
����������
�������

Citation: Shang, Z.; Zhou, C.; Zhang,

Q. Chemical Reaction Networks’

Programming for Solving Equations.

Curr. Issues Mol. Biol. 2022, 44,

1725–1739. https://doi.org/10.3390/

cimb44040119

Academic Editor: Asita Elengoe

Received: 11 March 2022

Accepted: 12 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Chemical Reaction Networks’ Programming for
Solving Equations

Ziwei Shang 1, Changjun Zhou 2 and Qiang Zhang 1,*

1 Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software
Engineering, Dalian University, Dalian 116622, China; shangziw@126.com

2 College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China;
zhou-chang231@163.com

* Correspondence: zhangq@dlut.edu.cn

Abstract: The computational ability of the chemical reaction networks (CRNs) using DNA as the
substrate has been verified previously. To solve more complex computational problems and perform
the computational steps as expected, the practical design of the basic modules of calculation and
the steps in the reactions have become the basic requirements for biomolecular computing. This
paper presents a method for solving nonlinear equations in the CRNs with DNA as the substrate.
We used the basic calculation module of the CRNs with a gateless structure to design discrete and
analog algorithms and realized the nonlinear equations that could not be solved in the previous work,
such as exponential, logarithmic, and simple triangle equations. The solution of the equation uses
the transformation method, Taylor expansion, and Newton iteration method, and the simulation
verified this through examples. We used and improved the basic calculation module of the CRN++
programming language, optimized the error in the basic module, and analyzed the error’s variation
over time.

Keywords: molecular programming; chemical reaction networks; chemical dynamics; biological
molecular calculations

1. Introduction

Since biomolecules can solve complex problems [1], biomolecular computation in-
tends to perform algorithms and calculations through synthetic biochemical systems. More
important is how to realize the computational models generated by biochemical processes
through programming [2]. The realization of computational models in CRNs that use
biomolecules as the substrates is primarily analogous to traditional engineering processes
or systems with computational capabilities. The components in all calculation models
are plug-and-play chemical reaction network calculation models in a test tube solution [3].
An important issue is abstracting the basic reaction module [4] and controlling the cal-
culation order [5–7]. Excellent work has been performed in the realization of computing
and programmability [8–13]. Based on the characteristics of different molecules, peo-
ple have developed a system that can realize logic operations [14–17] and a calculation
model with reprogrammable execution algorithms [18]. Among them, DNA molecules
can undergo branch migration and strand displacement reactions due to their base com-
plementation [19,20] and can realize storage structures through programming [21–24] and
accomplish signal transmission [25]. The logic gates constructed based on the above char-
acteristics of DNA molecules can realize the construction of large-scale cascade circuits [26]
and neural networks [27]. There is also the construction of cascade circuits by designing
arithmetic gate modules to realize the network of analog function calculation [28] and the
simulation of polynomial functions [29].

Nevertheless, the gate module structure that uses the circuit to realize the calculation
limits the processing of the operation steps. For example, the output of each two-input

Curr. Issues Mol. Biol. 2022, 44, 1725–1739. https://doi.org/10.3390/cimb44040119 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44040119
https://doi.org/10.3390/cimb44040119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0003-3776-9799
https://doi.org/10.3390/cimb44040119
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44040119?type=check_update&version=2


Curr. Issues Mol. Biol. 2022, 44 1726

gate module needs to be cascaded with the next gate module. This calculation model’s
shortcomings that depend on the circuit characteristics are reflected primarily in the im-
plementation of simulation functions [28,29] and equation solving calculation [30]. For
example, Song and Zou needed operation gates to build each item and then cascaded them
to realize the simulation when constructing polynomials [29,30]. Even if Salehi adopted
Horner’s law to relatively reduce the repetition of calculations [28], it could not reduce the
repeated input coefficient parameters required when building each item and the significant
truncation error caused by the limitation of the cascade structure. In Zou’s paper [30], due
to module limitations, the design of analytical solutions of equations could not be achieved,
leading to repeated techniques in solving similar equations. Given the problems in the
above calculations, we focused on using a formal, circuit-free corresponding design method
to overcome these.

Implementing a circuit-free structure design in the CRNs is based on the chemical
reaction networks being an abstract calculation model, a programmable chemical controller
that can be realized in the CNRs with mass effect [31]. There has been much excellent
work in mapping ordinary differential equations’ (ODEs) system models abstracted from
different computing systems to realize the corresponding functions through chemical
reaction networks. Buisman synthesized conceptual networks that carried out elementary
mathematical operations to realize the calculation of algebraic functions [32]. In Cardelli’s
paper, Cardelli discovered the correspondence between the linear circuit function and the
chemical reaction network [33]. Ge designed a circuit-less chemical reaction network to
realize the logic design of the corresponding Karnaugh map [34]. Vasic first developed
the CRN programming language—the CRN plus plus (CRN++) language [35]. The above
controllable and programmable chemical reaction networks use DNA molecules as general
reaction substrates because DNA molecules can realize arbitrary coupling chemical reaction
networks [6,36].

This paper proposes a corresponding design method for solving nonlinear equations
in the chemical reaction network. We used a formal, circuit-free corresponding design
method to achieve the calculations. We designed discrete and analog algorithms and
used these algorithms to fit equations with and without analytic solutions. We designed
and solved equations that the previous calculation structure could not achieve, such as
exponential equations, logarithmic equations, and the simplest trigonometric equations.
Given the limitation of the gate structure of the circuit to realize the calculation, we used
a module more in line with the arithmetic logic in the solution process so that we could
simulate the algorithm through the combination of basic arithmetic modules in the CRNs.
The simulation algorithm in the chemical reaction network realizes the simulation of the
polynomial function, which reduces the cost of constructing each term of the gate module,
and the simulation of the expansion of the function into a Taylor polynomial also allowed
us to solve the equation without an analytical solution by the Newton iteration method.

