especially in RNA-Seq research or in IncRNAs function annotation.

2. Materials and Methods

The program GCEN was developed using C++ as an open-source software under the
GPLv3 license. In addition to our code, we used some third-party code in compliance
with their licenses. The program GCEN can be compiled and run in Linux, Windows, and
macOS. Compiling GCEN requires a compiler and library support for the ISO C++ 2011
standard. No new computational methods or algorithms are used in GCEN, rather we
implemented and integrated some classic algorithms to annotate IncRNA faster and more
easily. We describe the main algorithms used as follows.

2.1. Data Normalization

We implemented five algorithms, namely, median normalization, quantile normaliza-
tion [12], the median-of-ratios method [13], trimmed mean of M-values (TMM) [14], and
housekeeping genes normalization. For the median normalization, the median of gene
expression values in each sample is calculated, and then each gene expression value in the
same sample is multiplied by the mean of all medians and divided by the median of this
sample. For housekeeping genes normalization, we adjusted the gene expression values so
that the median of the housekeeping genes expression in each sample was the same. The
descriptions of the other three algorithms can be found in their original papers.

2.2. Co-Expression Network Construction

We used the Spearman or Pearson correlation coefficients directly to determine co-
expression patterns between gene pairs, which are better performing and more robust [11].
The coefficient of Spearman or Pearson correlation p was calculated as follows.

VI - Sy - 7

For Pearson correlation, x or y represents the vector of the expression value of each
gene, x; or y; stands for each expression value, and X or ¥, is the mean value of these
expression values. For Spearman correlation, the vector of the expression value of each
gene needs to be replaced by their ranks. So, Spearman correlation is more robust than
Pearson correlation in the face of outliers and is recommended to be used in RNA-Seq
data [15].

2.3. Module Identification

The network modules, which are groups of genes with similar expression profiles, are
explored based on the topological structure of the gene co-expression network [16]. Genes
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in the same module tend to be functionally related and co-regulated. We implemented a
module identification algorithm that was based on the node similarity measure of their
relative interconnectedness coupled with the hierarchical clustering method [17].

hij + aij
ci + cj— hi]' — ajj

@

Sij =

where s;; is the similarity between gene i and gene j, h;; is the number of shared neighbour
genes of gene i and gene j in the co-expression network, 4;; is the adjacency of gene i and
gene j, and ¢; and ¢; are the connectivity of gene i and gene j, respectively.

2.4. Function Annotation

After gene co-expression network construction and module identification, we used
gene function enrichment to predict the function of novel IncRNAs or coding genes. The
p value of the enriched function was calculated as follows.

L0
R

where N is the total number of background genes, M is the number of genes with one
certain annotation in background genes, n is the number of neighbours of the gene to be
annotated, and k is the number of neighbour genes with the certain annotation.

Another gene function analysis algorithm we implemented is the random walk with
restart (RWR) [18], which measures each node’s relevance with respect to given seed nodes
(here are genes with known function annotations) based on network propagation. The
information (known gene function) is flowed in the network from seed nodes to nearby
nodes until convergence. Finally, ranked information associating genes with a function of
interest is attached on the nodes of the network.

®)

pr = apo+ (1 —a)Wpr_4 4)

where p( represents our initial information on genes (seed), and W is a gene co-expression
matrix, its columns sum was set to 1. The parameter o is the probability that the information
restart to the starting node. Repeated iteration of this equation converges to a steady
state. py is the ranked information that associates genes with a function of interest. The
implementation of RWR uses Eigen, which is a C++ template library for linear algebra
(http:/ /eigen.tuxfamily.org, accessed on 12 December 2022).

3. Results
3.1. The Main Analysis Process of GCEN

The recommended pipeline of GCEN consists of four parts: data pretreatment, network
construction, module identification, and function annotation (Figure 1). A README file and
sample data are included in the software package, which may be of help to users. Because
of its modular design, GCEN can be easily integrated into another pipeline. Moreover, the
multithreaded implementation of GCEN makes it fast and efficient for RNA-Seq data.
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Figure 1. The recommended pipeline of GCEN. The recommended pipeline consists of four parts:
data pretreatment, network construction, module identification, and function annotation.

Performing a gene co-expression network analysis requires gene expression profiles,
which are usually derived from microarray or RNA-Seq. Before gene co-expression network
construction, it is critical that the expression values are normalized on the same measure-
ment scale. To remove systematic effects in the RNA-Seq data, we implemented many
state-of-the-art data normalization algorithms, including quantile normalization [12], the
median-of-ratios method [13], trimmed mean of M-values (TMM) [14], and housekeeping
genes normalization, which have already been used in the gene differential expression
analysis. Moreover, low expression of genes will bring noise to the gene co-expression
network, and therefore, we needed to remove these genes according to the mean or variance
of their expression values.

Next, according to the guidelines of RNA-Seq co-expression network construction and
analysis, we used the Spearman or Pearson correlation coefficients directly to determine
co-expression patterns between gene pairs, which perform better and are more robust [11].
Then, network modules, which are groups of genes with similar expression profiles, were
explored based on the topological structure of the gene co-expression network [16]. Genes
in the same module tend to be functionally related and co-regulated. We implemented
a module identification algorithm based on the node similarity measure of their relative
interconnectedness coupled with the hierarchical clustering method [17].