Furthermore, for previous methods of repeatedly constructing equations rather than
directly constructing analytical solutions, we simulated analytical solutions through dis-
crete algorithms so that the same type of equation solving reduced the repetitive design.
When solving the same type of equation, since the analytical solution is the same, it is only
necessary to change the concentration according to the coefficient without rebuilding it.
The advantage of the discrete algorithm is that it can connect multiple chemical reaction
network function modules, making it possible to effectively connect them according to the
order of their calculation when simulating the analytical solution. This article used CRN++
to program to achieve the solution of all equations. At the same time, because reducing
errors is also the focus of CRNs’ design, we also optimized the basic calculation modules
in CRN++ in the solution design. We combined and designed more accurate calculation
models by improving the basic modules.

The rest of this article is organized as follows. Section 2 gives a brief description of
the calculation principle of the equation solving and mapping to the chemical reaction
network and the reaction substrate, and we improved the algorithm of the division module



Curr. Issues Mol. Biol. 2022, 44 1727

in CRN++. Section 3 presents the process of solving the three types of equations corre-
sponding to the designed discrete algorithm and simulation algorithm and the results of the
simulation realization. Moreover, we compared the error of the improved algorithm and
analyzed the simulation algorithm’s error change when simulating the function. Section 5
summarizes the full text.

2. Materials and Methods

We introduce the computational methods and principles of solving nonlinear equations
in CRNs, as well as the substrates in the reactions. First, we briefly describe the process of
solving calculations in the CRNs, the basic calculation modules used in the computing, and
the composability of the time phase between the modules. Figure 1 show the corresponding
solution process of the equation with the analytical solution. For the equation to be solved,
its coefficients need to be mapped to the concentration of reactive species.

Figure 1. The basic design framework principle. The solid red line represents the mathematical
steps of solving the equation, and the solid black line represents the mapping in the design of the
CRNs. The solid blue line represents the process of the CRNs compiled, and the solid green line
represents the corresponding molecular substrate in the CRNs. The gray background does not require
construction steps, so only the parameters are extracted.

We designed and solved the solution scheme to realize the substitution function and
map the solution steps to different functional modules. Then, we analyzed the basic
calculation modules that need to be used in each function module, such as addition,
subtraction, multiplication, division, and the division of comparison and judgment. Finally,
we considered that the calculation module needs to be divided into several sequential steps.

All the chemical reaction equations in the function module corresponding to the
solving steps can generate CRNs that realize the solution, and the concentration of the
product expresses the root of the equations. This network uses DNA molecules as the
substrates because DNA molecules can be coupled to any chemical reaction, so we did
not consider the design of DNA molecules here. In the simulation calculation, we set all
chemical reaction rates as k = 1 and omitted them in the following reaction equations.



Curr. Issues Mol. Biol. 2022, 44 1728

2.1. Basic Modules

The calculation model for solving the equation uses basic operation modules, such as
div[B,A,X] representing division, and other operations for comparison and judgment [32].
Each operation module contains several chemical reaction equations, and the calculation
order ensures mutual isolation through clock species regulation. Each function module
includes the integration of these basic operation modules [35]. The basic principle is
explained by division. The CRNs transformed from the algebraic function operation of
division are expressed as Equations (1) and (2):

B→ B + X (1)

A + X → A (2)

The reaction environment was carried out in a fully mixed molecular solution that is
continuous in time and constant in the state space. In the CRNs, the change of each species
can be expressed by a system of ordinary differential equations [35]:

Ṡ = ∑
∀rxn∈CRNs

k · change(s) · ∏
∀R∈reactions (rxn)

[R]m(t) (3)

where Ṡ is the differential equation of the concentration of the product over time, k is
the rate of the chemical reaction equations, change(s) is the net change of the reactant,
R is the reactant, and m is the number of repetitions of the reactant. In summary, the
equations in the chemical reaction network of the division can be transformed into ODEs:
Ȧ = 0, Ḃ = 0, Ẋ = [B](t)− [A](t) · [X](t). The expression of ODEs also depends on the
reaction finally reaching a unique steady-state. When the steady-state is reached, Ẋ = 0,
such that a basic module can complete the solution of the one-dimensional linear equation
because the A and B species are used as coefficients to react. [A](t)[X](t) = [B](t), to
more concisely show the relationship between species changes, in the rest of this article;
we omitted the explicit dependence on time, writing the equation AX = B instead of
[A](t)[X](t) = [B](t). There is no change before and after, so the assignment of the
coefficient is [A](0), [B](0), which is the initial concentration of the species. The input data
selected in the simulation were A = 3, and B = 12, and the calculation result is shown in
Figure 2a. This operation of preserving input values makes some input species equivalent
to catalysts. We can also see that each changed species in the figure occurs from one step
to the next. During the simulation, we only show the final steady-state of the species
after each step. As can be seen from the results in Figure 2, in simulating the change of
species concentration with time, we did not consider the change of species concentration
in each step, but only show the concentration evolution at the end of each step. Each step
refers to a calculation step that requires at least three clock species, while only one clock
species participates in the calculation. The three clock species form a chemical oscillator to
isolate this calculation from the following calculation. All reactions in the chemical reaction
network have a clock species as reactants in this calculation step. The result chart shows
only a straight line in a calculation step, that is it only shows the time required for this
calculation step, and the change of concentration is displayed after the settlement of one
step, that is it needs to reach the steady-state. Therefore, the simulated concentration will
change vertically after each calculation step.



Curr. Issues Mol. Biol. 2022, 44 1729

(a) div. (b) subdiv1. (c) subdiv2.

Figure 2. Dynamic simulation of the solution results of solving AX = B of the three methods,
(a) where A(0) = 3 (blue), B(0) = 12 (green), solution result of X = 4 (orange); (b) the remainder is
r = 0.259458 (purple); (c) the remainder is r = 0.1472 (purple). The abscissa represents the time unit
is seconds.

The ODEs composed of all reactants and products are the critical bridge to trans-
forming algebraic functions into CRNs. The prerequisite for realizing the corresponding
relationship is whether all the reactions in the chemical reaction network can reach a unique
stable state. The calculation model requires that only when the chemical reaction equilib-
rium is reached, the calculation module can correspond to the corresponding ODEs. Note
that the chemical reaction equation in the reaction module, Equation (1), does not obey the
law of conservation of mass. It is an abstract chemical reaction equation to delete irrelevant
non-catalytic reactants to design the algebraic function module better [6].

The division module in CRN++ can use subtraction replacement to filter to accumulate
part of the quotient error in the operation, obtaining the quotient and remainder through
subtraction. The advantage of this method is reflected in the solution of the quadratic
equation of one unknown below. This article improved the implementation of division in
the basic module used. In the CRN++ module introduction, examples of using division
and converting to subtraction operations [35] are already given, as shown in Figure 2b.
Algorithm 1 is our improved calculation step, and the simulation results are show in
Figure 2c. Shown in Figure 2 is the simulation results of the three ways to achieve division.
The development of the error analysis is in Section 4.

Algorithm 1: subdiv2Reaction.
Data: Concentration of species [Si](0) ∈ R, Si = [A](0), [B](0) . . .
Result: [Quot](t), [Rema](t).

1 while not at end of the simulation time do
2 Rema← B− A
3 if Rema ≥ A then
4 QuotNext← Quot + 1
5 B← Rema
6 Quot← QuotNext
7 end

2.2. Composable Basic Modules

The transfer of parameters between different functional modules in CRNs is based
on the principle of DNA strand replacement. Each step in the same function module, the
isolation, and the execution of the basic arithmetic modules is controlled by the chemical
reaction oscillator generated by the clock species. All reactions reach a state of equilibrium
and exponentially converge to ensure that the product’s output can be used as the input of
the next module.

The harmonious combination of various modules and the independence of each are
key to ensuring that the CRNs realize calculations. For example, the function of division can
be expressed as step[div[B,A,X]], step[ld[B,X]]; these two calculation modules need to be
isolated in two steps to complete the calculation. In the combination, we used the method



Curr. Issues Mol. Biol. 2022, 44 1730

of retaining the reactants. Suppose the design directly performs the chemical reaction of
the input species since the reactions in the CRNs are carried out in parallel. In that case,
the input of the products from the previous module to the input of the next module will
affect the module’s performance. Equalization will cause the calculation modules to be
uncombinable [35].

DNA strand displacement technology plays a role in controlling signal transmission.
Figure 3 shows a series of reactions in which DNA molecules fit the chemical reaction
Formula (1). We enumerate how the first formula in Equation (1) can be expressed as
Equations (4) and (5):

BX + B→ BXw + B f 1a (4)

BX f 1 + B f 1a→ BX f 1w + f 1 + X + B (5)

To simplify the model, we assumed that the binding reaction is irreversible in the
simulation. We call the Ba* domain in BX a toehold. In Equation (4), the Ba domain
in B hybridizes with the Ba* domain in BX, where the asterisk indicates the complex
domain. First, the toehold will automatically match according to the principle of base
complementation, where the Bb and Bc domains in B will compete with the Bb and Bc
domains in Bf1a. In the end, strand B will replace strand Bf1a and complete the strand
displacement reaction. By designing the sequence of different base sequences in the toehold,
reactions can generate different strand replacement reactions. The replaced single strand
can be used as the input of other modules to distinguish between different modules and
transmit different signals. Strand B is both a reactant and a product, which is regarded as
a catalytic reaction among all interacting species. In the CRN simulator, only the steady-
state after each step is described, so the concentration of some input species remains
macroscopically unchanged.

Figure 3. A list of the DNA reactions in B→ B + X. The DNA domain of the color part is assumed
to represent a unique DNA sequence. It is assumed that a domain can be bound to its complement,
but cannot interact with any other domain in the system. It is also a part that can branch and migrate.

3. Results

This part mainly describes three kinds of equations: logarithmic equations, exponential
equations, and the simplest trigonometric equations to solve the process and the results.
Among them, the solution of the two exponential equations corresponds to two methods,
respectively. One is to use the analytic method to obtain the roots of the equation through
the analytical solution. At the same time, the quadratic equation in one unknown uses the
method of substitution to find its solution first and then solve the exponential equation.
This design shows that using discrete algorithms can solve complex equations that could
not be designed and expressed before. The other is to use Newton’s method to calculate
the result after each iteration by developing the corresponding Newton iteration formula in
the chemical reaction network. We uses real-valued (analog) algorithms to solve the other
two types of equations.

The solution of an equation may require multiple function modules. If a function
module has been active until the end of the simulation time, we need to divide it into



Curr. Issues Mol. Biol. 2022, 44 1731

different modules. The state of such activation is in two situations. One is the existence of
the CMP module [35], which generates branch control by comparing different concentration
values, and the other is a loop assignment statement that the loop will cause. The above
implementation principles are because the chemical oscillator controlling the steps contin-
ues to oscillate under certain conditions. This will cause errors in the subsequent addition
of calculation steps in the same function module. To ensure the smooth progress of the
calculation, we must ensure that a function module has only one CMP module. There is no
step relationship between different function modules. In other words, we isolated different
function modules by adding clock species and used a group of clock species in the same
function module. The clock species are regulated by the step. The DNA strand replacement
technology ensures that the specific species are the output of the upstream function module
and the input of the downstream function module. The correlation between the upstream
function module and the downstream function module is that the concentration of the
species output by the upstream function module is the initial concentration of the input
species of the downstream function module, so this requires that the downstream function
module calculation input cannot be negative.

Algorithm 2 represents the processing of the negative input after one step in the CRNs.
Such a pseudo-concentration can be output after the calculation reaction of changing the
negative value through subtraction, addition, squaring, etc., in the calculation.

Algorithm 2: Negative numbers in steps.