After gene co-expression network construction and module identification, we used
gene function enrichment [19] to predict novel IncRNAs or coding gene function. According
to the guilt by association (GBA) principle, we determined the function of an unknown
gene by voting on its neighbour genes with known functions. These neighbour genes can
be directly interacting genes in the network (Figure 2a), or they can be genes in the same
module (Figure 2b). Another gene function analysis algorithm we implemented is the
random walk with restart (RWR) (Figure 2c) [18], which measures each node’s relevance
with respect to given seed nodes (here are genes with known function annotations) based
on network propagation. The information (known gene function) is flowed in the network
from seed nodes to nearby nodes until convergence. Finally, ranked information that
associates genes with a function of interest is attached on the nodes of the network.
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Figure 2. Gene function annotation methods. (a) Network-based function annotation. The function
of an unknown gene (red box) is inferred from the function of its neighbours (green background
red circle) in the network. (b) Module-based function annotation. The function of an unknown
gene (red box) is inferred from the function of other genes (green background red circle) in the
module. (¢) Random walk with restart (RWR). Information flows in the network from the seed node
(dark green) until convergence. Each node has traces of information. The rank of the node (light
green) highly associated with the seed node is higher.

3.2. Performance Evaluation

Considering the recent discovery of tens of thousands of IncRNAs transcribed from the
genomes of mammals and other complex organisms, we find that the number of nodes and
connections in the coding-IncRNA gene co-expression network will be greatly increased
in comparison with a traditional coding gene co-expression network. This poses a big
challenge to the computation time and memory for constructing a co-expression network.
The program GCEN is developed with C++ and has a natural advantage in terms of its
performance. We tested the time and memory consumption of GCEN, FastGCN [20],
and WGCNA [9] in network construction. The fastest was GCEN and it had the least
memory consumption. For a network of 10,000 genes, it only takes a few seconds for
network construction, and time consumption may vary because of data size and computer
performance. In single thread mode, GCEN is approximately five times faster than WGCNA
in calculating the correlation coefficient of gene expression. The outputs of GCEN are
generated immediately after the calculation of network construction, and therefore, its
memory consumption remains low without increasing significantly with the number of
genes. However, WGCNA had a peak memory of more than 20GB when 40,000 genes were
analysed (Table 1).

Table 1. Time and memory consumption tests for network construction.

Gene Number GCEN FastGCN WGCNA
10k 9.51s/5.93 MiB 16.98 s/1.31 GiB 59.36 s/1.84 GiB
20k 37.86 s/8.50 MiB 2m 11.59s/5.25 GiB 3m47.15s/6.36 GiB
40k 2m 31.42s/12.88 MiB 24 m 23.33s/21.12 GiB 14 m 57.86 s/24.39 GiB
80k 10m 7.70 s/21.58 MiB Out of maximum memory 59 m 53.82s5/96.11 GiB

These tests were run on a personal computer with an Intel Core i5-10400 processor (6 cores/12 threads) and 128GB
memory. The version of GCEN was 0.5.1, the version of FastGCN is v1.1, and the version of WGCNA was 1.69. The
test data were a randomly generated number between 0 and 1, and each gene has 20 expression values. All tests
were run in single thread mode, although GCEN has implemented multi-threading. The test data and scripts can
be found on our website (https:/ /www.biochen.com/gcen/static/benchmark.zip, accessed on 13 March 2022).

3.3. Data Visualization

Data visualization is essential in biological research because it presents the meaning of
the data more straightforwardly. The release of GCEN does not include a plotting program
as GCEN focuses on efficiently using a gene co-expression network to predict gene function.
However, we did not ignore the plotting demands of biologists, and we provide a number
of data visualization demos and scripts on our website. We do not offer automatic plotting
instead of enlightenment to show biological significance in gene co-expression analysis.
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Figure 3 shows three examples of visualizations. Figure 3a shows the degree distri-
bution of a gene co-expression network. The degree distribution of gene co-expression
networks is similar to that of scale-free networks and approximately follows a power law.
The majority of genes are related to a small number of other genes, while only a few genes
are linked to a large number of genes. This degree distribution can be shown as a straight
line on a log-log plot. Figure 3b shows the sub-network or module. We predict gene
function on the basis of neighbouring genes in the network or genes in the same module.
As aresult, it is critical to demonstrate them graphically. Figure 3c shows GO annotations
of a gene. Among the three aspects of Gene Ontology, the biological process is the most rep-
resentative of gene functions and is also the most demonstrated. The code and sample data
for Figure 3 are available on our website (https://www.biochen.org/gcen/visualization,
accessed on 13 March 2022).
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Figure 3. Examples of data visualization. (a) Network degree distribution. (b) Sub-network or
module. (c) GO annotation (biological process top 10). The dataset derived from an RNA-Seq of
17 samples of zebrafish [21].