Data: Concentration of species [Si](0) ∈ R, Si = [A](0), [B](0) . . .
Result: H(t)

1 The value H from the end of one step to the next step;
2 if H > 0 then
3 Continue to the next step of calculation.
4 else
5 H = 0
6 end

3.1. Solving the Exponential Equations

We solved two different types of exponential equations. The first was an equation
with an analytical solution, Aa2x + Bax + C = 0. The second was a nonlinear equation
without an analytical solution, x3ex − 2 = 0.

For the equation with the analytical solution, Aa2x + Bax + C = 0, we constructed
its execution order in the CRNs by the discrete algorithm. The concentration of species
corresponding to the root value of the univariate quadratic equation is transferred as an
input parameter to the function module for calculating the exponential equation. This
design completes the corresponding element transformation method. We used Newton’s
method to obtain the solution through iterative calculations for the second nonlinear
equation x3ex − 2 = 0 with no analytical solution. The chemical oscillator can ensure that
these reactions can proceed smoothly.

To solve the equation Aa2x + Bax + C = 0, we set t = ax (t > 0) and obtained
At2 + Bt + C = 0, which contains the solution of two types of equations: The first is the
solution of the quadratic equation of one variable corresponding to two function modules in
the CRNs. The resolution of the exponential equation corresponds to one function module
in the CRNs. A total of three function modules are required to achieve the solution. Figure 4
shows the phased results obtained by the three function modules under specific values,
and we solved the open square root using the CMP module. It is precisely because of the
existence of this CMP module that our solution before substitution needs to be divided into
two modules. First, we designed the calculation module corresponding to the analytical
formula. The first function module corresponds to the calculation of H1,2 = (−B±

√
∆).

Figure 5 shows the step design of obtaining the chemical reaction equation of H. Because
the square root calculation in this function module uses the CMP module, it is used as a



Curr. Issues Mol. Biol. 2022, 44 1732

separate function module to ensure the calculation sequence. t1,2 =
H1,2
2A corresponds to

the second function module. According to Algorithm 2, we dealt with the case of negative
numbers in the calculation. We used Algorithm 2 in the division calculation, and the
purpose was to filter to calculate the accumulated error.

(a) Integer square root (b) First function module (c) Second function module (d) Third function module

Figure 4. Dynamic simulation of the results of solving 2a2x − 5ax − 12 = 0, a = 2: (a) solving the
square result of the integer, corresponding to the solution of

√
∆,
√

∆ = 11.0318 (green); (b) solution
result of two values of H1,2, H1 = 16.0318 (green), H2 = 0.00103034 (blue); (c) solution result of
t1 = 4 (orange), t2 (red); (d) solving the exponential equation to obtain x = 2.00001 (orange). The
abscissa represents the time unit is seconds.

Figure 5. CRNs’ calculation module corresponds to the main calculation steps in the first function
module.

The third function module is to solve t = ax. We used a discrete algorithm (Algorithm 3)
to solve the problem and compared the output value t of the second function module with
the value of the product of a. We limited the x that we sought to only be a positive integer or
the reciprocal of a positive integer, and it can only solve the case where a > 1. These two
situations occur respectively in the case of t > a and t < a. Corresponding to the simulated
values of these two cases, a = 3, t = 27, x = 3.00038; a = 27, t = 3, x = 0.333333, Figure 6a,b
shows the results.

The solution of the equation needs to go through the above three function modules.
The input data we chose to use in the simulation were A = 2, B = −5, C = −12, and a = 2,
and the results are shown in Figure 4. We obtained H1 = 16.0318. Using the div module,
the result was t1 = 4.00795, and using the subdiv2 module, the result was t1 = 4.

For the equation x3ex − 2 = 0, we used Newton’s iteration method to approximate
the linearization of the nonlinear equation. Then, we set f (x) = x3ex − 2, and then,
f ′(x) =

(
3x2 + x3)ex. According to the iterative formula of Newton’s method:

xn+1 = xn −
f (xn)

f ′(xn)
(6)



Curr. Issues Mol. Biol. 2022, 44 1733

and then, sorted out by Newton’s iterative formula:

xn+1 = xn −
x3

nexn − 2(
3x2

n + x3
n
)
exn

n = 0, 1, 2, · · · (7)

The solution to exn here uses the simulation Algorithm 3 in the next section, taking
the initial value x0 = 1. Table 1 lists the iteration results.

Table 1. Comparison of the calculated value in CRNs and the exact value.

n CRNs Computed Exact

0 1 1
1 0.933940 0. 933940
2 0.925244 0. 925600
3 0.921332 0. 925479
4 0.921607 0. 925479

(a) t = ax, a = 3 (b) t = ax, a = 27 (c) x = ey, y = 5 (d) x = ey, y = 10

(e) x = arcsin y, y = 1 (f) x = arcsin y, y = 0.5 (g) x = arctan y, y = 1 (h) x = arctan y, y = 0.5

Figure 6. Solution result graph: (a) where a = 3 (blue), t = 27 (green), x = 3.00038 (orange); (b)
where a = 27 (blue), t = 3 (green), x = 0.333333 (orange); (c) where x = 148.413 (green); (d) where x =
22,026.5 (green); (e) where x = 1.54313 (green); (f) where x = 0.531584 (green); (g) where x = 0.781827
(green) and absolute value of coefficient (blue); (h) where x = 0.463648 (green) and absolute value of
coefficient (blue). The abscissa represents the time unit is seconds.

In Table 1, n represents the number of iterations. The first iteration in the chemical
reaction network can be accurate to six digits after the decimal point. After four iterations,
it can be accurate to four digits after the decimal point. The convergence speed in the
chemical reaction network was also faster. However, the accuracy decreased as the number
of iterations increased.

3.2. Solving the Logarithmic Equations

We solved the logarithmic equation as: logn x = b; the most direct way is to convert
it into an exponential function: x = nb; its solution in the integer range was achieved by
Algorithm 3. However, when solving ln x = b, we used real-valued (analog) algorithm
calculations. In the CRNs, we approximated infinite computations through assignment
loops. As long as the simulation time does not stop the reaction, it can continue forever,
avoiding truncating the McLaughlin series. Here, we calculated x = eb, which is equivalent
to a simulation of the function f (y) = ey. We needed to expand f (y), using Taylor’s
formula:

f (y) =
∞

∑
n=0

f (n)(y0)

n!
(y− y0)

n (8)



Curr. Issues Mol. Biol. 2022, 44 1734

When y0 = 0, the Maclaurin expansion of ey can be obtained:

ey =
∞

∑
n=0

yn

n!
= 1 + y +

y2

2!
+

y3

3!
· · · (9)

Algorithm 3 can simulate its value through the input and repeated use of the basic
calculation module. The calculation of the simulation function obtained high accuracy
results in CRN++. The input data selected in the simulation were: b = 5; the calculation
result was x = 148.413, which can be accurate to the last three decimal places; when b = 10,
the calculation result was x = 22,026.5; the result is shown in Figure 6c,d.

Algorithm 3: ExponentialReaction.

Data: Concentration of species [Si](0) ∈ R+, Si = [a](0), [t](0) . . . [aEqu](0) =
[a](0).

Result: [x](t).
1 while not at end of the simulation time do
2 aNext← a× aEqu
3 xNext← x + 1
4 if a < t then
5 a← aNext
6 x ← xNext
7 end

3.3. Solving the Simplest Trigonometric Equations

We used simulation algorithms in the CNRs to solve the two simplest types of trigono-
metric equations, sin x = b, tan x = c. We did not consider the solution set, found the
corresponding inverse function by limiting the numerical range of the unknown number,
and found the solution by simulating the approximate polynomial of the inverse function
through the simulation algorithm. The chemical oscillator is a series of reactions that
the clock species can continuously convert. The use of the chemical oscillator allows the
simulation algorithm to be repeated in theory until the simulation time stops. This avoids
that the gate design alone cannot be physically infinite and reduces the repetitiveness of
the construction. The simulation algorithm shows its calculation ability in the solution of
ln x = b.

The realization of the solution method we proposed must be within the given numeri-
cal range, sin x = b, where x ∈ [0, π

2 ], within this value range. We can convert it into the
inverse function on the corresponding interval x = arcsin b, and we set f (y) = arcsin y,
y ∈ [0, 1] and expanded f (y) according to Taylor’s formula Equation (8); when y0 = 0, we
can obtain the Maclaurin expansion of Equation (10):

arcsin y =
∞

∑
n=0

(2n− 1)!!
(2n)!!

· y2n+1

2n + 1
= y +

1
2
· y3

3
+

1 · 3
2 · 4 ·

y5

5
+

1 · 3 · 5
2 · 4 · 6 ·

y7

7
+ . . . (10)

The input data selected in the simulation were: y = 1; the calculation result was
x = 1.54313, which can be accurate to the last three decimal places; when y = 0.5, the
calculation result was x = 0.531584; the result is shown in Figure 6e,f.

The realization of the solution method we proposed must be within the given numeri-
cal range, tan x = c, where x ∈ [0, π

2 ), within this value range. We can convert it to the
inverse function on the corresponding interval x = arctan c, and we set f (y) = arctan y,



Curr. Issues Mol. Biol. 2022, 44 1735

y ∈ [0,+∞), expanded f (y) according to Taylor’s formula Equation (8); when y0 = 0, we
can obtain the Maclaurin expansion of Equation (11):

arctan y =
∞

∑
n=0

(−1)n

2n + 1
y2n+1

= y− 1
3

y3 +
1
5

y5 − 1
7

y7 + · · · (11)

The implementation steps of Equation (11) in the CRNs are as follows Algorithm 4.

Algorithm 4: ArctanReaction.
Data: Concentration of species [Si](0) ∈ R, Si = [y](0), [B](0) . . . [deno](0) = 1,

[oneNegative](0) = −[y](0), [yEqu](0) = [y](0), [arcTan](0) = [y](0)
Result: [arcTan](t), [coef](t).

1 repeat
2 step : denoNext← deno + 2
3 coe f ← 1/denoNext
4 ySqu← y× yEqu
5 yNext← ySqu× yNegative
6 term← coe f × yNext
7 arcTanNext← arcTan + term
8 step : y← yNext
9 arcTan← arcTanNext

10 deno ← denoNext
11 until end of the simulation time;

We need to pay attention to the execution order of the critical steps. For example, the
assignment statement must be after the calculation statement. It must be in various steps to
ensure that the calculation response is separated from the assignment response in time to
confirm the order of the steps.

The input data selected in the simulation were: y = 1; the calculation result was
x = 0.781827, which can be accurate to the last three decimal places; when y = 0.5, the
calculation result was x = 0.463648; the result is shown in Figure 6g,h.

3.4. Error Evaluation

There are many reasons for errors in the calculation model designed in the CRNs,
including the accumulation of errors caused by the collection of the calculation steps, the
inaccuracy of the product concentration fitting to the final value, and the calculation of
the conversion of the CRNs into ODEs in the basic principle. The reaction needs to reach
a stable state in an infinite time, but this is impossible to achieve, so that it will cause
inevitable errors during the simulation. For the generation of the first error, the most direct
way to reduce the error when designing the calculation model is to minimize the error
of the basic calculation module. The implementation method was to reduce the error by
replacing different modules and adjusting the reaction steps.

In Table 2, we compare the quotient errors in the three modules in Figure 3 that
implement the division function in the CRNs. We can see that the total error of the
single-step division module div was larger than the accumulated error of the multi-step
subtraction, which is one of the reasons why we chose to use removal instead. However, the
main reason is reflected in solving the quadratic equation of one variable. After a series of
calculation steps, the subtraction will filter out a part of the error generated by the dividend
and filter it into the remainder.