4. Discussion

RNA-Seq is a popular approach for studying gene expression under various biological
conditions. Normalization, which scales the raw data so that different samples can be
compared, is a critical step in RNA-Seq. Different normalization methods are based on
different assumptions that significantly affect the downstream analysis [22]. The toolkit
GCEN implements five widely used normalization methods for users to choose from. To
solve the performance problem caused by the larger network with many genes in RNA-Seq,
we developed GCEN in C++ for performance. A gene co-expression network analysis
using GCEN can be carried out on a typical desktop or laptop computer.

The construction of a gene co-expression network is usually achieved by calculating
Pearson or Spearman correlation coefficients, such as FastGCN [20], SWIM [23], and SEa-
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CorAl [24]. WGCNA [9] first calculated the Pearson correlation coefficient, and then set a
soft threshold by selecting the 3 parameter. Gene pairs with correlation coefficients reach-
ing a threshold were considered to be co-expressed. Similar to WGCNA, CEMiTool [25]
modified the method of selecting the 3 parameter, and GWENA [26] used the Spearman
correlation coefficients instead of Pearson correlation coefficients. Ballouz et al. evaluated
the performance of network building methods and concluded that the computationally
simplest and most transparent method (direct use of the Spearman or Pearson correlation
coefficients) for calculating co-expression was better than the soft thresholding method
(e.g., used by WGCNA) [11]. Therefore, at present, GCEN can only build the network by
calculating the Spearman or Pearson correlation coefficients, and other network building
methods will be added in the future.

False positives in gene co-expression networks are a problem that cannot be ignored.
Low expression of genes will bring noise to the gene co-expression network, and an em-
pirical approach is to discard a quarter of the total number of genes. Petti et al. found
that negative correlations between gene pairs may not be biologically meaningful, and
further they developed the SEaCorAl to reduce spurious correlations [24]. It can be consid-
ered to keep only positive correlation in gene co-expression network. Ballouz et al. and
Franziska et al. figured out that network aggregation shows better performance [11,27].
Thus, a program network_merge is included in the GCEN package that can merge two or
more networks.

Our research interest focused on using computational approaches to decipher the
function of long non-coding RNAs. The toolkit GCEN was also developed with this
purpose in mind. Using the gene co-expression network, we obtained 7345 IncRNAs with
GO annotation and 7055 IncRNAs with KEGG annotation among 13,604 zebrafish IncRNAs
in our previous study [8]. More recently, we annotated 196 of 756 conserved IncRNAs in 25
flowering plants using the same method [28]. Some biologists have had concerns about the
annotation accuracy. We are convinced that the prediction accuracy of the real network was
higher than the random shuffled network that was used as a control [8]. There is a program
calculate_accuracy in the GCEN package to calculate the accuracy of prediction. We had
developed some utilities like the calculate_accuracy to assist in the gene co-expression
network analysis.

Our previous study used the gene co-expression network to annotate IncRNAs on a
large scale, but the gene co-expression network has a much broader application. Mathias
et al. built IncRNAs co-expression networks using TCGA breast cancer data. Furthermore,
they found an oncogenic IncRNA LINCO00504 [29]. In another study that searched for
disease-related genes, Bayraktar identified key genes of Alzheimer’s disease (AD) through
AD-specific co-expression networks and genome-scale metabolic modelling of the brain
in AD patients [30]. The toolkit GCEN is also suitable for such similar analysis. However,
there is still some analysis that GCEN does not support, such as identification of hub
genes. Recently, Paola Paci et al. developed a new algorithm called SWIM (SWItch Miner)
for the discovery of a new class of hub genes from gene co-expression networks. These
hub gene are called switch genes and are negatively correlated with their first nearest
neighbours [24]. Then, they applied SWIM methodology to identifies novel candidate
disease genes [31]. The software SWIM was originally written in MATLAB, but they have
recently re-implemented it using R [32].

The toolkit GCEN still has some limitations. The command line does scare off some
users. In the future, we will develop a web server based on GCEN to provide a graphical
interface. At the same time, we will enhance data visualization in gene co-expression
analysis. Currently, GCEN only implements two methods of network construction and one
method of module identification. We will add more algorithms in the future.

Software should be well maintained during its lifecycle, and its robustness and ease of
use should be improved. The software GCEN will be continuously updated on our website
(https:/ /www.biochen.org/gcen, accessed on 13 March 2022), and there is also a large
amount of material on the website that can assist biologists in using it better. Moreover,
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connecting with our users is truly important to us. We sincerely hope that users will provide
their questions and suggestions to help us improve the software.

5. Conclusions

We present here GCEN, an easy-to-use toolkit for gene co-expression network analysis
and IncRNAs annotation. It has three notable features: it is easy to use, it has a high speed
and low memory usage, and it has cross-platform application. The toolkit GCEN was
primarily designed to be used in IncRNAs annotation, but is not limited to these scenarios.
In the future, we will update the software and fix bugs in accordance with user feedback.
We promise to maintain GCEN for 5 years or more. The software GCEN is available on
our website (https:/ /www.biochen.com/gcen, accessed on 5 February 2022) or on GitHub
(https:/ /github.com/wen-chen/gcen, accessed on 5 February 2022).
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