Curr. Issues Mol. Biol. 2022, 44 1736

Table 2. Error comparison of quotient.

Program Average Error Total Error

div 7.1442× 10−7 1.9999× 10−5

subdiv1 3.9435× 10−8 1.1042× 10−6

subdiv2 2.9968× 10−8 8.3909× 10−7

In Table 3, we compare subdiv1 and subdiv2, comparing the error generated on the
remainder and the dividend, where subdiv2 is our improved module. In Table 2, we can
see that subdiv1 and subdiv2 had almost no noticeable difference in the calculated error of
the quotient. Still, there was a pronounced difference in the error of other values, such as
the remainder and the dividend. The above shows that in addition to the inevitable errors,
the errors generated by the calculation model of the design CRNs can be minimized by
combining different timing steps of different design algorithms.

Table 3. Total error of dividend and remainder.

Program Dividend Remainder

subdiv1 0.1205 0.2594
subdiv2 1.9535× 10−7 0.1472

We analyzed the error of f (y) = ey and f (y) = arcsin y simulated numerical calcula-
tions (Figure 7). According to the simulation time and the increase of the y value, we show
the error change. The error value is Statistics at the end of each step. We can see that the
error of the simulation values of the two simulation functions gradually increased with the
increase of the y value. x = ey. Almost all response errors were concentrated in 400–1000 s.
Through Figure 6c,d, we can see that this period was a stage where the simulation value
rose rapidly. After 1000 seconds, the change of the numerical simulation tended to be stable.
For f (y) = arctan y, the calculation had a significant error at the beginning. Almost all
the response errors concentrated on the first 15,000 seconds, that is a greater error was
generated when the value involved in the response changed significantly. In the error of
the simulation, we can also see that the error will not always change with the increase of
time. The reason is that the numerical change calculated with the rise of the simulation
time will be more minor and the result will be more stable.

Table 4 shows the species used in the chemical reaction network to solve the equation
and the reaction scale.

Table 4. Size of CRNs.

Program All Species Clock Species Reactions

Exponential 35 12 41
Logarithmic 15 6 22

Arcsin 37 9 39
Arctan 27 6 26



Curr. Issues Mol. Biol. 2022, 44 1737

(a) f (y) = ey, the resulting error (b) f (y) = arcsin y, the resulting error

Figure 7. Errors (a) and (b) generated by simulation algorithms over time and value growth. The
y-axis represents the value of y, the x-axis represents the simulation time length, and the z-axis
represents the error between the x calculated in the CRNs and the actual solution.

4. Discussion

In the section on error analysis, we analyzed the error generated by the simulation. In
the actual calculation, when the CRNs are realized through DNA coupling, there may be
significant errors, especially when the number of molecules is relatively small; the small
number of molecules will lead to non-negligible fluctuations and the discrete nature of
the molecular concentration, which may change the frequency of the reaction events of
each chemical substance. Molecular fluctuations may dominate the dynamics, and these
molecular fluctuations seem to have many significant biological consequences. Therefore,
the deterministic model used in our simulation does not always accurately describe the
chemical dynamics of such systems because the statistical average cannot explain the
molecular fluctuations. In order to simulate the molecular fluctuations, a probabilistic
model of stochastic chemical reaction networks is usually needed [37]. To avoid the above
problems, when calculating the problem of a small molecular concentration, we will enlarge
the number of molecules participating in the reaction in equal proportion to ensure the
accuracy of the deterministic model.

5. Conclusions

This paper simulated and solved the nonlinear equations that could not be solved
before and put forth the algorithm design for solving three kinds of equations in CRNs.
All frameworks were circuit free, which overcame the limitations of the modular structure
used in the previous work and made it possible to realize the algorithm more in line with
mathematical logic rather than circuit logic. The solution of these three kinds of equations
can be attributed to the design of the algorithms in the CRNs, which can be achieved only
when the previous circuit design logic needs to construct very complex modules. In the
construction of polynomials, the previous design can undoubtedly approach infinity like
the iterative algorithm, which shows the advantage of no circuit structure in the chemical
reaction network in solving computational problems.

The discrete algorithm we designed (including subdiv2, solving one-dimensional
quadratic equation, exponential function, Newton iteration method), such as when solving
the one-dimensional quadratic equation, overcame the previous problem of solving equa-
tions and designing different modules for different module coefficients repeatability [30],
such as the difference between positive and negative coefficients, requires creating other
calculation modules. When solving two different exponential equations, we also realized
the conversion calculation in the chemical reaction network for exponential equations with
analytical solutions. We realized the corresponding design of Newton’s iterative method
through the discrete algorithm for exponential equations without analytical solutions. More
importantly, we used analog algorithms to simulate functions to achieve approximate infi-
nite calculations (including ey, arcsin y, arctan y), which overcame the complex problems



Curr. Issues Mol. Biol. 2022, 44 1738

of cascading and cascading the circuit of a single gate structure cascade when simulating
the Taylor expansion. The complex issues of repetition and cascading of the structure of
each item were constructed separately. The problem of significant truncation errors in the
previous work was avoided [28,29].

Our work expands the ability of chemical reaction networks to solve equations. The
results showed that the use of circuit-free structures is more in line with the logic of algebraic
calculations in solving polynomial simulations; secondly, the CRNs achieved a certain
degree of programmable and computable work. With the development of more and more
molecular programming languages, more and more molecular programming languages
will appear and continue to improve. Using some of the CRN simulators also made our
calculations more reasonable and allowed more types of analyses. Finally, it proved that
the algorithm we designed can simulate the solution of the equation more accurately.

The reduction of error was one of the goals of the CRN calculation model. We used
modules with more minor errors in solving numerical modules to replace modules with
more significant errors. For example, the most typical one is to use subtraction instead
of division. This design part of the error generated in the quotient was filtered out. This
showed that even in addition to the inevitable errors, the steps of the control algorithm can
still minimize the calculated error.

This paper used the CRN simulator to write the algorithm in the Mathematica software
(http://users.ece.utexas.edu/~soloveichik/crnsimulator.html, accessed on 20 Dec 2021)
through the CRN++ language to obtain the simulation results and export the generated
data to MATLAB to draw a visual error analysis diagram. VisualDSD was used to draw
the DNA graphics in the article.

Author Contributions: Conceptualization, Z.S. and C.Z.; methodology, Z.S.; software, Z.S.; valida-
tion, Z.S., C.Z., and Q.Z.; formal analysis, Z.S.; investigation, Z.S.; resources, Z.W.; data curation,
Z.W.; writing—original draft preparation, Z.S.; writing—review and editing, Z.S.; visualization, Z.S.;
supervision, C.Z and Q.Z.; project administration, C.Z and Q.Z.; funding acquisition, Q.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Technology R&D Program of China (No.
2018YFC0910500), the National Natural Science Foundation of China (Nos. 61425002, 61751203,
61772100, 61972266, 61802040), LiaoNing Revitalization Talents Program (No. XLYC2008017), the
Innovation and Entrepreneurship Team of Dalian University (No. XQN202008), the Natural Science
Foundation of Liaoning Province (No. 2021-MS-344), Liaoning BaiQianWan Talents Program, and the
General Project of the Education Department of Liaoning Province (No. LJKZ1186).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the results reported here are available from the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adleman, L.M. Molecular Computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024. [CrossRef]

[PubMed]
2. Badelt, S.; Grun, C.; Sarma, K. V.; Wolfe, B.; Shin, S.W.; Winfree, E. A domain-level DNA strand displacement reaction enumerator

allowing arbitrary non-pseudoknotted secondary structures. J. R. Soc. Interface 2020, 17, 20190866. [CrossRef] [PubMed]
3. Karamasioti, E.; Lormeau, C.; Stelling, J. Computational design of biological circuits: Putting parts into context. Mol. Syst. Des.

Eng. 2017, 2, 410–421. [CrossRef]
4. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 2007, 8, 450–461. [CrossRef] [PubMed]
5. Fern, J.; Scalise, D.; Cangialosi, A.; Howie, D.; Potters, L.; Schulman, R. DNA Strand-Displacement Timer Circuits. ACS Synth.

Biol. 2017, 6, 190–193. [CrossRef] [PubMed]
6. Soloveichik, D.; Seelig, G.; Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. USA 2010, 107,

5393–5398. [CrossRef] [PubMed]

http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
http://doi.org/10.1126/science.7973651
http://www.ncbi.nlm.nih.gov/pubmed/7973651
http://dx.doi.org/10.1098/rsif.2019.0866
http://www.ncbi.nlm.nih.gov/pubmed/32486951
http://dx.doi.org/10.1039/C7ME00032D
http://dx.doi.org/10.1038/nrg2102
http://www.ncbi.nlm.nih.gov/pubmed/17510665
http://dx.doi.org/10.1021/acssynbio.6b00170
http://www.ncbi.nlm.nih.gov/pubmed/27744682
http://dx.doi.org/10.1073/pnas.0909380107
http://www.ncbi.nlm.nih.gov/pubmed/20203007


Curr. Issues Mol. Biol. 2022, 44 1739

7. Cardelli, L.; Kwiatkowska, M.; Whitby, M. Chemical reaction network designs for asynchronous logic circuits. Nat. Comput. 2018,
17, 109–130. [CrossRef] [PubMed]

8. Phillips, A.; Cardelli, L. A programming language for composable DNA circuits. J. R. Soc. Interface 2009, 6, 18. [CrossRef]
9. Qian, L.; Winfree, E. Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 2011, 332,

1196–1201. [CrossRef]
10. Chen, S.F.; Seelig, G. Programmable patterns in a DNA-based reaction-diffusion system. Soft Matter 2020, 16, 3555–3563.

[CrossRef]
11. Lakin, M. R.; Phillips, A. Domain-Specific Programming Languages for Computational Nucleic Acid Systems. ACS Synth. Biol.

2020, 9, 1499–1513. [CrossRef]
12. Spaccasassi, C.; Lakin, M.R.; Phillips, A. A Logic Programming Language for Computational Nucleic Acid Devices. ACS Synth.

Biol. 2019, 8, 1530–1547. [CrossRef]
13. Srinivas, N.; Parkin, J.; Seelig, G.; Winfree, E.; Soloveiehile, D. Enzyme-free nucleic acid dynamical systems. Science 2017, 358.

[CrossRef]
14. Marchisio, M.A.; Stelling, J. Automatic Design of Digital Synthetic Gene Circuits. PLoS Comput. Biol. 2011, 7, e1001083. [CrossRef]
15. Baron, R.; Lioubashevski, O.; Katz, E.; Niazov, T.; Willner, I. Elementary arithmetic operations by enzymes: A model for metabolic

pathway based computing. Angew. Chem. Int. Ed. 2006, 45, 1572–1576. [CrossRef]
16. Arkin, A.; Ross, J. Computational functions in biochemical reaction networks. Biophys. J. 1994, 67, 560–578. [CrossRef]
17. Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science 2006, 314, 1585–1588. [CrossRef]
18. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E. Diverse and robust molecular algorithms using

reprogrammable DNA self-assembly. Nature 2019, 567, 366–372. [CrossRef]
19. Simmel, F.C.; Yurke, B.; Singh, H.R. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem. Rev. 2019,

119, 6326–6369 [CrossRef]
20. Yurke, B.; Turberfield, A.J.; Mills, A.P.; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature

2000, 406, 605–608. [CrossRef]
21. Lopiccolo, A.; Shirt-Ediss, B.; Torelli, E.; Olulana, A.F.A.; Castronovo, M.; Fellermann, H.; Krasnogor, N. A last-in first-out stack

data structure implemented in DNA. Nat. Commun. 2021, 12, 1–10. [CrossRef] [PubMed]
22. Cao, B.; Li, X.; Zhang, X.; Wang, B.; Zhang, Q.; Wei, X. Designing Uncorrelated Address Constrain for DNA Storage by DMVO

Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 9, 866–877. [CrossRef] [PubMed]
23. Wu, J.; Zheng, Y.; Wang, B.; Zhang, Q. Enhancing Physical and Thermodynamic Properties of DNA Storage Sets with End-

constraint. IEEE Trans. Nanobiosci. 2021, 12, 184–193 . [CrossRef]
24. Yin, Q.; Zheng, Y.; Wang, B.; Zhang, Q. Design of Constraint Coding Sets for Archive DNA Storage. IEEE/ACM Trans. Comput.

Biol. Bioinform. 2021. [CrossRef] [PubMed]
25. Joesaar, A.; Yang, S.; Bogels, B.; van der Linden, A.; Pieters, P.; Kumar, B.; Dalchau, N.; Phillips, A.; Mann, S.; de Greef, T.F.A.

DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 2019, 14, 369. [CrossRef] [PubMed]
26. Qian, L.; Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 2011, 8, 1281–1297.

[CrossRef] [PubMed]
27. Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011, 475, 368–372.

[CrossRef]
28. Salehi, S.A.; Liu, X.Y.; Riedel, M.D.; Parhi, K.K. Computing Mathematical Functions using DNA via Fractional Coding. Sci. Rep.

2018, 8, 1–14. [CrossRef]
29. Song, T.Q.; Garg, S.; Mokhtar, R.; Bui, H.; Reif, J. Analog Computation by DNA Strand Displacement Circuits. ACS Synth. Biol.

2016, 5, 898–912. [CrossRef]
30. Zou, C.Y.; Wei, X.P.; Zhang, Q.; Liu, C.J.; Liu, Y. Solution of Equations Based on Analog DNA Strand Displacement Circuits. IEEE

Trans. Nanobiosci. 2019, 18, 191–204. [CrossRef]
31. Chen, Y.-J.; Dalchau, N.; Srinivas, N.; Phillips, A.; Cardelli, L.; Soloveichik, D.; Seelig, G. Programmable chemical controllers

made from DNA. Nat. Nanotechnol. 2013, 8, 755–762. [CrossRef]
32. Buisman, H.J.; Eikelder, H.M.M.; Hilbers, P.A.J.; Liekens, A.M.L. Computing Algebraic Functions with Biochemical Reaction

Networks. Artif. Life 2009, 15, 5–19. [CrossRef]
33. Cardelli, L.; Tribastone, M.; Tschaikowski, M. From electric circuits to chemical networks. Nat. Comput. 2020, 19, 237–248.

[CrossRef]
34. Ge, L.; Zhong, Z.; Wen, D.; You, X.; Zhang, C. A Formal Combinational Logic Synthesis With Chemical Reaction Networks. Biol.

Multi-Scale Commun. 2017, 3, 33–47. [CrossRef]
35. Vasic, M.; Soloveichik, D.; Khurshid, S. CRN plus plus: Molecular programming language. Nat. Comput. 2020, 19, 391–407.

[CrossRef]
36. Oishi, K.; Klavins, E. Biomolecular implementation of linear I/O systems. IET Syst. Biol. 2011, 5, 252–260. [CrossRef]
37. Soloveichik, D.; Cook, M.; Winfree, E.; Bruck, J. Computation with finite stochastic chemical reaction networks. Nat. Comput.

2008, 7, 615–633. [CrossRef]

http://dx.doi.org/10.1007/s11047-017-9665-7
http://www.ncbi.nlm.nih.gov/pubmed/29576757
http://dx.doi.org/10.1098/rsif.2009.0072.focus
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1039/C9SM02413A
http://dx.doi.org/10.1021/acssynbio.0c00050
http://dx.doi.org/10.1021/acssynbio.8b00229
http://dx.doi.org/10.1126/science.aal2052
http://dx.doi.org/10.1371/journal.pcbi.1001083
http://dx.doi.org/10.1002/anie.200503314
http://dx.doi.org/10.1016/S0006-3495(94)80516-8
http://dx.doi.org/10.1126/science.1132493
http://dx.doi.org/10.1038/s41586-019-1014-9
http://dx.doi.org/10.1021/acs.chemrev.8b00580
http://dx.doi.org/10.1038/35020524
http://dx.doi.org/10.1038/s41467-021-25023-6
http://www.ncbi.nlm.nih.gov/pubmed/34381035
http://dx.doi.org/10.1109/TCBB.2020.3011582
http://www.ncbi.nlm.nih.gov/pubmed/32750895
http://dx.doi.org/10.1109/TNB.2021.3121278
http://dx.doi.org/10.1109/TCBB.2021.3127271
http://www.ncbi.nlm.nih.gov/pubmed/34762590
http://dx.doi.org/10.1038/s41565-019-0399-9
http://www.ncbi.nlm.nih.gov/pubmed/30833694
http://dx.doi.org/10.1098/rsif.2010.0729
http://www.ncbi.nlm.nih.gov/pubmed/21296792
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/s41598-018-26709-6
http://dx.doi.org/10.1021/acssynbio.6b00144
http://dx.doi.org/10.1109/TNB.2019.2897116
http://dx.doi.org/10.1038/nnano.2013.189
http://dx.doi.org/10.1162/artl.2009.15.1.15101
http://dx.doi.org/10.1007/s11047-019-09761-7
http://dx.doi.org/10.1109/TMBMC.2016.2640287
http://dx.doi.org/10.1007/s11047-019-09775-1
http://dx.doi.org/10.1049/iet-syb.2010.0056
http://dx.doi.org/10.1007/s11047-008-9067-y

	Introduction
	Materials and Methods
	Basic Modules
	Composable Basic Modules

	Results
	Solving the Exponential Equations
	Solving the Logarithmic Equations
	Solving the Simplest Trigonometric Equations
	Error Evaluation

	Discussion
	Conclusions
	References

